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Modified Critical State Two-Surface Plasticity Model for Sands

Kris Wessel Sørensen1 Søren Kjær Nielsen1 Amir Shajarati1 Johan Clausen2

Department of Civil Engineering, Aalborg University

Abstract

This article describes the outline of a numerical integration scheme for a critical state two-surface plasticity
model for sands. The model is slightly modified by LeBlanc (2008) compared to the original formulation
presented by Manzari and Dafalias (1997) and has the ability to correctly model the stress-strain response
of sands. The model is versatile and can be used to simulate drained and undrained conditions, due to the
fact that the model can efficiently calculate change in void ratio as well as pore pressure. The objective of
the constitutive model is to investigate if the numerical calculations can be performed with the Forward
Euler integration scheme. Furthermore, the model is formulated for a single point.

1 Introduction

With the rapidly growing increase in computational
power over the last decades, constitutive models
that accurately simulate the stress-strain behaviour
of different materials have been used within differ-
ent engineering fields. However, for granular ma-
terials only simple classical plasticity models such
as Mohr-Coulomb or Cam-Clay have been widely
used in most engineering codes. These models may
be sufficient for many simple geotechnical problems,
but fail to simulate accurate stress-strain behaviour
when dealing with complex problems. Therefore
more advanced models are required when dealing
with offshore geotechnical problems. Effects from
cyclic loading such as accumulation of pore pressure,
cyclic liquefaction and cyclic mobility are typically
needed to be taken into account.

The framework of Critical State Soil Mechanics
(CSSM) developed by Schofield and Wroth (1968)
provides a broad framework to explain the funda-
mental behaviour of different soil materials. Within
this framework, Manzari and Dafalias (1997) de-
veloped a versatile constitutive model named Crit-
ical State Two-Surface Plasticity Model for Sands,
that is able to model both drained an undrained
behaviour of cohesionless soils subjected to cyclic
loading. LeBlanc (2008) made modifications to the
model by introducing an alternative multi-axial sur-
face formulation based on shape functions used to
prescribe a family of smooth and convex contours in
the octhahedral plane.

This article outlines the physical aspects of the
model proposed by LeBlanc (2008), and seeks to

1M.Sc. Student, Department of Civil Engineering, Aal-
borg University, Denmark

2Associate Professor, Department of Civil Engineering,
Aalborg University, Denmark

describe the different model parameters. When im-
plementing the constitutive model, a simple integra-
tion scheme in form of Forward Euler is used instead
of the proposed Return Mapping Method used by
LeBlanc (2008). This is done in order to simplify
the calculations and investigate if the accuracy of
the model is still preserved.

2 Formulation of Model

The following section describes the modified critical
two-surface plasticity model for sands in detail, and
has its point of reference in LeBlanc (2008).

2.1 Peak Shear Strength

A dense sand specimen will dilate when sheared and
therefore has a larger shear strength due to the in-
creased amount of energy needed in order to get
the granular particles to slide over adjacent parti-
cles. The peak shear strength described as the upper
limit in a stress space, normally known as the fail-
ure envelope, is in the model described as a bounding
line. At high effective mean stresses the bounding
line will coincide with the critical state line. The
bounding line as well as the critical state line can
be seen in Figure 1, where the bounding line for a
dense sample is curved due to the increased peak
shear strength.

The path of the bounding line is highly depen-
dent on the void ratio, and therefore the shape of
the bounding line is formulated by the state param-
eter, ψ, along with the critical stress ratio, Mcr. The
state parameter in equation (1) is defined as the dif-
ference between the current void ratio, e, and the
critical void ratio, ecr, and is shown in Figure 2. The
state parameter is used in the constitutive model
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Figure 1: Peak shear strength (failure envelope) for different deposit densities. (a) ε1−q diagram. (b) p−q diagram (Cambridge
diagram). (c) Model formulation of bounding line.

to prescribe the peak stress level and dilatancy be-
haviour.

