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A B S T R A C T

A recent trend in deep neural network (DNN)-based speech enhancement consists of using intelligibility
and quality metrics as loss functions for model training with the aim of achieving high subjective speech
intelligibility and perceptual quality in real-life conditions. In this study, we analyze a variety of loss
functions, including some based on state-of-the-art intelligibility and quality metrics, to train an end-to-
end speech enhancement system based on a fully convolutional neural network. The loss functions include
perceptual metric for speech quality evaluation (PMSQE), scale-invariant signal-to-distortion ratio (SI-SDR),
SI-SDR integrating speech pre-emphasis, short-time objective intelligibility (STOI), extended STOI (ESTOI),
spectro-temporal glimpsing index (STGI), and a composite loss function combining STGI and SI-SDR. While
DNNs trained with these loss functions produce notable speech intelligibility (and quality) gains according to
pertinent objective metrics, we conduct a subjective intelligibility test that contradicts this result, showing
no intelligibility improvement. From the results of this study, our conclusion is twofold: (1) subjective
intelligibility evaluation is currently not replaceable by objective intelligibility evaluation, and (2) both
the development of meaningful intelligibility metrics and DNN-based speech enhancement systems that can
consistently improve the intelligibility of noisy speech for human listening remain open problems.
1. Introduction

Speech enhancement, which aims at improving both quality and in-
telligibility of distorted/noisy speech signals, has a wide range of appli-
cations in systems like hearing aids, mobile communication systems and
automatic speech recognition systems (Wang and Chen, 2018). As for
many other speech processing problems, the advent of deep neural net-
works (DNNs) was also a major turning point in speech enhancement,
since DNNs boosted its performance, particularly when dealing with
non-stationary noises and low signal-to-noise ratios (SNRs) (Kolbæk
et al., 2017; Wang and Chen, 2018; Fu et al., 2020).

The earliest DNN-based speech enhancement systems typically were
designed to work in the linear magnitude spectral domain (Xu et al.,
2014; Martín-Doñas et al., 2017; Zhao et al., 2018a; Wang and Chen,
2018; Wang et al., 2021). In these systems, a DNN is responsible for
estimating either the target (i.e., clean) speech magnitude spectrum or
a time–frequency mask to be applied to the noisy magnitude spectrum
to retrieve the target spectrum. Subsequently, the phase of the original
noisy signal is appended to synthesize the enhanced signal (Xu et al.,

∗ Corresponding author.
E-mail address: ivl@es.aau.dk (I. López-Espejo).

2014; Martín-Doñas et al., 2017; Wang and Chen, 2018; Wang et al.,
2021). However, because the use of the noisy signal phase constrains
the potential speech enhancement performance, a relatively recent
trend consists of the design of end-to-end systems directly estimating
the enhanced waveform from the noisy one (Défossez et al., 2020;
Wang et al., 2021; Zhang et al., 2021; Xiang et al., 2021). In fact,
the end-to-end approach has consistently proven to be superior to
approaches operating in the magnitude spectral domain (Wang et al.,
2021).

A crucial aspect in any DNN-based speech enhancement system
that has recently attracted much attention is the training loss func-
tion (Kolbæk et al., 2020; Braun and Tashev, 2021). Early DNN-based
speech enhancement systems tended to use the popular mean squared
error (MSE) in the linear frequency or time domain as a loss func-
tion (Gelderblom et al., 2017, 2019; Tan et al., 2019; Pandey and Wang,
2019; Kolbæk et al., 2020). In these domains, MSE might, arguably,
not be the best choice for speech enhancement purposes (Loizou and
Kim, 2011; Loizou, 2013), and, actually, some research (Fu et al., 2018;
Kolbæk et al., 2020) demonstrates that there is no guarantee that low
vailable online 21 April 2023
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MSE implies high perceptual quality and/or intelligibility. This is why a
number of recent works has explored the use of perceptually-motivated
loss functions (Fu et al., 2018; Zhao et al., 2018b; Martin-Doñas et al.,
2018; Zhang et al., 2018; Fu et al., 2020; Kolbæk et al., 2020; Vuong
et al., 2021; Li and Yamagishi, 2021; Borgström and Brandstein, 2021).
In particular, aiming at maximizing the perceptual quality of the en-
hanced speech signals, approximations to the well-known perceptual
evaluation of speech quality (PESQ) (Rix et al., 2001; ITU-T, 2003) met-
ric are employed as training loss functions in, e.g., Martin-Doñas et al.
(2018), Zhang et al. (2018), Fu et al. (2020), Li and Yamagishi (2021).
Furthermore, intelligibility metrics (or approximations of them), which
serve as proxies for subjective intelligibility, are considered as loss
functions in, e.g., Fu et al. (2018), Zhao et al. (2018b), Zhang et al.
(2018), Kolbæk et al. (2020), Li and Yamagishi (2021) in order to
maximize the estimated intelligibility of the enhanced speech signals.
Despite these speech enhancement systems tend to work very well at
test time (i.e., when applied to noisy speech signals that are not seen
during network training) in terms of the corresponding intelligibility
metric considered for training, we are generally agnostic about their
utility in real life because no formal intelligibility tests using a panel of
subjects are conducted (Zhao et al., 2018b; Zhang et al., 2018; Wang
et al., 2020; Kolbæk et al., 2020; Xiang et al., 2021).

In this paper, we study end-to-end monaural speech enhancement
considering a variety of perceptually- and non-perceptually-motivated
training loss functions: perceptual metric for speech quality evalu-
ation (PMSQE) (Martin-Doñas et al., 2018), scale-invariant signal-
to-distortion ratio (SI-SDR) (Roux et al., 2019), SI-SDR integrating
speech pre-emphasis, short-time objective intelligibility (STOI) (Taal
et al., 2011), extended STOI (ESTOI) (Jensen and Taal, 2016), spectro-
temporal glimpsing index (STGI) (Edraki et al., 2021a), and a composite
loss function combining STGI and SI-SDR. Our main finding is that,
while DNN enhancement systems trained with these loss functions yield
substantial improvements according to objective intelligibility (and
quality) metrics, these improvements are contradicted by a subjective
intelligibility test, which mostly indicates no improvement or even
degradation of intelligibility. The main contributions of this manuscript
can be summarized as follows:

1. Building upon (Kolbæk et al., 2020), we explore, for the first
time, a recently proposed intelligibility metric as a loss func-
tion for training a DNN-based speech enhancement system:
STGI (Edraki et al., 2021a, 2022). In particular, previous results
suggest that STGI is more widely applicable and performs bet-
ter than solidly-established intelligibility metrics like STOI and
ESTOI (Edraki et al., 2021a).

2. Based on our preliminary observations indicating that integrat-
ing speech pre-emphasis into a loss function like SI-SDR may
improve subjective intelligibility, we conduct a formal analysis
to accept or reject this hypothesis.

3. In order to focus on both quality and intelligibility aspects during
the enhancement process, we explore a composite loss function
combining STGI and SI-SDR. Among all the evaluated loss func-
tions, this composite loss function provides the best performance
in terms of a variety of both intelligibility and quality metrics.

4. Differently from Kolbæk et al. (2020), we conduct a subjective
intelligibility test, which studies two different types of models:
(1) general-purpose models trained considering a variety of
acoustic conditions, and (2) noisy condition-, language- and
speaker-matched models trained in the same acoustic condi-
tions as those to be found at test time. Differently from (1)
that seeks to analyze a practical scenario, (2) examines an ideal
scenario to determine an upper bound for speech intelligibility
improvement. The test contradicts – by mainly indicating no
improvement or even degradation – the intelligibility predicted
by intelligibility metrics. Actually, similarly to Kolbæk et al.
(2017), we only find statistically significant subjective intel-
10

ligibility improvements over the unprocessed noisy signal for 2
one noisy condition (−5 dB SNR, speech-shaped noise) in the
idealized situation entailed by (2).

While studies have reported subjective intelligibility improvements
for hearing-impaired listeners (Healy et al., 2019) and cochlear implant
users (Goehring et al., 2017) when using DNN-based speech enhance-
ment, results are fewer for normal-hearing listeners. To the best of our
knowledge, Healy et al. (2019) is one of the few works (which follows
a time–frequency masking approach) claiming subjective intelligibility
improvements for normal-hearing listeners, which, moreover, seems to
only be achieved when the training and testing acoustic conditions
match. Differently from Healy et al. (2019), in Gelderblom et al.
(2017, 2019), Gelderblom et al. reach a similar finding to ours (i.e., an
important discrepancy between subjective and objective intelligibility)
when studying DNN-based speech enhancement operating in the linear
magnitude spectral domain and trained making use of standard MSE as
a loss function. The fact that the approach/framework of Gelderblom
et al. substantially differs from ours, while their experimental results and
ours are aligned, points to the following findings which are carefully
elaborated throughout the rest of this manuscript:

1. Speech enhancement researchers and practitioners should avoid
basing conclusions only on intelligibility metrics, which cannot
replace subjective intelligibility tests.

