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Abstract— Artificial neural networks are widely studied for 

the state of health (SOH) estimation of Lithium-ion batteries 

because they can recognize global features from the raw data 

and are able to cope with multi-dimensional data. But the 

performance of the model depends to some extent on the 

selection of the hyperparameters, which remain constant during 

model training. To improve the generalization performance as 

well as accuracy, an ensemble learning framework is proposed 

for battery SOH estimation, where multiple extreme learning 

machines are trained combined with bagging technology. The 

numbers of bags and neurons of the base model are then tuned 

by five commonly used hyperparameter optimization methods. 

Moreover, the SOH value with maximum probability density is 

selected as the output estimate to further improve the estimation 

accuracy. Finally, experimental results on both NMC and LPF 

batteries demonstrate that the proposed method with 

hyperparameter optimization can achieve stable and accurate 

battery SOH estimation. Regardless of which optimization 

method is used, the average percentage error for SOH 

estimation of NMC and LFP batteries can keep below 1% and 

1.2%, respectively. 

Keywords— Lithium-ion battery, state of health, robust 

estimation, ensemble learning. 

I. INTRODUCTION 

With the emergence of global issues, such as the energy 
crisis, global warming, and the rapid growth of travel demand, 
the transportation sector is undergoing a revolutionary shift 
from the internal combustion engine to an electric drivetrain. 
Lithium-ion batteries (which serve as the main power system) 
have long limited the development of new energy vehicles [1-
2]. The poor safety, short cruising range, long charging time, 
and high cost of energy vehicles are still problems that need 
to be solved urgently. Health management plays an important 
role in avoiding thermal runaway, optimizing fast charging, 
and extending the cruising range [3]. Generally, the battery’s 
state of health (SOH) is a figure of merit that indicates the 
condition of the battery throughout its service life. SOH is 
defined as the ratio between the current available capacity and 
the initial capacity. Usually, 20% or 30% capacity fade is 
adopted as the end-of-life criteria [4]. Machine learning (ML) 

technologies possess immense potential in inferring battery 
SOH since they do not rely on specific battery models. Many 
algorithms have been successfully applied such as support 
vector machine, gaussian process regression (GPR), artificial 
neural network, deep learning, etc. [5]. Ensemble learning 
(EL) is emerging because it generally produces more accurate 
and robust results than a single base learner [6].  

EL method can be categorized into heterogeneous 
ensemble and homogeneous ensemble [5]. In the 
heterogeneous ensemble, multiple different types of base 
learners from above-mentioned ML algorithms will be trained 
[7-10]. For example, linear regression and GPR models were 
established based on the residuals and a series of intrinsic 
mode functions decomposed from the original signal [7]. In 
[9], eight convolutional neural networks are built based on the 
aging data of eight battery cells. Together with transfer 
learning and average aggregation, the accuracy and robustness 
are enhanced. It is obvious that training multiple ML models 
will increase the computational complexity. To guarantee the 
estimation accuracy, a small number of but relatively accurate 
models will be selected for the ensemble. In addition, 
overfitting is still a concern when the available dataset is small. 
Therefore, the homogeneous ensemble is proposed where 
resampling technologies such as bagging and boosting are 
used to create diverse subsets, and then multiple homogeneous 
models can be established [10]. The computationally efficient 
algorithm, such as the extreme learning machine (ELM), is 
preferred as the base model [11]. However, the performance 
of the EL algorithm can be greatly affected by the 
hyperparameters, e.g., the number or the size of the base 
models [12]. Therefore, a Bagging ELM-based (BaggELM) 
SOH estimation method with optimized hyperparameters is 
proposed in this work. 

The rest of this paper is organized as follows. The 
estimation framework for SOH estimation including bagging-
based data augmentation, hyperparameter optimization, and 
output aggregation method is introduced in Section II. Section 
III describes the cyclic aging tests for commonly used NMC 
and LFP batteries. Then the performance of the proposed 
Bagging-based EL methods and hyperparameter optimization 
are investigated. Section IV gives the conclusion of this work. 
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II. METHODOLOGY  

Fig. 1 gives an illustration of the proposed EL-based 
framework for SOH estimation. It consists of two parts: model 
training and validation. Battery aging data (i.e., voltage (V), 
current (I), temperature (T), and time (t)) are measured and 
stored through various laboratory tests. Considering the real 
application where batteries are typically operated in a partial 
(between 10% and 90% SOC or even a narrower SOC range) 
rather than a full SOC range, a partial voltage was chosen as 
the input for the ML model. Through model training on known 
data, the relationship between input and output can be 
established. According to the BaggELM method [5, 6], two 
hyperparameters related to the structure of the model need to 
be optimized, i.e., the numbers of hidden neurons (N), and the 
numbers of the bootstrap samples (B). Five commonly used 
algorithms, namely pattern search, Bayesian optimization, 
simulated annealing, genetic algorithm, and particle swarm 
are applied to search for the optimal combination of N and B. 
The established model is then validated on the unseen dataset. 