ψ = e− ecr (1)

The critical stress ratio prescribes the inclination of
the critical state line, and is defined as the ratio
between the deviatoric and mean stresses, Mcr =
q/p. The critical stress ratio along with the state
parameter results in the bounding line, Mb, which
is formulated as

Mb(ψ) = Mcr + kb 〈−ψ〉 (2)

where kb is a dimensionless model parameter and
〈 〉 is defined as Macauly brackets where 〈x〉 = 0 if
x < 0 else 〈x〉 = x.

2.2 Characteristic Line

To model the change from compactive to dilative be-
haviour the use of characteristic line is implemented
into the model. For monotonic tests this behaviour
can be represented by a straight line through origo
in p - q space and is independent of relative density
(Ibsen, 1998). However, when dealing with cyclic
loading a reformulation of the characteristic line is

e

p

ψ > 0   Loose

ψ > 0   Dense

ecr

Figure 2: State parameter used to model peak shear stress
and dilatancy behaviour.

needed because the line is no longer constant and in-
dependent of relative density according to Manzari
and Dafalias (1997). Therefore the definition of the
characteristic line is also formulated by the critical
stress ratio and the state parameter, given as

Mc(ψ) = Mcr + kcψ (3)

where kc is a dimensionsless model parameter and
the characteristic line is illustrated in Figure 3.

2.3 Stress Dependent Moduli

Both the bulk modulus, K, and the shear modulus,
G, are stress dependent, and in order to take this de-
pendency into account, the model uses the following
equations

K = K0

(
p

pref

)b
G = G0

(
p

pref

)b
(4)

where pref is the reference pressure for which K =
K0 and G = G0. The pressure exponent, b, is
a model parameter expressing the variation of the
elastic modules with the isotropic pressure. The
value of b is reported to vary from 0.435, at very

q

p

Mcr

Compactive

Dilative
Mcr+ kcy

Characteristic line

Figure 3: Characteristic line accounting for the transition
from compactive to dilative soil behaviour.
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small strains, to 0.765, at very large strains accord-
ing to Wroth et al. (1979). A value of 0.5 captures
most of the important features of increased shear
stiffness with pressure (Wroth and Houlsby, 1985).

2.4 Yield Surface

The constitutive model has its underlying basis in
non-associated plasticity and the elastic domain is
enclosed by a yield surface with the function given
in equation (5). The yield surface has a cone type
shape and has its origin positioned in origo, see Fig-
ure 4. It should be noted that bold letters charac-
terise tensors and the operators u:v and |u| refer to
the tensor product and tensor norm, respectively.
Moreover p = (σ11 +σ22 +σ33)/3 and sss = σσσ−pIII re-
fer to the hydrostatic stress and the deviatoric stress
tensor, where III is the identity matrix.

f = |rrr| −
√

2

3
mp rrr = sss− p ααα (5)

The value
√

2
3m and ααα define the radius and axis

direction of the cone respectively.
The normals to the yield surface, ∂f/∂σσσ, and

plastic potential surface, ∂g/∂σσσ, defining the direc-
tion of the loading and plastic flow direction are de-
fined as

∂f

∂σσσ
= nnn− 1

3
NIII (6)

∂g

∂σσσ
= nnn+

1

3
DIII (7)

where nnn = rrr/|rrr| is the deviatoric normal to the
yield surface as shown in Figure 4. N and D are
parameters which determine the magnitude of the
isotropic components. The latter is a dilatancy pa-
rameter and it controls the isotropic flow direction

s1

s

pI

s3

s2

pa

r

n
∂ g/∂ s

∂ f/∂ s

Octahedral plane

Hydrostatic axis

Figure 4: Illustration of yield surface.

and thereby the volumetric behaviour of the consti-
tutive model.