2. Both the development of meaningful intelligibility metrics and
DNN-based speech enhancement systems that can consistently
improve the intelligibility of noisy speech for human listening
remain open problems.

The remainder of this paper is organized as follows. Section 2
presents the end-to-end speech enhancement approach considered in
this work, which covers the problem statement and DNN architecture,
loss functions and training issues. Then, Section 3 outlines the speech
and noise datasets employed for experimental purposes. The rest of the
experimental framework and results are presented in Sections 4 and 5.
Finally, Section 6 includes a discussion of the results and conclusions.

2. End-to-end speech enhancement

This section is devoted to explaining the end-to-end speech en-
hancement approach followed in this work. First, Section 2.1 states
the problem addressed and describes the DNN architecture for speech
enhancement. Second, Sections 2.2 and 2.3 present the different loss
functions considered and DNN training issues, respectively.

2.1. Problem statement and architecture

Let 𝐱 ∈ R𝐿 be a vector comprising 𝐿 time-domain samples of a clean
speech signal. Furthermore, let 𝐧 ∈ R𝐿 represent an 𝐿-dimensional vec-
tor containing time-domain samples of a noise signal that contaminates
𝐱 in accordance with an additive signal model:

𝐲 = 𝐱 + 𝐧, (1)

where 𝐲 ∈ R𝐿 is the corresponding noisy speech signal. Then, our
objective is to find a function implemented by a DNN, 𝐟 (⋅|𝜃) ∶ R𝐿 → R𝐿,

here 𝜃 corresponds to the DNN weight set, providing an estimate �̂� of
he target/clean speech signal 𝐱 from the noisy one 𝐲, namely,

̂ = 𝐟 (𝐲 |𝜃) . (2)

otice that the DNN weight set 𝜃 is discriminatively estimated in a
raining phase using backpropagation in order to optimize any of the
oss functions presented in the next subsection.

The non-linear mapping function 𝐟 (⋅|𝜃) ∶ R𝐿 → R𝐿 is imple-
ented in this work as a fully convolutional neural network (FCNN),
popular type of architecture for end-to-end speech enhancement

urposes (Pandey and Wang, 2019; Kolbæk et al., 2020; Xu et al.,

021). In particular, to ease the computational load during the training
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Fig. 1. Architecture of the fully convolutional neural network employed in this study to carry out end-to-end speech enhancement. Note that some of the layers integrate dropout
with a rate of 0.2.
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phase, we use a lighter variant where the number of feature maps
of the FCNN is halved compared to the DNN employed in Kolbæk
et al. (2020). The fact that we are able to significantly improve the
metrics used as loss functions (see Section 4) proves that the size of this
network is sufficient. The architecture employed in this study, which
is depicted in Fig. 1, is fed with noisy speech signals comprised of
𝐿 = 19,712 samples (corresponding to almost 2 s at a sampling rate of
0 kHz). Arranged in an encoder–decoder fashion (Ronneberger et al.,
015), this architecture primarily consists of 17 convolutional layers
ith a filter size of 11 samples and parameterized rectified linear unit

PReLU) (He et al., 2015) activations. The number of feature maps can
e seen below each layer in Fig. 1. By using a stride of 2, the size
f the input signal is repeatedly halved throughout the encoder up to
∕256. Symmetrically, all the convolutional layers of the decoder apply
psampling by a factor of 2. Skip connections concatenating encoder
nd decoder feature maps as illustrated in Fig. 1 are also used. Except
or the first layer, all the layers of the encoder use a stride of 2. The
ecoder convolutional layers employ a stride of 1.

The decoder is followed by an output convolutional layer – with a
ilter size of 1 sample and hyperbolic tangent activation – and, unlike
n Kolbæk et al. (2020), a time-domain signal offset removal layer. The
eason for adding the offset removal layer is that some of the considered
oss functions, e.g., those based on intelligibility metrics like STGI, are
ffset-invariant and, therefore, they do not ensure offset-free enhanced
peech signals. Let subscript 𝑙 denote the 𝑙th element of a vector and

let �̃� ∈ R𝐿, �̃� =
(

�̃�0,… , �̃�𝑙 ,… , �̃�𝐿−1
)⊤, be the input to the offset removal

ayer. This layer simply implements the following operation:

�̂�𝑙 = �̃�𝑙 −
1
𝐿

𝐿−1
∑

𝑙′=0
�̃�𝑙′ ,

𝑙 = 0, 1,… , 𝐿 − 1.

(3)

The receptive field of the architecture of Fig. 1 is 2,561 samples.
This implies that, at a 10 kHz sampling rate,1 the latency of this DNN-
based speech enhancement system is approximately 256 ms. Moreover,
the total number of parameters of this architecture is around 1.7M.

2.2. Loss functions

Immediately below, we briefly review the different perceptually-
and non-perceptually-motivated training loss functions that we con-
sider in this work for DNN-based speech enhancement. These are
PMSQE (to be able to include speech quality aspects), SI-SDR (due to
its excellent performance and popularity), SI-SDR with pre-emphasis
(to analyze the potential advantages of emphasizing higher speech
frequencies), (E)STOI (because of their state-of-the-art performance),
STGI (due to its excellent performance in a wider range of conditions
than (E)STOI) and a composite loss combining STGI and SI-SDR (to

1 This is the typical operational sampling rate of intelligibility metrics like
TOI, ESTOI and STGI.
11
investigate the potential benefits of combining different loss functions
targeting at different attributes of the speech signal). To the best of our
knowledge, SI-SDR with pre-emphasis, STGI and the aforementioned
composite loss are for the first time examined in this paper with the
purpose of training DNN-based speech enhancement systems.

2.2.1. Perceptual metric for speech quality evaluation
The perceptual metric for speech quality evaluation (PMSQE)

(Martin-Doñas et al., 2018) loss function, PMSQE, is a differentiable
approximation to the well-known, non-differentiable speech quality
metric perceptual evaluation of speech quality (PESQ) (Rix et al., 2001;
ITU-T, 2003). Particularly, PMSQE has a negative monotonic relation-
ship with respect to PESQ. Hence, one would expect to maximize PESQ
when minimizing PMSQE ∈ [0, 3]. Similarly to PESQ, PMSQE is defined
o operate at a sampling rate of either 8 kHz or 16 kHz. In this paper, a
ampling rate of 8 kHz is considered when working with a DNN-based
peech enhancement system relying on PMSQE (Kolbæk et al., 2020).
he reader is referred to Martin-Doñas et al. (2018) for further details
bout PMSQE.

.2.2. Scale-invariant signal-to-distortion ratio
The scale-invariant signal-to-distortion ratio (SI-SDR) (Roux et al.,

019), which was proposed as a scale-invariant alternative to the
tandard signal-to-distortion ratio (SDR) (Févotte et al., 2005), has
hown to yield an outstanding performance in terms of different ob-
ective metrics when used as a training loss function for DNN-based
peech enhancement (Luo and Mesgarani, 2019; Kolbæk et al., 2020).
xpressed in dB, this loss function, SI-SDR ∈ (−∞,+∞), can simply be
ritten as the negative of SI-SDR (Kolbæk et al., 2020),

SI-SDR = −SI-SDR

= −10 log10

⎛

⎜

⎜

⎜

⎜

⎝

‖

‖

‖

‖

�̂�⊤𝐱
‖𝐱‖2

𝐱
‖

‖

‖

‖

2

‖

‖

‖

‖

�̂�⊤𝐱
‖𝐱‖2

𝐱 − �̂�
‖

‖

‖

‖

2

⎞

⎟

⎟

⎟

⎟

⎠

= −10 log10

(
(

𝐱⊤�̂�
)2

(

𝐱⊤𝐱
) (

�̂�⊤�̂�
)

−
(

𝐱⊤�̂�
)2

)

.

(4)

2.2.3. Scale-invariant signal-to-distortion ratio with pre-emphasis
Speech signals are defined by a low-pass characteristic for which

higher frequency components have a lower dynamic range than the
lower frequency components (Borgström and Brandstein, 2021). In
spite of this fact, a loss function like SI-SDR does not differentiate
between frequency regions, which may result in enhanced speech
signals exhibiting poorly-estimated high frequency components in com-
parison with lower frequency content. In this work, we explore whether
compensating for this fact by emphasizing higher frequencies during
training can help to improve subjective intelligibility. To do this, we
integrate pre-emphasis in SI-SDR as follows. Let 𝛿(𝑙) denote the unit
impulse and let ℎ = 𝛿(𝑙) − 𝛼𝛿(𝑙 − 1) – where 𝛼 = 0.98 in this work –
𝑙
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correspond to the first-order pre-emphasis filter response. Furthermore,
let �̄�𝑙 = ℎ𝑙 ∗ 𝑥𝑙 and ̂̄𝑥𝑙 = ℎ𝑙 ∗ �̂�𝑙, 𝑙 = 0, 1,… , 𝐿 − 1, denote
the pre-emphasized target and enhanced speech signals, respectively,
where ∗ refers to the convolution operator. As a result, SI-SDR with
pre-emphasis is defined as

SI-SDR+PE = −10 log10
⎛

⎜

⎜

⎝

(

�̄�⊤ ̂̄𝐱
)2

(

�̄�⊤�̄�
) ( ̂̄𝐱⊤ ̂̄𝐱

)

−
(

�̄�⊤ ̂̄𝐱
)2

⎞

⎟

⎟

⎠

, (5)

here, again expressed in dB, SI-SDR+PE ∈ (−∞,+∞).

