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ABSTRACT

With the advent of the Industry 5.0 era, the Internet of Things (IoT) devices face unprecedented proliferation,
requiring higher communications rates and lower transmission delays. Considering its high spectrum efficiency,
the promising filter bank multicarrier (FBMC) technique using offset quadrature amplitude modulation (OQAM)
has been applied to Beyond 5G (B5G) industry IoT networks. However, due to the broadcasting nature of wireless
channels, the FBMC-OQAM industry IoT network is inevitably vulnerable to adversary attacks from malicious IoT
nodes. The FBMC-OQAM industry cognitive radio network (ICRNet) is proposed to ensure security at the physical
layer to tackle the above challenge. As a pivotal step of ICRNet, blind modulation recognition (BMR) can detect
and recognize the modulation type of malicious signals. The previous works need to accomplish the BMR task of
FBMC-OQAM signals in ICRNet nodes. A novel FBMC BMR algorithm is proposed with the transform channel
convolution network (TCCNet) rather than a complicated two-dimensional convolution. Firstly, this is achieved
by designing a low-complexity binary constellation diagram (BCD) gridding matrix as the input of TCCNet.
Then, a transform channel convolution strategy is developed to convert the image-like BCD matrix into a series-
like data format, accelerating the BMR process while keeping discriminative features. Monte Carlo experimental
results demonstrate that the proposed TCCNet obtains a performance gain of 8% and 40% over the traditional in-
phase/quadrature (I/Q)-based and constellation diagram (CD)-based methods at a signal noise ratio (SNR) of 12
dB, respectively. Moreover, the proposed TCCNet can achieve around 29.682 and 2.356 times faster than existing
CD-Alex Network (CD-AlexNet) and I/Q-Convolutional Long Deep Neural Network (I/Q-CLDNN) algorithms,
respectively.

KEYWORDS
Intelligent signal recognition; FBMC-OQAM; industrial cognitive radio networks; binary constellation diagram;
transform channel convolution

1 Introduction

In the upcoming fifth industrial revolution (Industry 5.0) era, the industrial Internet of Things
will require low-latency and high-rate data communications transmissions [1] due to the intensive
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interaction between the industrial information center and manufacturing machine nodes. The 5G
(fifth generation) and B5G wireless communications techniques have been proposed as viable enablers
for meeting data transmission requirements in industrial IoT networks [2]. As a B5G candidate
wireless transmission approach, the FBMC-OQAM multicarrier technique develops a non-orthogonal
prototype filter to achieve high spectrum utilization and data transmission rate. In recent years, some
works [3,4] have integrated the FBMC-OQAM technique into the industrial IoT network. However,
considering its open connection traits, the FBMC-OQAM industrial IoT network is susceptible to
vicious attacks from malicious nodes. As depicted in Fig. 1, the malicious attack will disturb the
order of the industrial IoT network and deteriorate the data transmission performance between
the industrial information center and legitimate nodes [5]. These attacks might deactivate industrial
manufacturing and wiretap the industrial information of legitimate nodes. Therefore, it is imperative
to deploy the FBMC-OQAM ICRNet to recognize malicious attacks and improve the physical layer
security of the FBMC-OQAM ICRNet.

Figure 1: The application illustration of the FBMC-OQAM industrial cognitive radio networks

Blind modulation recognition (BMR) technology plays a pivotal role in the FBMC-OQAM
ICRNet. It can recognize the modulation schemes of intercepted signals to judge whether it is a
legitimate node or an illegal threat in complex electromagnetic scenarios. BMR has excellent promise
in civilian and military applications [6] in ICRNet, such as spectral monitoring, situation awareness,
and spectrum sensing. According to the latest survey in [7], the traditional BMR techniques can be
grouped into two pillars: 1) likelihood-based (LB) and 2) feature-based (FB) methods. Compared
with likelihood-based methods, feature-based methods have a better generality for different wireless
environments and reduce the need for prior information. In FB methods, various expert features
are extracted as the model input of a machine learning classifier to perform the BMR tasks, such
as support vector machine (SVM) [8]. Up to now, deep learning has been a promising technology.
It has been applied to many scenarios, such as climate change forecasting [9], groundwater storage
change [10], forest areas classification [11], nanosatellites image classification [12], and the sustainable
agricultural water practice [13]. With the prosperity of artificial intelligence (AI), the BMR approach
based on deep learning (DL) has become a game changer due to its powerful capability for feature
extraction and recognition [7].
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Notably, the existing DL-based approaches can be broadly summarized into two aspects: single-
carrier and multi-carrier systems. For the single-carrier case, Liu et al. [14–16] explored BMR
technology in the context of industrial cognitive radio networks. In [14], the time-frequency feature
was converted from the received signals and fed into the stack hybrid autoencoders to infer the
modulation types. To further improve the signal feature representation, the cyclic spectrum method
was employed in [15] to preprocess the received node signal and the federated learning strategy was
applied to protect the privacy of industrial IoT networks. In [16], the author integrated the signal
SNR estimation and modulation recognition to form a unitary framework of signal estimation in the
satellite-based ICRNet. Up to now, many prior DL-based BMR methods have been widely investigated
in multi-carrier systems, especially for the Orthogonal Frequency Division Multiplexing (OFDM)
system [17,18]. For instance, Zhang et al. [17] proposed a real-time DL-based BMR method for the
OFDM system to identify six modulation types of OFDM signal subcarriers, yielding 100% accuracy
at 6dB with a sampling length of 1024. In [18], the blind signal separation technique is employed to
reconstruct the damaged OFDM signal and a multi-modal learning network based on the constellation
and series features is proposed to recognize low-order phase shift keying (PSK) and quadrature
amplitude modulation (QAM) signals.