2.5 Volumetric Behaviour

The magnitude of the isotropic components can be
determined by equation

N = ααα : nnn+
2

3
m (8)

D = (A0 +Az)(βcβcβc : nnn) (9)

where Az = 〈zzz : nnn〉 is an unloading dilatancy pa-
rameter, which allows the model to take dilatancy
during unloading into account and is dependent on
the fabric tensor zzz. Furthermore, A0 is a dimen-
sionless scaling parameter also accounting for dilan-
tancy. The sign of βcβcβc : nnn defines the limit between
compressive and dilative behaviour. βcβcβc : nnn > 0 in-
dicates stress states inside the characteristic surface
and therefore compressive behaviour, whereas load-
ing beyond the characteristic surface gives βcβcβc : nnn < 0
and therefore dilative behaviour. The development
of the fabric tensor, zzz, is defined by the evolution
law

dzzz = z̃zzdλ z̃zz = −Cz(Amaxz nnn+ zzz) 〈−D〉 (10)

The two parameters Cz and Amaxz are positive di-
mensionless model parameters, and Amaxz becomes
an upper threshold for Az. zzz enables the model to
dilate under reversed loading and develop accord-
ingly. zzz evolves in an opposite direction of nnn when-
ever the specimen dilates (D > 0) such that the
tensor product zzz : nnn becomes positive, only when
the load direction shifts to unloading.

2.6 Kinematic and Isotropic Hardening

The kinematic evolution law is based on the expres-
sion given in equation (11). Cα is a positive model
parameter and br = 2

√
2/3(Mb−m) and must abide

br > |βbβbβb : nnn|. The rate of evolution will converge to
zero asααα approaches the bounding surface which im-
plies that the stress state remains inside the bound-
ing surface during hardening.

dααα = α̃ααdλ α̃αα = Cα

(
|βbβbβb : nnn|

br − |βbβbβb : nnn|

)
βbβbβb (11)

The size of the plastic multiplier, ∆λ, can be deter-
mined from equation

∆λ =
f(σσσ)

∂f/∂σσσ : CCC : ∂g/∂σσσ +H
(12)

where CCC is the hypoelastic constitutive matrix and
H is the hardening module, which is determined
from

H = p

(
nnn : α̃αα+

√
2

3
m̃

)
(13)
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2.7 Multi-axial Formulation

Granular materials are strongly dependent on the
third deviatoric stress invariant, which can be
proven by comparing triaxial compression and ex-
tension tests, which shows that a lower shear
strength can be sustained in triaxial extension. In
order to account for the third stress invariant and
thereby a more correct behavioural simulation of
granular materials, the bounding and characteristic
lines are reformulated into bounding and character-
istic surfaces defined in a multi-axial stress space.
The bounding and characteristic surfaces are de-
scribed by a versatile shape function, g(c, θ), which
was first presented by Krenk (1996). The formula-
tion is based on the second, J2, and third, J3, devi-
atoric stress invariants and the Lode angle, θ. The
shape function is defined as

g(c, θ) =
cos(γ)

cos
(
1
3 arccos (cos(3γ) cos(3θ))

) (14)

γ =
π

3
+ arctan

(
1− 2c√

3

)
(15)

cos(3θ) =
3
√

3

2

J3

(J2)
3
2

(16)

The shape parameter, c, can attain any value
between 0.5 and 1. A value equal to 1 produces
a circular surface contour in the octahedral plane
and a value of 0.5 produces a triangle. Any value
in between creates a cross between the two shapes
as seen in Figure 5.

2.8 Image Points

The constitutive model is formulated by applying
image points, αααi, which defines points on a surface in

0.5
0.6
0.7
0.8
0.9
1.0

s3

c

q

1

s1

s2

Figure 5: Family of shape contours prescribed by the shape
function g(c, θ).

the octahedral plane, pointing from the hydrostatic
axis to the image point in the direction of nnn, see
equation (17) and Figure 6. These image points are
used in the formulation to model dilatancy and the
evolution laws for hardening parameters.