.2.4. Short-time objective intelligibility
Short-time objective intelligibility (STOI) (Taal et al., 2011) is still

owadays the most popular intelligibility metric (Kolbæk et al., 2020;
draki et al., 2021; Xiang et al., 2021; Edraki et al., 2021a). In short,
TOI is calculated as an average across time and frequency of nor-
alized cross-correlation coefficients between one-third octave band

hort-time temporal envelope vectors of the target and degraded sig-
als. Therefore, the STOI score for any given speech signal is a scalar
STOI ∈ [−1, 1]. Accordingly, the STOI loss function is merely defined
s STOI = −𝑑STOI. Notice that, as pointed out by Kolbæk et al. (2020),
TOI is differentiable except for the presence of a min(⋅) operator whose
radient calculation has a computational complexity that is similar to
hat of the rectified linear unit (ReLU) activation function.

.2.5. Extended short-time objective intelligibility
Extended short-time objective intelligibility (ESTOI) was proposed

n Jensen and Taal (2016) aiming to improve STOI, which shows a poor
erformance for modulated noise sources. Similarly to STOI, ESTOI is
alculated as an average of normalized cross-correlation coefficients
etween one-third octave band short-time temporal envelope vectors
f the target and degraded signals. And, hence, for any given speech
ignal, the ESTOI score is also a scalar 𝑑ESTOI ∈ [−1, 1]. In consequence,
he ESTOI loss function can be simply defined as ESTOI = −𝑑ESTOI.
otice that, unlike STOI, ESTOI does not comprise a min(⋅) operator
nd is fully differentiable.

.2.6. Spectro-temporal glimpsing index
Spectro-temporal glimpsing index (STGI) (Edraki et al., 2021a,

022) is a recently proposed intelligibility metric that is based on the
etection of glimpses (Cooke, 2006b) in short-time speech segments
n the spectro-temporal modulation domain. Prior work (Edraki et al.,
021a) suggests that STGI can be effective over a broader range of
egradation conditions, outperforming solidly-established intelligibility
etrics like STOI and ESTOI. This is the reason behind studying STGI

s a loss function for the first time in this work.
STGI uses a Gabor spectro-temporal modulation filterbank (Schädler

t al., 2012; Edraki et al., 2021) applied to a log-magnitude spectro-
ram to extract spectro-temporal modulation envelopes. Specifically,
= 11 and 𝑅 = 4 spectral and temporal Gabor modulation fil-

ers, respectively, are employed, leading to a total of 𝑆 × 𝑅 = 44
pectro-temporal modulation envelopes. STGI computes normalized
ross-correlation coefficients between the spectro-temporal modulation
nvelopes of the target and degraded signals 𝑑𝑘STGI(𝑠, 𝑟) ∈ [−1, 1], where
indexes the short-time speech segment out of the 𝐾 segments in which

he input signal is divided, and 𝑠 and 𝑟 denote, respectively, the spectral
nd temporal modulation indices of the associated filters. The final
TGI score, 𝑑STGI ∈ [0, 1], is obtained as (Edraki et al., 2021a)

STGI =
1

𝐾𝑆𝑅

𝐾
∑

𝑘=1

𝑆
∑

𝑠=1

𝑅
∑

𝑟=1
1+

(

𝑑𝑘STGI(𝑠, 𝑟) − 𝛽𝑠𝑟
)

, (6)

where, in accordance with the glimpsing model of speech percep-
tion (Cooke, 2006b), 1+(⋅) ∶ R → {0, 1} is the indicator function,
namely,

1+(𝑥) =
{

1, 𝑥 > 0, (7)
12

0, 𝑥 ≤ 0, s
and −1 ≤ 𝛽𝑠𝑟 ≤ 1 is a glimpsing threshold that is unique for each
spectro-temporal index pair (𝑠, 𝑟) as determined in Edraki et al. (2021a).
Since the derivative of 1+(𝑥) is 0 for 𝑥 ≠ 0 and undefined for 𝑥 = 0,

e replace the indicator function in Eq. (6) by the sigmoid function in
rder to define the STGI loss function as

STGI = − 1
𝐾𝑆𝑅

𝐾
∑

𝑘=1

𝑆
∑

𝑠=1

𝑅
∑

𝑟=1

1

1 + 𝑒−
(

𝑑𝑘STGI(𝑠,𝑟)−𝛽𝑠𝑟
) , (8)

here STGI ∈
[

−
(

1 + 𝑒−2
)−1 ,−

(

1 + 𝑒2
)−1

]

is fully differentiable.

.2.7. Composite loss function
In the context of DNN-based speech enhancement, some papers

ave studied the possible advantages of training with a combination
f different loss functions that target different attributes of the speech
ignal (e.g., quality and intelligibility) (Zhang et al., 2018; Braun and
ashev, 2021; Li and Yamagishi, 2021). Generally, the use of composite

oss functions leads to improvements in terms of various objective
etrics of interest when compared with the employment of single loss

unctions (Braun and Tashev, 2021). Based on the argued potentials of
TGI as an intelligibility metric and the outstanding performance of the
aveform-level loss function SI-SDR (Luo and Mesgarani, 2019; Kolbæk

et al., 2020), we analyze their combination in this work.
Let 𝑑{𝑦}STGI ∈ [0, 1] be the STGI score of a training or validation

noisy speech signal 𝐲. Then, instead of using a constant loss function
combination weight as is typically done in the speech enhancement lit-
erature (Zhang et al., 2018; Braun and Tashev, 2021; Li and Yamagishi,
2021), preliminary experiments revealed the benefit of employing an
STGI score-dependent combination weight 𝜔

(

𝑑{𝑦}STGI

)

= 𝐴 ⋅
(

𝑑{𝑦}STGI

)𝛾

(parameter values 𝐴 = 0.02 and 𝛾 = 10 were chosen by means of a
validation dataset) to define our composite loss function STGI+SI-SDR ∈
(−∞,+∞) as

STGI+SI-SDR = STGI + 𝜔
(

𝑑{𝑦}STGI

)

SI-SDR. (9)

Notice that the loss function combination weight 𝜔
(

𝑑{𝑦}STGI

)

∶ [0, 1] →
[0, 𝐴] follows a power-law expression whose goal is to primarily focus
on STGI when intelligibility (as predicted by STGI) is low, while
increasing importance is given to SI-SDR when intelligibility is better.
Among all the evaluated loss functions in this article, this composite
loss function allows us to achieve the best performance in terms of a
variety of intelligibility and quality metrics across a wide range of noisy
conditions (see Section 4).

2.3. Training issues

STOI, ESTOI and STGI have the same built-in ideal voice activity
detector that is employed to only take into account signal segments
where speech is present when estimating speech intelligibility (Taal
et al., 2011; Jensen and Taal, 2016; Edraki et al., 2021a). This ideal
voice activity detection step is omitted by STOI, ESTOI, STGI and
STGI+SI-SDR. Instead, ideal voice activity detection is applied to the
training and validation data prior to model training in order to discard
speech-absent segments. As in Kolbæk et al. (2020), this is primarily
done to avoid possible long silent regions for which processing cannot
improve speech intelligibility, while easing the training procedure.

Before training, speech data are downsampled to 10 kHz when con-
sidering all the loss functions except PMSQE in order to be consistent
with what is required by STOI, ESTOI and STGI (Taal et al., 2011;
Jensen and Taal, 2016; Edraki et al., 2021a). To shape mini-batches
for training – which have a size of 8 utterances –, every utterance is
either truncated or zero-padded to have a duration of, approximately,
2 s.2 In case of dealing with PMSQE, speech data are downsampled to

2 Recall that the FCNN employed in this study is fed with noisy speech
ignals comprised of 𝐿 = 19,712 samples.
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Table 1
Learning rates employed for the different loss functions studied in this work.
Loss function  PMSQE  SI-SDR  SI-SDR+PE  STOI  ESTOI  STGI  STGI+SI-SDR
Learning rate 5 ⋅ 10−4 5 ⋅ 10−4 5 ⋅ 10−4 10−4 10−4 10−4 10−4
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8 kHz, which involves working with, approximately, 2.5-second long
speech segments instead.