Traditionally in the EL method, based on a weighted 
average of the base model or through voting, the final output 
is given. However, because of the random parameterization of 
BaggELM, each base learner may show significantly different 
performance. It is worth noting that the estimation error for 
NMC battery, as shown in Fig. 2(a) and Fig. 3(a), fluctuates 
with the increase of B, and finally tends to be stable. Besides, 
when BaggELM is trained multiple times with a random N and 
B, the model shows unstable estimation and is even invalid. 

The RMSE for NMC battery obtained from the 6th and 9th 
training is almost as large as 3%, indicating a significant 
fluctuation in the estimation from different times of training. 
In this case, the average-based ensemble will still bring errors 
caused by poor base learners. To better utilize the output of 
multiple base models, the probability density function (PDF) 
of estimated SOH from all B base models is obtained. The 
mode value rather than the mean value is then output as the 
final estimate. The PDF of the output results distribution is 
calculated as  
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Fig. 1. Schematic diagram of the proposed SOH estimation framework. 

 
(a) 

 
(b) 

Fig. 2. Impact of the hyperparameters on SOH estimation for NMC battery. 

(a) N is fixed to 40, and B is varied from 1 to 5000. (b) Ten times of model 

training with randomly selected N and B. 

 
(a) 

 
(b) 

Fig. 3. Impact of the hyperparameters on SOH estimation for LFP battery. 

(a) N is fixed to 40, and B is varied from 1 to 5000. (b) Ten times of model 
training with randomly selected N and B. 
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where σ is the scale parameter. 1σ =  and 1σ ≠  represent 

that variables follow the symmetrical and asymmetrical 
distribution. The predicted value of a new observation, xnew, 
can be considered as the mode of the PDF. 

 ˆˆ mode PDF( 1,  2,( ), ) ,new b new b BY f = = … x  (2) 

where ˆ ( )bf ⋅  is the bth single ELM. Take the NMC battery as 

an example, the estimation results using mean and mode as 
output has been compared. Fig. 4(a) shows the estimation 
results for all 137 single ELMs, along with the corresponding 
probability density distribution in Fig. 4(b). The mode of 
distribution, i.e., the peak value in the probability density 
function, represents the most likely case. As shown in Fig. 
4(b), the mode value is closer to the real SOH than the mean. 
Therefore, to better utilize the output of multiple base models 
and further compensate for the instability of the weak learner, 
the EL model outputs its mode as the estimate. The whole 
framework for battery SOH estimation has been implemented 
in MATLAB code, where Global Optimization Toolbox is 
used for hyperparameter optimization. The model training 
was performed on a PC with an Intel core i7 processor and 
Nvidia MX450, with 48GB RAM. 

 
(a) 

 
(b) 

Fig. 4. Statistical plot of estimated SOH values from each base model. (a) 

SOH estimates. (b) Probability density function of the output results. 

III. EXPERIMENTAL AGING TESTS 

To verify the effectiveness of the proposed SOH 
estimation method, two commonly used batteries, i.e., NMC 
and LFP batteries were subjected to accelerated aging tests. 
The main electrical parameters of the tested batteries are 
summarized in Table I. Respectively, the NMC battery was 
aged at 35°C using the standardized WLTC driving cycle for 
class B vehicles; at the end of the test (i.e., after 580 full 
equivalent cycles, FECs), the cells reached a capacity fade of 
13%. The capacity of the NMC battery was measured at 25°C  

TABLE I.  THE DATASHEET OF THE TESTED NMC AND LFP 

BATTERIES 

Item NMC LFP 

Nominal capacity 3.4 Ah 2.5 Ah 

Nominal voltage 3.6 V 3.3 V 

Maximum voltage 4.2 V 3.6 V 

Cut-off voltage 2.65 V 2.0 V 

Maximum continuous charge current 2 A 10 A 

Maximum continuous discharge current 8 A 50 A 

 

with CC-CV charging and CC discharging. It was conducted 

initially after every week of cycling (corresponding to 20 

FECs). Since it was found that the battery capacity fades 

slowly, the capacity test was changed to every 3 weeks after 

14 weeks of cycling. The LFP battery was aged with a one-

week frequency regulation mission profile, and the battery 

state of charge varies from 10% and 90%. The CC-CV 

charging was also conducted for measuring the capacity of 

the LFP battery. Particularly, it was first charged with a 1C-

rate constant current until the voltage reaches 3.6 V. Then the 

voltage was held to be 3.6 V until the current equals 0.1 A 

where batteries are considered fully charged (CC-CV 

charging). After 15 minutes of relaxation for achieving 

electrochemical stability, the current battery capacity was 

measured following a 1C-rate constant current discharging 

procedure (CC discharging). During both charging and 

discharging, the battery data is sampled with one second. The 

above two experiments were carried out in a loop until the 

tested battery reached 18% capacity fade. As a result, the 

obtained voltage and the corresponding SOH curves during 

the capacity test can be seen in Fig. 5 and Fig. 6. 

zoomed

Aging trend

 
(a) 

 
(b) 

Fig. 5. Data obtained from cyclic aging of the NMC battery. (a) Voltage 

responses under CC-CV charging. (b) SOH curve. 
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(a) 

 
(b) 

Fig. 6. Data obtained from cyclic aging of the LFP battery. (a) Voltage 

responses under CC-CV charging. (b) SOH curve. 