αααi =

√
2

3
(g(ci, θnnn)Mi(ψ)−m)nnn, i = b, c (17)

3 Integration Scheme

When an integration scheme is used the infinitesimal
changes, dσσσ, now becomes finite, ∆σσσ. This implies
that the constitutive relation can be expresses as

∆σσσj+1 = DDDep(σσσj) ∆ εεεj+1 (18)

The Forward Euler integration scheme is choosen, of
which the principles for updating the stress tensor
can be expressed as

σσσj+1 = σσσj + ∆σσσj+1 (19)

This implies that the stress increment, ∆σσσ, only de-
pends on the previous stress state j. This is prob-
lematic as the scheme may lead to stresses outside
the yield surface, which can not exist. In the For-
ward Euler integration scheme these errors are not
corrected. Errors may therefore accumulate and
stresses drift away from the yield surface, as more
steps are taken, as illustrated in Figure 7. When the
step length is reduced the error is reduced as well,
hence this method demands a relative small step
length, which require a lot of computational power
(Krabbenhøft, 2002).

3.1 Implementation strategy

In general the course of action regarding the imple-
mentation of the model is outlined in Table 1, where
DDD∗ is either the elastic, DDDel, or elasto-plastic, DDDep,
constitutive tensor dependent on elastic or plastic
material response.

aq

bb n
q

s1/p 

Characteristic
surface

Bounding surface

s3/p s2/p 

bc

ab

ab

bb= ab - a
bc= ac - a

Figure 6: Illustration of bounding, characteristic and yield
surface in the octahedral plane.
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f = 0

σ
Δσ1

Δσ2

Δσ3

Figure 7: Illustration of errors by using the Forward Euler
integration scheme. (Krabbenhøft, 2002)

Table 1: Procedure regarding the implementation of the For-
ward Euler integration scheme to the modified two-
surface elasto-plasticity model.

Modified Manzari (Forward Euler)

Initial state:
α0α0α0, cb, cc, b, G0, K0, pref
m0, A0, Az, zzz, Cz, A

max
z , Cα, DDD∗

0

Iterations i = 1, 2,..., imax
Given parameters: ∆ε1,i, ∆σ2,i, ∆σ3,i

Calculate unknown stresses and strains from DDD∗:
∆ε3,i, ∆ε2,i, ∆σ1,i

Determine hydrostatic-, deviatoric stress and yield
function:

sss, p, rrr, f(σσσ)

if f(σσσ) < 0

DDD∗ = DDDel

else:

θ, γ, g, Mb, Mc, αb, αc, βb, βc, N , ∂f
∂σσσ

, Az,

Ddil, z̃̃z̃z,
∂g
∂σσσ

, ∆λ, α̃̃α̃α

D∗D∗D∗ = DepDepDep = DDD − DDD ∂g
∂σσσ

∂f
∂σσσ

T
DDD

H+ ∂f
∂σσσ

T
DDD ∂g
∂σσσ

Update Variables:
ααα = ααα + ∆λα̃̃α̃α
zzz = zzz + ∆λz̃̃z̃z

end

4 Efficiency, Accuracy and Stability

The Forward Euler integration scheme is evaluated
on efficiency, accuracy and stability to evaluate
the performance and determine if the integration
scheme in Table 1 is applicable for this particular
model. Simulations of drained monotonic and
cyclic tests are performed for the analysis. The
adopted model parameters are based on the original
formulation of the constitutive model by Manzari
and Dafalias (1997) and can be seen in Table 2.

Table 2: Model parameters adopted for analysis of efficiency,
accuracy and stability.

K0=31.4 MPa Mc=1.1 kb=4.0 A0=2.64
G0=31.4 MPa λ=0.025 kc = 4.2 Amaxz =100

er=0.93 Cα=1200 Cz=100

Both the monotonic and cyclic tests simulates a
medium-dense sample with a mean stress of p = 60
kPa with ε1 ranging from 0 - 10 %. The simulations
are illustrated in Figures 8 and 10. To evaluate the
accuracy of the integration scheme an error measure
is used, defined by

error =
1

N

N∑
i=1

|σσσi − σσσi,exact|
σσσi,exact

(20)

where N is the number of steps and σσσi,exact refers
to the exact solution approximated by simulations
having a very small step size and where convergence
has occurred. The accuracy is measured as a func-
tion of the imposed strain increments, ∆ε1. The
results are listed in Table 3.

Table 3: Results from accuracy analysis of the Forward Eu-
ler integration scheme, applied at the Modified Crit-
ical State Two-Surface model (1-6) and a Drucker
Prager model with non linear isotropic hardening
(DP1-DP4).