The architecture of Fig. 1 is discriminatively trained by using
Adam (Kingma and Ba, 2015) as an optimizer with parameters 𝛽1 = 0.9
nd 𝛽2 = 0.999. As in Kolbæk et al. (2020), we use loss function-
ependent learning rates to deal with the different nature of the
ifferent loss functions and their gradients. On the one hand, for
PMSQE, SI-SDR, STOI and ESTOI we make use of the optimal learning

ates found in Kolbæk et al. (2020). On the other hand, for SI-SDR+PE,
STGI and STGI+SI-SDR, additional experiments were conducted at an
arly stage to choose proper learning rate values. Table 1 shows the
oss function-dependent learning rate values employed in this work.
uring training, we also use a learning rate schedule halving the

earning rate when the validation loss does not decrease for 2 epochs.
odel training is performed for a maximum of 200 epochs and early-

topping (Gershenfeld, 1988) monitoring the validation loss with a
atience of 5 epochs is used for regularization purposes.

Speech enhancement system implementation has been done by
eans of Keras (Chollet et al., 2015) working as an abstraction layer

f TensorFlow (Abadi et al., 2015). Our TensorFlow implementation of
he STGI loss function STGI has been made publicly available.3

. Speech and noise databases

In this section, we present the speech databases and noise sig-
als employed to generate synthetic noisy speech that we use for
xperimental purposes.

.1. Noise signals

To create synthetic noisy speech data, we consider the same 6 types
f noise as in Kolbæk et al. (2020): stationary speech-shaped noise
SSN), non-stationary babble, café, street, pedestrian street and bus.
hile the café, street, pedestrian street and bus noise types are from

he CHiME-3 dataset (Barker et al., 2015, 2017), SSN and babble are
ynthetically generated as follows. First, SSN is obtained by filtering
aussian white noise by means of a twelfth-order all-pole filter whose
oefficients are derived from linear predictive coding analysis of the
oncatenation of 100 utterances randomly picked from the TIMIT
ataset (Garofolo et al., 1993b). Second, babble noise, originating from
different speakers of both genders, is generated by mixing utterances

andomly chosen from the TIMIT dataset as well.
While all of these noise types are seen at test time, pedestrian street

nd bus noises are excluded from training and validation sets. This is
one in order to assess the generalization ability of speech enhance-
ent models to types of noise not seen during the training phase.

inally, note that noise realizations do not overlap across training,
alidation and test sets.

.2. Speech signals: The Wall Street Journal corpus

The Wall Street Journal (WSJ0) speech corpus (Garofolo et al.,
993a) is used here in a similar fashion as in Kolbæk et al. (2020)
o mainly carry out objective performance evaluations in Section 4.
pecifically, we create training, validation and test sets by randomly
icking, following a sampling-with-replacement scheme, clean speech
tterances from the WSJ0 corpus as follows:

3 http://ilopez.es.mialias.net/codes/STGI.zip
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• Training set : This set is shaped by 60,000 utterances drawn from
a subset of the si_tr_s part of WSJ0. This subset is made up of
11,613 utterances that were recorded from 44 male and 47 female
speakers.

• Validation set : This set is formed by 6,000 utterances selected
from another subset of the si_tr_s part of WSJ0. This subset
is comprised of 1,163 utterances that were recorded from 5 male
and 5 female speakers.

• Test set : This set is generated by picking a total of 2,000 utterances
from the si_et_05 and si_dt_05 parts of WSJ0. These parts
are composed of 1,857 utterances that were recorded from 10
male and 6 female speakers.

irst, note that speakers do not overlap across training, validation and
est sets. Second, while each clean speech utterance of WSJ0 is selected
ore than once on average, each utterance in the above training,

alidation and test sets becomes a unique realization when mixed with
coustic noise in accordance with the following procedure.4 Given a
lean speech utterance 𝐱, a noise segment �̃� with the same length as 𝐱
s randomly cut out of a randomly selected noise signal. Furthermore,
o ensure a certain SNR level, �̃� is scaled in accordance with the active
peech level of 𝐱 in line with the ITU P.56 recommendation (ITU-T,
011). Finally, a unique noisy signal, 𝐲, is obtained as 𝐲 = 𝐱+𝐧, where
represents a version of �̃�, scaled to achieve a particular SNR.

By following the above procedure, the training and validation sets
re contaminated with the noises SSN, babble, café and street, where
he SNR level is uniformly sampled from [−10, 10] dB. Differently from
he training and validation sets, the test set considers the 6 types of
oise SSN, babble, café, street, pedestrian street and bus, as well as
he set of SNR levels {−10,−5, 0, 5, 10, 15, 20} dB. Let us define a noisy
ondition as a particular combination of a noise type and an SNR
evel. Then, the 2,000 test clean speech utterances are contaminated

total of 6 noises × 7 SNRs = 42 times by considering every possible
noisy condition. This implies a total of 2, 000 × 42 = 84, 000 noisy test
utterances. In addition, it is worth noticing that test set speech-absent
segments are not removed prior to speech enhancement processing in
order to simulate a real use case, where the location of speech-absent
segments is unknown.

3.3. Speech signals: The Akustiske Databaser for Dansk

The Akustiske Databaser for Dansk (ADFD) (Nasjonalbiblioteket,
2011) is a speech corpus in Danish that is employed in this work
to train noisy condition- and language-matched speech enhancement
models5 to be used primarily to conduct a subjective intelligibility
test, in Danish, in Section 5. In this case, we only create training and
validation sets, since the associated test set is based on the (Danish)
Dantale II dataset (Hansen and Ludvigsen, 2001; Wagener et al., 2003).
The reason behind this arrangement is that the Dantale II dataset, which
is used to actually generate intelligibility test stimuli, is too small to
form training and validation sets in Danish, so ADFD is used as a
support.

Similarly to the WSJ0 case, training and validation sets are created
by randomly choosing, again following a sampling-with-replacement
scheme, clean speech utterances from the ADFD database as follows:

4 That being said, keep in mind that clean speech utterances do not overlap
cross training, validation and test sets.

5 In this work, a noisy condition- and language-matched speech enhance-
ent model is a model that is trained and tested, exclusively, on speech data

rom a specific noisy condition (i.e., combination of noise type and SNR level)

nd language.

http://ilopez.es.mialias.net/codes/STGI.zip
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• Training set : This set is formed by 60,000 utterances drawn from
the original ADFD training set. The latter is composed of 24,960
utterances that were recorded from 40 male and 40 female speak-
ers.

• Validation set : This set consists of 6,000 utterances chosen from
the original ADFD validation set. The latter is made up of 1,000
utterances that were recorded from 10 speakers.

In the context of the ADFD database, we consider the 2 types of noise
SSN and café, as well as the SNR levels {−10,−5} dB, which define the
2 noises × 2 SNRs = 4 noisy conditions to which the intelligibility test
subjects are exposed (see Section 5). Hence, to train noisy condition-
and language-matched speech enhancement models, 4 different noisy
condition-dependent training and validation sets are created from the
above clean speech training and validation sets by following a speech
and noise mixing procedure similar to that described in the previous
subsection.

3.4. Speech signals: The Dantale II dataset

The Dantale II dataset (Hansen and Ludvigsen, 2001; Wagener et al.,
2003) is a speech corpus, in Danish, that we employ to generate
intelligibility test stimuli (see Section 5). This corpus is formed by a
total of 16 lists of which we consider 15 comprising 10 sentences each,
i.e., 150 utterances. All the utterances were recorded by a single female
native Danish speaker in clean conditions. Moreover, every utterance
consists of a sequence of five mono- and bi-syllabic words following
the syntactical structure name + verb + numeral + adjective
+ object. To generate each of these five-word sentences, given a
word class, a particular word was randomly chosen from a set of 10
different words. While all the utterances in the Dantale II dataset are
syntactically correct, they may make no or little sense. The resulting
low word-context predictability helps to prevent the intelligibility test
subjects from guessing words based on previous ones (Knudsen, 2021).

Five out of the fifteen lists of the Dantale II dataset that we consider
(i.e., 50 utterances) are reserved to fine tune the noisy condition- and
language-matched speech enhancement models trained by means of
ADFD. The goal of this is to construct noisy condition-, language- and
speaker -matched models to conduct a subjective intelligibility test in
Section 5 in an idealized situation to measure an upper bound for
speech intelligibility improvement. Specifically, by again following a
sampling-with-replacement scheme, we create 200- and 100-utterance
fine tuning training and validation sets from, respectively, 4/15 and
1/15 lists. Similarly to the ADFD case considering SSN and café noises
and SNRs {−10,−5} dB, 4 different noisy condition-dependent fine
tuning training and validations sets are built from the above clean
speech fine tuning training and validation sets. Then, the remaining
10/15 lists (i.e., 100 utterances) are saved to produce intelligibility test
stimuli by adding noise, as usual, to the clean speech utterances and
processing the result by means of various speech enhancement models
(see Section 5 for further details).