IV. SOH ESTIMATION RESULTS 

The root-mean-squared error (RMSE), mean absolute 
percentage error (MAPE), and absolute percentage error 
(APE) are the metrics used to evaluate the effectiveness of the 
proposed method. They are defined as: 
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where NT is the total number of validation data, ˆ
iSOH  and 

iSOH  is the estimated SOH and the real SOH of the ith 

validation data point, respectively. The self-validation 
approach is used, where the aging datasets of the tested 
batteries are divided into a training group (65% of the dataset, 
i.e., the black points in Fig. 5(b) and Fig. 6(b)) and a validation 
group (35% of the dataset, i.e., the red points in Fig. 5(b) and 
Fig. 6(b)).  

A. Effectiveness of ensemble learning 

As shown in Fig. 7 and Fig. 8, the effectiveness of 
bootstrap aggregating technology has been investigated. For 
both NMC and LFP batteries. An ELM (N=40) and a 
BaggELM model (with N=40, B=10) are established, 
respectively. The hyperparameters are randomly selected 
without optimization. As can be observed, BaggELM 
provides a good generalization performance and the APE for 
NMC and LFP remains under 1% and 2%, respectively, 

throughout the battery’s lifetime, while ELM shows a 
relatively large fluctuation in the estimation. 

 

 

Fig. 7. SOH estimation results with ELM and BaggELM methods for NMC 
battery. 

 

 

Fig. 8. SOH estimation results with ELM and BaggELM methods for LPF 
battery. 

B. Effectiveness of hyperparameter optimization 

By using optimized parameters N and B, the estimation 
results are summarized in Fig. 9, Fig. 10, and Table II. It can 
be seen that the model can fail to converge if the 
hyperparameters are not chosen properly. In addition, using 
hyperparameters optimization, no matter what the algorithm, 
is effective in improving the stability and accuracy of 
estimation. Specifically, for the NMC battery and the model 
built on optimal parameters, its APE keeps below 1%, and 
both RMSE and MAPE are less than 0.5%, regardless of 
which optimization method is used. For the LFP battery, due 
to the plateau characteristic in voltage response, the SOH 
estimation error is slightly higher than that of the NMC 
battery. Similar results are obtained for the LFP battery where 
its APE maintains less than 1.2%, and RMSE and MAPE are 
less than 0.8%. 
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Fig. 9. SOH estimation results of BaggELM using different hyperparameter 
optimization methods for LFP battery. 

 

 
Fig. 10.SOH estimation results of BaggELM using different 

hyperparameter optimization methods for NMC battery.  

TABLE II.  SUMMARY OF THE SELECTED HYPERPARAMETERS (I.E., N AND B) BY EACH OPTIMIZATION METHOD AND SOH ESTIMATION ERRORS OF THE 

CORRESPONDING MODELS 

Method 
NMC battery LFP battery 

Hyperparameter values MAPE [%] RMSE [%] Hyperparameter values MAPE [%] RMSE [%] 

Without optimization *N=1672, B=733 1.56 1.31 *N=700, B=10 0.76 1.04 

Pattern Search N=5, B=262 0.39 0.40 N=144, B=1809 0.66 0.68 

Bayesian N=137, B=394 0.38 0.39 N=231, B=87 0.69 0.67 

Simulated Annealing N=69, B=286 0.43 0.45 N=174, B=142 0.62 0.61 

Genetic Algorithm N=47, B=406 0.45 0.45 N=163, B=129 0.64 0.64 

Particle Swarm N=5, B=54 0.48 0.47 N=159, B=30 0.70 0.74 

Note*: N and B are randomly selected for BaggELM without optimization 

 

V. CONCLUSIONS 

In this paper, an EL-based battery SOH estimation 
framework, including partial voltage selection, BaggELM 
base model training, hyperparameter optimization, and output 
selection determined by probability density is proposed. The 
experimental results on both NMC and LFP batteries indicate 
that BaggELM performs better than the single ELM. 
However, the estimation accuracy is influenced by network-
related hyperparameters, namely B and N, significantly. By 
optimally choosing these two parameters, the estimation 
accuracy and stability of the model are greatly improved. 
Moreover, due to the plateau characteristic, the aging 
information contained in the voltage measurements of the LFP 
battery is less than that of the NMC battery. This makes it 
challenging in SOH estimation for the LFP battery when only 
raw voltage is used. Hence, it can further demonstrate the 
significance of the proposed method in practical applications. 
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