No. Loading N ∆ε1 Error [%]
1 Monot. 10,000 10−5 21.41
2 Monot. 100,000 10−6 13.39
3 Monot. 1,000,000 10−7 1.18
4 Cyclic 10,000 10−5 42.05
5 Cyclic 100,000 10−6 22.71
6 Cyclic 1,000,000 10−7 Unstable

DP1 Monot. 10 10−2 2.24
DP2 Monot. 100 10−3 0.26
DP3 Monot. 1000 10−4 0.07
DP4 Monot. 10000 10−5 0.01
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4.1 Monotonic CD Response

For the monotonic simulations a triaxial compres-
sion test has been simulated. A convergence analy-
sis proved that an accurate simulation is performed
with an increment in the order of ∆ε1 = 10−8, which
is a rather small increment size and therefore de-
mands relatively large computational costs at the
expense of efficiency. Larger increments have been
attempted to improve the efficiency, but the approx-
imated solution diverges too far away from the exact
solution and the error becomes too large, as seen in
Table 3.

The convergence rate for the Modified Criti-
cal State Two-Surface model is compared with a
Drucker Prager constitutive model with nonlinear
isotropic hardening, where the Forward Euler inte-
gration scheme also is applied. The ε1 - q diagram is
depicted in Figure 9, and the relative error is given
in Table 3. From this it is seen that convergence is
reached with a step length of 10−3 to 10−4, which is
much faster than the Modified Critical State Two-
Surface model, which need increments smaller than
10−7 to obtain convergence. This indicate that when
the complexity of a constitutive model increases, the
needed step size and thereby the usability of the
Forward Euler integration scheme decreases. This
makes the importance of return mapping more rele-
vant, when constitutive models becomes more com-
plex.

4.2 Cyclic CD Response

When simulating cyclic response the model shows
reasonably good stress-strain behaviour, as seen in
Figure 10. As with the monotonic simulation the ac-
curacy increases with decreasing strain increments.
However, at some point the increments become too
small and produce a problem with stability in the
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Figure 8: Results of monotonic simulation with Modified
Critical State Two-Surface model and the accuracy
of different strain increments.
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Figure 9: Results of monotonic simulation with Drucker
Prager model with nonlinear isotropic hardening
and the accuracy of different strain increments.

model. As seen in Table 3, when the strain incre-
ments becomes ∆ε1 = 10−7 the model becomes un-
stable. This makes it difficult to estimate the error
of the different strain increments because conver-
gence has not been established. The error measures
have therefore been compared to the last stable in-
crement size, which is ∆ε1 = 0.5×10−6. This means
that the calculated error for the cyclic simulations
must be considered with a high amount of uncer-
tainty.

However, the instability problems that the model
faces during cyclic loading indicates that there is
a problem with the implementation of the integra-
tion scheme into the constitutive model. Instability
problems does not make physical sense when reduc-
ing the increments, because a reduction of the in-
crement size will entail a solution approaching the
exact value.
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Figure 10: Results of cyclic simulation and the accuracy of
different strain increments.
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5 Conclusion

The Forward Euler integration scheme is imple-
mented into the Modified Critical State Two-
Surface model originally formulated by Manzari and
Dafalias (1997) and modified by LeBlanc (2008).
The objective was to investigate if a simple integra-
tion scheme could be implemented into an advanced
constitutive model and still model correct stress-
strain behaviour of a cohesionless soil. Monotonic
and cyclic simulations are performed on a medium-
dense sand in order to measure the accuracy of the
integration scheme for different strain increments.
It is found that with the Forward Euler method the
step size will be inappropriately small (∆ε1 < 10−7)
for monotonic loading. More importantly the model
becomes unstable for cyclic loading, thereby induc-
ing a large inaccuracy into the model. However,
this is not believed to be a problem with the inte-
gration scheme itself, but the implementation of the
constitutive model. Still, the conclusion is that a
simple integration scheme, such as the Forward Eu-
ler method, can not be recommended for a model of
this complexity.
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