4. Objective performance evaluation

We evaluate the speech enhancement systems trained with the dif-
ferent loss functions presented in Section 2.2 when WSJ0 is employed
for model training and testing as outlined in Section 3.2. This evalua-
tion is performed in terms of various objective intelligibility (STOI (Taal
et al., 2011), ESTOI (Jensen and Taal, 2016) and STGI (Edraki et al.,
2021a)), waveform-level (SI-SDR (Roux et al., 2019) and SDR (Févotte
et al., 2005)) and quality (PESQ (Rix et al., 2001; ITU-T, 2003)) metrics.
Tables 2 and 3 report the corresponding results, which are broken down
by SNR, averaged across the types of noise seen – SSN, babble, café and
street – and not seen – pedestrian street and bus – during the training
phase, respectively. As a reference, metric scores of the original noisy
(i.e., unprocessed) speech signals are also shown. Moreover, given an
input SNR value and a metric, best results are marked in bold.
14
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From these tables, we can see that, despite PMSQE being an ap-
proximation of PESQ (Martin-Doñas et al., 2018), PMSQE clearly yields
the worst PESQ results among all the evaluated loss functions, which
is consistent with previous findings in Kolbæk et al. (2020). When
disregarding PMSQE, it can be observed that, particularly at lower
SNRs, every loss function tends to achieve, among the rest of them, the
best performance in terms of the metric the corresponding loss function
is based on. This behavior is obviously expected and serves as a sanity
check that networks are trained successfully. Besides, note that the in-
tegration of speech pre-emphasis into SI-SDR does not help to improve

SI-SDR particularly in terms of objective intelligibility, despite that
ur preliminary observations indicated that considering pre-emphasis
ay improve subjective intelligibility. The latter hypothesis is more

arefully examined in the next section.
Also from Tables 2 and 3, it is worth noticing the rather poor per-

ormance of systems trained with loss functions PMSQE, STOI, ESTOI
and STGI in terms of a waveform-level metric like SI-SDR. The reason
behind this behavior is related to the fact that these loss functions do
not penalize deviations of the enhanced waveform with respect to the
target waveform (since they essentially operate with short-time spectral
magnitude information) (Kolbæk et al., 2020). In other words, speech
signals enhanced by systems trained using PMSQE, STOI, ESTOI or
STGI may exhibit small time shifts with respect to target speech signals,
which is not relevant for intelligibility and quality of the enhanced
speech despite time shifts are penalized by waveform-level measures
like SI-SDR.

It is interesting to see from Tables 2 and 3 how incorporating SI-SDR
in STGI as is done in the composite loss function STGI+SI-SDR allows us
o compensate for the aforementioned waveform deviations resultant
rom the STGI loss function, as reflected by the high SI-SDR scores
btained by the system trained with STGI+SI-SDR. In fact, particularly

at higher SNRs, this composite loss function tends to achieve the
best performance in terms of all the considered metrics. Specifically,
STGI+SI-SDR produces the highest PESQ scores for all the evaluated
noisy conditions except for babble at an input SNR of −10 dB. This is a
clear example of a successful synergy: the combination of an intelligi-
bility metric-based loss with a waveform-level loss brings higher speech
quality scores than any of the two loss functions does independently. In
conclusion, according to its outstanding objective performance across
all the considered noisy conditions in terms of a variety of intelligibility,
waveform-level and quality metrics, STGI+SI-SDR is a strong candidate
when it comes to the training of a speech enhancement system to be
deployed in real life.

5. Subjective versus objective intelligibility

Before deploying any speech enhancement system in real life, it is
important to verify, if possible, the performance indicated by objec-
tive metrics through subjective tests with relevant end-users. In this
work, we specifically focus on speech intelligibility and, consequently,
we carry out a subjective intelligibility test. The test evaluates three
different loss functions used for network training: SI-SDR (due to its
competitive performance in both Kolbæk et al. (2020) and this paper),
SI-SDR+PE (to assess the potential benefits of speech pre-emphasis)
and STGI+SI-SDR (due to this loss function being the best objectively
performing in this work). In addition, this test also measures, as a
reference, the intelligibility of the original noisy/unprocessed speech.

The present subjective intelligibility test consists of two different
parts: Part A and Part B. Part A (see Section 5.3) aims at evaluating
the general-purpose speech enhancement models6 of Section 4, which

6 Recall that by general-purpose speech enhancement models we mean that
hey are trained (in this case, using the WSJ0 corpus) considering a variety of
oisy conditions.
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Table 2
Results, in terms of various metrics, from the evaluation on WSJ0 of the different loss functions studied in this work. Results are broken down by SNR and averaged across the
types of noise seen – SSN, babble, café and street – during the training phase. Given an input SNR value and a metric, best results are marked in bold.

SNR (dB) Metric Noisy Processed

 PMSQE  SI-SDR  SI-SDR+PE  STOI  ESTOI  STGI  STGI+SI-SDR
STOI 0.53 0.64 0.69 0.67 0.72 0.69 0.69 0.70
ESTOI 0.21 0.40 0.42 0.38 0.45 0.47 0.45 0.45

−10 STGI 0.56 0.74 0.76 0.76 0.76 0.76 0.80 0.80
SI-SDR −12.32 −23.06 0.88 −0.34 −6.74 −6.73 −21.27 0.54
SDR −10.64 −5.84 2.85 1.52 −0.23 −0.65 −0.15 2.49
PESQ 1.31 1.30 1.55 1.51 1.47 1.37 1.48 1.55

STOI 0.64 0.80 0.83 0.81 0.85 0.83 0.83 0.84
ESTOI 0.33 0.61 0.63 0.59 0.65 0.67 0.65 0.66

−5 STGI 0.76 0.92 0.92 0.92 0.92 0.93 0.94 0.94
SI-SDR −7.31 −19.58 6.23 4.97 −3.00 −2.58 −18.87 6.06
SDR −6.61 −2.15 7.57 6.25 4.57 4.61 4.54 7.40
PESQ 1.38 1.58 1.93 1.87 1.81 1.74 1.89 2.03

STOI 0.75 0.89 0.90 0.89 0.91 0.91 0.90 0.91
ESTOI 0.48 0.74 0.76 0.73 0.78 0.80 0.77 0.79

0 STGI 0.89 0.97 0.96 0.96 0.96 0.96 0.97 0.97
SI-SDR −2.31 −18.56 10.14 8.86 −1.31 −0.80 −18.10 10.10
SDR −1.99 −0.30 11.18 9.92 7.85 8.27 7.64 11.17
PESQ 1.56 2.00 2.36 2.32 2.20 2.19 2.38 2.55

STOI 0.85 0.93 0.94 0.93 0.94 0.94 0.93 0.94
ESTOI 0.63 0.82 0.85 0.82 0.85 0.86 0.84 0.86

5 STGI 0.95 0.99 0.98 0.98 0.98 0.98 0.98 0.98
SI-SDR 2.69 −18.17 13.33 11.93 −0.49 0.00 −17.95 13.38
SDR 2.87 0.51 14.24 12.91 10.16 10.84 9.69 14.29
PESQ 1.81 2.46 2.77 2.76 2.58 2.62 2.82 2.98

STOI 0.91 0.95 0.96 0.95 0.96 0.95 0.95 0.96
ESTOI 0.76 0.87 0.89 0.87 0.89 0.90 0.88 0.90

10 STGI 0.98 0.99 0.98 0.98 0.98 0.98 0.99 0.99
SI-SDR 7.70 −17.96 16.14 14.46 −0.06 0.38 −17.77 16.26
SDR 7.83 0.81 17.02 15.46 11.79 12.61 11.06 17.12
PESQ 2.13 2.87 3.12 3.11 2.94 2.99 3.16 3.31

STOI 0.95 0.95 0.97 0.96 0.96 0.96 0.96 0.97
ESTOI 0.86 0.89 0.92 0.90 0.92 0.92 0.90 0.93

15 STGI 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SI-SDR 12.70 −17.84 18.58 16.55 0.14 0.55 −17.73 18.79
SDR 12.81 0.92 19.57 17.62 12.80 13.71 11.92 19.69
PESQ 2.53 3.17 3.41 3.39 3.29 3.32 3.43 3.58

STOI 0.97 0.96 0.97 0.96 0.97 0.97 0.96 0.98
ESTOI 0.92 0.90 0.94 0.92 0.93 0.93 0.92 0.94

20 STGI 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SI-SDR 17.70 −17.80 20.43 18.10 0.22 0.63 −17.63 20.76
SDR 17.81 0.96 21.63 19.30 13.32 14.27 12.40 21.78
PESQ 2.99 3.37 3.67 3.62 3.58 3.59 3.64 3.79
t
t

s
f
i
t
t

5

i
s
D
R
b
s
l
i
o

reflect a practical scenario. Part B (see Section 5.4) tests noisy condition-
, language- and speaker-matched models. This is done to assess the
magnitude of the potentially greater gains that the speech enhancement
systems may achieve if we could operate in a close-to-ideal scenario,
where the sources of acoustic variability are minimized. Recall that the
models of Part B are trained on the ADFD speech corpus and fine tuned
on 5 lists of the Dantale II dataset.

5.1. Intelligibility test data preparation

As introduced in Section 3.3, the present subjective intelligibil-
ity test considers 2 types of noise, SSN and café, as well as 2 in-
put SNR values chosen such that the speech intelligibility of the
unprocessed noisy signals is reduced: −10 dB and −5 dB. Given a
noisy condition and one of the four processing types to be tested
(i.e., noisy/unprocessed, SI-SDR, SI-SDR+PE and STGI+SI-SDR), we gen-
rate 6 different stimuli/speech signal realizations. Thus, each of the
est parts (i.e., Part A and Part B) is comprised of a total of 2 noises ×
SNRs×4 processing types×6 sentences = 96 stimuli. To generate these

timuli, for Part A and Part B independently, 96 clean speech signals
re drawn (in a semi-random fashion to avoid the same utterance
epeating) from the 10 lists (i.e., 100 utterances) of the Dantale II
ataset reserved for this purpose. By repeating this procedure multiple
15

o

imes, we create 20 different realizations of this subjective intelligibility
est and every test subject is randomly assigned one of them.

By following an analogous procedure, we also generate a set of 8
timuli intended for a training session for the test subjects to become
amiliar with the intelligibility test aiming to reduce the inherent learn-
ng bias. This training session is purposely kept short to not overwhelm
he subjects with an unnecessarily long test that might negatively affect
he validity of the results.

.2. Intelligibility test procedure

The test was conducted in a silent audiometry room with sound-
solating walls, floor and ceiling. One at a time, each test subject was
itting at a small table in the middle of this room wearing Beyerdynamic
T 990 Pro headphones connected to a laptop Lenovo ThinkPad T480s.
unning on this laptop, the intelligibility test interface was controlled
y the subjects. The test interface (Heidemann Andersen, 2017) pre-
ented all candidate words for each of the 5 word classes on the
aptop screen (facilitating a closed-vocabulary matrix test). The subject
nitiated stimulus playback by a mouse click (stimulus was played
nly once). Next, the subject chose the words heard from the matrix

f candidate words using mouse clicks. This procedure was repeated
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Table 3
Results, in terms of various metrics, from the evaluation on WSJ0 of the different loss functions studied in this work. Results are broken down by SNR and averaged across the
types of noise not seen – pedestrian street and bus – during the training phase.

SNR (dB) Metric Noisy Processed

 PMSQE  SI-SDR  SI-SDR+PE  STOI  ESTOI  STGI  STGI+SI-SDR
STOI 0.62 0.74 0.77 0.76 0.80 0.77 0.77 0.78
ESTOI 0.29 0.52 0.53 0.51 0.56 0.59 0.57 0.56

−10 STGI 0.74 0.84 0.85 0.87 0.86 0.86 0.90 0.89
SI-SDR −12.33 −21.44 3.68 2.44 −5.33 −5.11 −20.22 3.38
SDR −10.65 −3.36 5.36 3.97 2.32 2.03 2.28 4.97
PESQ 1.37 1.62 1.85 1.82 1.78 1.69 1.82 1.91

STOI 0.70 0.85 0.87 0.86 0.88 0.87 0.87 0.88
ESTOI 0.39 0.67 0.69 0.66 0.71 0.73 0.71 0.72

−5 STGI 0.87 0.95 0.95 0.96 0.95 0.95 0.97 0.96
SI-SDR −7.32 −19.16 8.27 6.86 −2.34 −1.91 −18.58 8.11
SDR −6.62 −0.98 9.54 8.01 6.37 6.49 6.18 9.35
PESQ 1.51 1.96 2.26 2.21 2.14 2.08 2.22 2.36

STOI 0.78 0.91 0.92 0.91 0.93 0.92 0.92 0.93
ESTOI 0.51 0.77 0.80 0.77 0.81 0.82 0.80 0.82

0 STGI 0.94 0.98 0.98 0.98 0.98 0.98 0.99 0.99
SI-SDR −2.31 −18.28 11.79 10.29 −0.95 −0.44 −18.07 11.79
SDR −2.00 0.24 12.91 11.29 9.32 9.78 8.93 12.88
PESQ 1.74 2.39 2.69 2.62 2.54 2.53 2.67 2.83

STOI 0.86 0.94 0.95 0.94 0.95 0.95 0.94 0.95
ESTOI 0.64 0.84 0.86 0.84 0.87 0.88 0.86 0.88

5 STGI 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SI-SDR 2.69 −17.87 14.74 13.21 −0.28 0.18 −17.81 14.84
SDR 2.87 0.75 15.80 14.18 11.31 11.99 10.73 15.85
PESQ 2.05 2.81 3.08 3.01 2.93 2.93 3.06 3.21

STOI 0.92 0.95 0.96 0.95 0.96 0.96 0.96 0.97
ESTOI 0.76 0.88 0.90 0.88 0.91 0.91 0.89 0.91

10 STGI 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SI-SDR 7.69 −17.72 17.30 15.68 0.05 0.46 −17.65 17.52
SDR 7.83 0.92 18.41 16.70 12.57 13.39 11.83 18.52
PESQ 2.42 3.16 3.41 3.35 3.27 3.27 3.38 3.52

STOI 0.95 0.96 0.98 0.97 0.97 0.97 0.96 0.98
ESTOI 0.86 0.90 0.93 0.91 0.93 0.93 0.91 0.93

15 STGI 0.99 1.00 1.00 0.99 0.99 0.99 1.00 1.00
SI-SDR 12.69 −17.70 19.42 17.56 0.19 0.58 −17.55 19.78
SDR 12.81 0.98 20.70 18.72 13.25 14.16 12.43 20.87
PESQ 2.85 3.39 3.67 3.64 3.57 3.55 3.63 3.77

STOI 0.98 0.96 0.98 0.97 0.98 0.97 0.97 0.98
ESTOI 0.92 0.91 0.95 0.93 0.94 0.94 0.93 0.95

20 STGI 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
SI-SDR 17.69 −17.72 20.94 18.77 0.24 0.64 −17.52 21.42
SDR 17.80 0.99 22.41 20.06 13.56 14.50 12.72 22.62
PESQ 3.29 3.50 3.88 3.86 3.80 3.75 3.81 3.96
until the test ended. Keep in mind that the stimuli were presented in a
random order.

A total of 26 native Danish speakers, 19 males and 7 females,
were recruited as test subjects. Their age ranged from 18 to 30. All
of them reported no hearing issue except for one indicating a very
slight bilateral tinnitus. The volume at which the stimuli were played
was initially adjusted and kept fixed across all subjects since all of
them found it comfortable. After the training session, each subject went
through Part A or Part B (randomly chosen) before taking a break
to prevent listening fatigue that was then followed by the other part
(i.e., Part B or Part A). On average, the training session (8 stimuli)
took to the subjects 2–3 min, the first part (96 stimuli), 23 min, and,
the second part after the break (96 stimuli), 20 min. Test subjects were
paid for their participation.

Intelligibility, defined as the percentage of words correctly iden-
tified (Allen, 2005), is used as a subjective metric. For a statistical
significance test of the subjective intelligibility test results, we consider
the Kruskal–Wallis 𝐻 test (Kruskal and Wallis, 1952), which is a non-
parametric version of the classical parametric one-way analysis of vari-
ance (ANOVA) (Fisher, 1918). The main reason for using the Kruskal–
Wallis 𝐻 test instead of ANOVA is that the assumption that the sample
populations have normal distributions as required by ANOVA does not
hold in our case according to the Kolmogorov–Smirnov test (Massey,
16

1951).
Table 4
𝑝-values corresponding to Part A (use of general-purpose models) of the subjective
intelligibility test. 𝑝-values below a significance level of 0.05, which indicate statistically
significant intelligibility differences, are marked in bold.
𝑝-values SSN Café

Comparison −10 dB −5 dB −10 dB −5 dB

Noisy -  SI-SDR 0.990 0.995 0.067 0.002
Noisy -  SI-SDR+PE 0.434 0.998 0.130 0.052
Noisy -  STGI+SI-SDR 0.995 0.999 ≈𝟎.𝟎𝟎𝟎 ≈𝟎.𝟎𝟎𝟎
 SI-SDR -  SI-SDR+PE 0.271 0.975 0.992 0.738
 SI-SDR -  STGI+SI-SDR 0.952 0.992 0.221 0.455
 SI-SDR+PE -  STGI+SI-SDR 0.576 0.999 0.125 0.061

5.3. Intelligibility results for Part A: General-purpose models

In this subsection, we present the results from Part A of the sub-
jective intelligibility test. Recall that Part A aims at evaluating the
general-purpose enhancement models of Section 4 that are trained
on the WSJ0 corpus. Fig. 2 displays intelligibility scores in the form
of box plots, where horizontal red lines indicate median (across test
subjects) intelligibility. Complementing this figure, Table 4 shows the
corresponding 𝑝-values obtained by the Kruskal–Wallis 𝐻 test. In this
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Fig. 2. Box plots corresponding to Part A (use of general-purpose models) of the subjective intelligibility test. Red lines mark median (across test subjects) intelligibility, whereas
outliers are indicated by red ‘‘plus’’ markers. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
table, 𝑝-values below a significance level of 0.05 are considered to indi-
cate statistically significant intelligibility differences and are marked in
bold. Jointly considering Fig. 2 and Table 4, we can see that no speech
enhancement processing (using networks optimized towards SI-SDR,

SI-SDR+PE and STGI+SI-SDR) is able to improve the intelligibility of the
nprocessed speech (Noisy). This is in contrast to what we reported
n Tables 2 and 3, where SI-SDR, SI-SDR+PE and STGI+SI-SDR all con-
istently improve the estimated intelligibility of original noisy speech
t the SNRs −10 dB and −5 dB according to the intelligibility metrics
TOI, ESTOI and STGI. Furthermore, again jointly considering Fig. 2
nd Table 4, we can observe that STGI+SI-SDR worsens, in a statistically
ignificant manner, the intelligibility of the unprocessed speech for
oise type café. This is also the case of SI-SDR under the noisy condition
afé at −5 dB. Besides, note that there are no statistically significant
ntelligibility differences among SI-SDR, SI-SDR+PE and STGI+SI-SDR.

In contrast to Section 4, where both the training and test speech data
ome from the same corpus (i.e., WSJ0), for Part A of the subjective
ntelligibility test, there is a substantial acoustic mismatch between the
raining and test speech data, which come from, respectively, the WSJ0
nd Dantale II datasets. Therefore, one may argue that this acoustic
ismatch could be the cause of the poor subjective intelligibility results
resented in this subsection. However, Tables 5 and 6, reporting objec-
ive metric scores for the stimuli from Part A, contradict this hypothesis.
hese tables indicate, in line with Tables 2 and 3, that all SI-SDR,
SI-SDR+PE and STGI+SI-SDR consistently enhance the intelligibility of

he unprocessed speech as measured by the intelligibility metrics STOI,
STOI and STGI.

To better assess this discrepancy between subjective intelligibility
nd what is expressed by intelligibility metrics, Fig. 3 depicts scatter
lots representing median intelligibility from Part A as a function of
17
Table 5
Evaluation, in terms of various metrics, of the stimuli from Part A (use of general-
purpose models) of the subjective intelligibility test. Results are broken down by SNR
and correspond to the noise type SSN. Given an input SNR value and a metric, best
results are marked in bold.

SNR (dB) Metric Noisy Processed

 SI-SDR  SI-SDR+PE  STGI+SI-SDR
STOI 0.50 0.59 0.53 0.60
ESTOI 0.16 0.34 0.27 0.37

−10 STGI 0.23 0.52 0.44 0.60
SI-SDR −12.78 2.58 0.14 2.25
SDR −11.94 4.59 1.97 4.27
PESQ 1.33 1.19 1.18 1.20

STOI 0.57 0.72 0.71 0.76
ESTOI 0.28 0.50 0.49 0.56

−5 STGI 0.46 0.74 0.73 0.82
SI-SDR −7.79 5.19 3.81 5.87
SDR −7.48 7.34 5.65 8.08
PESQ 1.36 1.42 1.40 1.47

the corresponding intelligibility scores produced by STOI, ESTOI and
STGI. In these (per noisy condition) plots, each data point corresponds
to a different processing type. Furthermore, Kendall’s 𝜏 (Kendall, 1938)
coefficients calculated from the data in each scatter plot are also shown.
Note that 𝜏 ∈ [−1, 1] measures the ordinal association between two
quantities and tends to 1 (−1) when they have a positive (negative)
monotonic relationship, while 𝜏 = 0 when they are statistically in-
dependent. Obviously, the key requirement of an intelligibility metric
is that it has a strong positive monotonic relationship with subjec-
tive intelligibility (Jensen and Taal, 2014). However, from Fig. 3,
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Fig. 3. Scatter plots representing median intelligibility from Part A (use of general-purpose models) of the subjective intelligibility test as a function of the intelligibility scores
iven by STOI, ESTOI and STGI. Each data point corresponds to a different processing type. Kendall’s 𝜏 (Kendall, 1938) coefficients calculated from the data in each scatter plot

are also shown.
we can see that this requirement is met by none of the employed
intelligibility metrics. In fact, for the noise type café, STOI, ESTOI
and STGI all exhibit a negative monotonic relationship with subjective
intelligibility.

5.4. Intelligibility results for Part B: Noisy condition-, language- and
speaker-matched models

In the previous subsection, we have mentioned that, for Part A of the
subjective intelligibility test, there is a significant acoustic mismatch
between the training and test speech data that may negatively affect
subjective intelligibility. Differently from Part A, Part B evaluates noisy
condition-, language- and speaker-matched speech enhancement mod-
els with the aim of minimizing the sources of acoustic variability. In
this way, we can estimate the extent of what we may gain in terms of
intelligibility in case we could operate in a close-to-ideal scenario. Sim-
ilarly to Section 5.3, Fig. 4 shows Part B results in the form of box plots,
while Table 7 gathers the associated 𝑝-values yielded by the Kruskal–
Wallis 𝐻 test. First of all, comparing the box plots in Figs. 4 and 2, it
can be seen at a glance that the results for Noisy are slightly different.
This is simply because test subjects listened to different unprocessed
speech stimuli in Parts A and B. That being said, from Table 8, which
18

reports 𝑝-values corresponding to the comparison between Part A and
Table 6
Evaluation, in terms of various metrics, of the stimuli from Part A (use of general-
purpose models) of the subjective intelligibility test. Results are broken down by SNR
and correspond to the noise type café. Given an input SNR value and a metric, best
results are marked in bold.

SNR (dB) Metric Noisy Processed

 SI-SDR  SI-SDR+PE  STGI+SI-SDR
STOI 0.50 0.52 0.52 0.52
ESTOI 0.22 0.25 0.26 0.26

−10 STGI 0.42 0.51 0.52 0.53
SI-SDR −12.75 −6.69 −6.06 −7.26
SDR −12.07 −2.92 −3.11 −2.74
PESQ 1.23 1.15 1.21 1.16

STOI 0.63 0.73 0.73 0.72
ESTOI 0.37 0.51 0.52 0.52

−5 STGI 0.69 0.80 0.80 0.81
SI-SDR −7.74 1.86 1.32 1.78
SDR −7.46 4.70 3.72 4.48
PESQ 1.22 1.39 1.43 1.36

Part B, it is important to note that there are no statistically significant
intelligibility differences for Noisy. On the contrary, noisy condition-
, language- and speaker-matched models generally yield statistically
significant intelligibility improvements with respect to general-purpose
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Fig. 4. Box plots corresponding to Part B (use of noisy condition-, language- and speaker-matched models) of the subjective intelligibility test. Red lines mark median (across test
subjects) intelligibility, whereas outliers are indicated by red ‘‘plus’’ markers. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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Table 7
𝑝-values corresponding to Part B (use of noisy condition-, language- and speaker-
matched models) of the subjective intelligibility test. 𝑝-values below a significance level
of 0.05, which indicate statistically significant intelligibility differences, are marked in
bold.
𝑝-values SSN Café

Comparison −10 dB −5 dB −10 dB −5 dB

Noisy -  SI-SDR 0.089 0.001 0.092 0.999
Noisy -  SI-SDR+PE 0.052 0.030 0.142 0.807
Noisy -  STGI+SI-SDR 0.998 ≈𝟎.𝟎𝟎𝟎 0.012 0.051
 SI-SDR -  SI-SDR+PE 0.996 0.833 0.997 0.737
 SI-SDR -  STGI+SI-SDR 0.062 0.991 0.886 0.070
 SI-SDR+PE -  STGI+SI-SDR 0.034 0.669 0.795 0.003

models according to this same table and having in mind Figs. 4 and
2. Notice that 𝑝-values in Table 8 were estimated by means of the
Mann–Whitney 𝑈 test, also known as Wilcoxon rank-sum test, which
is equivalent to the Kruskal–Wallis 𝐻 test dealing with two sample
populations (Wilcoxon, 1945).

Differently from Part A, Part B speech enhancement models are able
to improve, in a statistically significant manner, the intelligibility of the
unprocessed speech, although this is only under the noisy condition
SSN at −5 dB (see Fig. 4 and Table 7). As for Part A, STGI+SI-SDR
also harms, in a statistically significant manner, the intelligibility of
the unprocessed speech under the noisy condition café at −10 dB. In
addition, there are no significant differences among SI-SDR, SI-SDR+PE
and STGI+SI-SDR except for SI-SDR+PE outperforming STGI+SI-SDR under
the noisy conditions SSN at −10 dB and café at −5 dB.
19
Table 8
𝑝-values corresponding to the comparison between Part A and Part B of the subjective
intelligibility test. 𝑝-values below a significance level of 0.05, which indicate statistically
significant intelligibility differences, are marked in bold.
𝑝-values SSN Café

Processing −10 dB −5 dB −10 dB −5 dB

Noisy 0.733 1.000 0.097 0.637
 SI-SDR 0.003 ≈𝟎.𝟎𝟎𝟎 0.192 ≈𝟎.𝟎𝟎𝟎
 SI-SDR+PE ≈𝟎.𝟎𝟎𝟎 0.002 0.084 ≈𝟎.𝟎𝟎𝟎
 STGI+SI-SDR 0.490 ≈𝟎.𝟎𝟎𝟎 0.003 0.015

Tables 9 and 10 show objective metric scores for the stimuli from
Part B. Once again, these objective scores are highly aligned with those
previously reported in Tables 2 and 3, as well as in Tables 5 and 6.
This means that, also for Part B, SI-SDR, SI-SDR+PE and STGI+SI-SDR in-
ariably improve the estimated intelligibility of the unprocessed speech
n terms of STOI, ESTOI and STGI for all the noisy conditions evalu-
ted. Parallel to Fig. 3, Fig. 5 shows scatter plots, which also include
endall’s 𝜏 coefficients, representing median intelligibility from Part B
s a function of these objective intelligibility scores. From this figure,
e can assess how the substantial reduction of the acoustic mismatch
etween training and testing generally improves the positivity of the
ssociation between subjective and objective intelligibility, particularly
nder the noisy condition SSN at −5 dB. Even so, especially for the

type of noise café with some negative Kendall’s 𝜏 coefficients, all STOI,
ESTOI and STGI still exhibit, as for Part A, a low correlation with
subjective intelligibility.
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Fig. 5. Scatter plots representing median intelligibility from Part B (use of noisy condition-, language- and speaker-matched models) of the subjective intelligibility test as a
function of the intelligibility scores given by STOI, ESTOI and STGI. Each data point corresponds to a different processing type. Kendall’s 𝜏 (Kendall, 1938) coefficients calculated
from the data in each scatter plot are also shown.
S

Table 9
Evaluation, in terms of various metrics, of the stimuli from Part B (use of noisy
condition-, language- and speaker-matched models) of the subjective intelligibility test.
Results are broken down by SNR and correspond to the noise type SSN. Given an input
SNR value and a metric, best results are marked in bold.

SNR (dB) Metric Noisy Processed

 SI-SDR  SI-SDR+PE  STGI+SI-SDR
STOI 0.49 0.67 0.68 0.65
ESTOI 0.16 0.47 0.47 0.47

−10 STGI 0.23 0.64 0.66 0.76
SI-SDR −12.76 4.97 4.77 1.45
SDR −11.91 7.42 7.29 4.18
PESQ 1.45 1.38 1.40 1.28

STOI 0.57 0.80 0.79 0.81
ESTOI 0.27 0.62 0.61 0.69

−5 STGI 0.45 0.85 0.85 0.96
SI-SDR −7.77 7.81 7.78 4.14
SDR −7.46 10.60 10.54 7.48
PESQ 1.30 1.65 1.61 1.76

6. Discussion and conclusions

Training DNN-based speech enhancement systems towards maxi-
mizing intelligibility and quality metrics in pursuit of improving sub-
jective intelligibility and perceptual quality in real life seems to be a
20
Table 10
Evaluation, in terms of various metrics, of the stimuli from Part B (use of noisy
condition-, language- and speaker-matched models) of the subjective intelligibility test.
Results are broken down by SNR and correspond to the noise type café. Given an input
NR value and a metric, best results are marked in bold.
SNR (dB) Metric Noisy Processed

 SI-SDR  SI-SDR+PE  STGI+SI-SDR
STOI 0.52 0.59 0.61 0.55
ESTOI 0.22 0.33 0.35 0.29

−10 STGI 0.45 0.59 0.60 0.58
SI-SDR −12.76 0.63 1.19 −6.44
SDR −12.04 2.88 3.37 −3.40
PESQ 1.23 1.24 1.27 1.15

STOI 0.62 0.81 0.81 0.80
ESTOI 0.36 0.64 0.64 0.65

−5 STGI 0.66 0.86 0.88 0.92
SI-SDR −7.80 6.19 6.14 3.21
SDR −7.54 8.23 8.14 6.17
PESQ 1.24 1.65 1.65 1.69

reasonable choice. This motivated us to analyze the performance of,
in addition to SI-SDR and its variant integrating speech pre-emphasis
SI-SDR+PE, a set of five different perceptually-motivated loss functions:
PMSQE, STOI, ESTOI, STGI and STGI+SI-SDR. While an objective eval-

uation on the WSJ0 corpus has revealed that these loss functions can
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Table 11
Kendall’s 𝜏 coefficients summarizing processing type-dependent scatter plots represent-
ing median intelligibility from Parts A and B of the subjective intelligibility test as a
function of the intelligibility scores given by STOI, ESTOI and STGI. In these scatter
plots, each data point corresponds to a different noisy condition (i.e., combination of
noise type and SNR level).

Processing Part A Part B

STOI ESTOI STGI STOI ESTOI STGI

Noisy 0.913 1.000 1.000 1.000 1.000 0.913
 SI-SDR 0.667 0.667 0.667 0.667 0.667 0.667
 SI-SDR+PE 0.667 0.667 1.000 0.667 0.667 0.667
 STGI+SI-SDR 0.333 0.333 0.333 0.548 0.548 0.548

bring substantial estimated intelligibility and quality gains, particu-
larly, STGI+SI-SDR, the gains have been mostly contradicted by a formal
ntelligibility test with a panel of normal-hearing subjects.

Subjective intelligibility results have pointed out that, generally,
NN speech enhancement processing either maintains or harms intel-

igibility of the original noisy (i.e., unprocessed) speech. Actually, only
under one noisy condition, namely, SSN at −5 dB, and operating in
a close-to-ideal scenario (i.e., using noisy condition-, language- and
speaker-matched models) we have found that speech enhancement
is able to provide statistically significant intelligibility improvements.
Furthermore, no significant differences have been generally observed
among SI-SDR, SI-SDR+PE and STGI+SI-SDR. This implies that, con-
tradicting our hypothesis supported by preliminary observations, the
integration of speech pre-emphasis into a loss function like SI-SDR to
ive an increased importance to higher frequency components does
ot help to enhance intelligibility. Besides, we have also seen that all
SI-SDR, SI-SDR+PE and STGI+SI-SDR perform even worse when dealing
ith a non-stationary type of noise like café than when facing a

tationary noise type (i.e., SSN), which comes as no surprise.
An interesting finding of this study is the low correlation existing

when noise type and SNR are fixed – between subjective intelligi-
ility and intelligibility as estimated by various state-of-the-art speech
ntelligibility predictors including STGI, which has been shown to
utperform many well-established intelligibility metrics across a wide
ange of degradation conditions (Edraki et al., 2021a). For STOI, ES-
OI and STGI, noisy condition-dependent Kendall’s 𝜏 coefficients have
emonstrated a rather weak positive or directly negative association
etween subjective and objective intelligibility, yet the most impor-
ant requirement of an intelligibility metric is that it has a strong
ositive monotonic relationship with subjective intelligibility (Jensen
nd Taal, 2014). At least when it comes to normal-hearing listeners,
his disappointing finding is in line with previous DNN-based speech
nhancement work (Gelderblom et al., 2017, 2019). In this way, within
he context of a speech enhancement system comparison just based on
ntelligibility metrics, one might end up choosing a deficient solution
o be deployed in real life. On the other hand, it is also important to
ear in mind that speech intelligibility metrics such as ESTOI, STGI and
o some extent STOI are able to predict the effect of input SNR (Jensen
nd Taal, 2016; Edraki et al., 2021a; Taal et al., 2011). This statement
s in part endorsed by Table 11, which shows Kendall’s 𝜏 coefficients
ummarizing processing type-dependent scatter plots (not included
ue to space limitations) similar to those of Figs. 3 and 5. In these
rocessing type-dependent scatter plots, each data point corresponds
o a different noisy condition (namely, combination of noise type and
NR level).

From the above observations, two main conclusions can be drawn.
irst, unfortunately, subjective evaluation of speech intelligibility can-
ot systematically be replaced by objective intelligibility evaluation.
econdly, both the development of meaningful intelligibility metrics
nd DNN-based speech enhancement systems that can consistently
nhance the intelligibility of noisy speech for human listening remain
pen problems. In relation to intelligibility metrics, one of their main
21

ssues to be overcome is their poor generalization to speech data not
used during the development of these metrics (Kuyk et al., 2018) as
a result of their lack of reflection of human perception (Fu et al.,
2018). Counting in future on intelligibility metrics highly correlated
with subjective intelligibility will be crucial to avoid the need to con-
duct formal subjective intelligibility tests altogether, since these tests
tend to be time-consuming, laborious and expensive. Importantly, this
will also contribute towards the development of effective DNN-based
speech enhancement systems that are trained employing intelligibility
metric-based loss functions.
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