Unlike the traditional OFDM technology, the FBMC-OQAM method can prevent the cyclic
prefix (CP) insertion to improve spectral efficiency and reduce out-of-band leakage. Using a great
localized frequency/time prototype filter, the FBMC-OQAM technique can relax the strict orthogonal-
ity limits of the OFDM method to tackle the carrier frequency offset. However, few BMR works have
been presented for the FBMC-OQAM system, which is a promising multicarrier technology due to its
low spectrum sidelobe and total spectral efficiency [19]. Most BMR methods in OFDM systems cannot
be directly applied to the new FBMC-OQAM system since two multi-carrier systems employ different
modulation types in corresponding subcarriers. Specifically, the OFDM system adopts QAM, whereas
the FBMC system utilizes OQAM, which is used to achieve imaginary interference cancellation [20].

Consequently, it is necessary to redesign the BMR method for FBMC-OQAM ICRNet. From a
significant survey of Dobre’s literature [21], it has been illustrated that the new signal recognition task
in the promising FBMC-OQAM systems should be listed on the agenda. It is illustrated in Fig. 2 for
the difference in the gridding constellation matrix between OFDM and FBMC modulation at SNR
= 26dB. It is evident that the OFDM scheme has square-shaped QAM modes, but the FBMC scheme
presents cross-shaped OQAM modes. Therefore, the novel BMR methods are needed to update by
considering the modulation type gap between FBMC-OQAM and OFDM-QAM types. There are
currently no algorithms in previous work that can perform the BMR task of FBMC-OQAM signals
in ICRNet nodes.

Inspired by [21], a novel BMR network is proposed with a transform channel convolution strategy
(called TCCNet) for current FBMC-OQAM ICRNet systems to recognize nine modulation types,
containing Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Eight Phase
Shift Keying (8PSK), 16OQAM, 32OQAM, 64OQAM, 128OQAM, 256OQAM, and 512OQAM. This
FBMC-OQAM BMR framework aims to calculate the posterior probability of modulation schemes
using the binary constellation diagram and the lightweight TCCNet model. Notably, the proposed
FBMC-OQAM BMR algorithm has several significant contributions, as follows:

• As previously mentioned, this work is the first attempt at leveraging the DL technique to
address the issue of BMR in the FBMC-OQAM system. Specifically, this work focuses on
recognizing the new OQAM rather than the traditional QAM in previous OFDM systems,
which has not been investigated in previous works.
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• To achieve the low-latency BMR in industrial FBMR-OQAM scenarios, this work develops
a low-complexity binary constellation diagram gridding matrix, rather than the complicated
colorful constellation diagram tensor produced by the lightweight binary image preprocessing.

• Unlike previous BMR works using the two-dimensional (2D) convolution, this work proposes
a transform channel convolution (TCC) strategy to transform the 2D constellation image
matrix into the one-dimensional (1D) series-like format. In this way, this work can leverage the
1D convolution operation to perform the recognition task of the 2D constellation diagram.
The proposed TCCNet can achieve low-latency recognition in the FBMC-OQAM ICRNet.

• The proposed approach does not need prior channel state information (CSI) to perform
channel equalization in advance. This method is more suitable for the FBMC-OQAM industry
cognitive radio network, where it is difficult to obtain prior knowledge of malicious nodes.

Figure 2: The difference between the FBMC-OQAM and traditional OFDM-QAM modulation modes

2 System Model and Problem Formulation
2.1 FBMC-OQAM System Model

As depicted in Fig. 3, this paper considers an FBMC-OQAM communications transmission
system [20] with an antenna setup of single input and output. In the transmitting terminal, the data bits
are first mapped into the digital modulation signal, such as QAM. The aliasing interference between
the QAM adjacent carriers exists since the FBMC technique is a non-orthogonal multicarrier scheme
[22], which differs from OFDM schemes with orthogonal adjacent subcarrier transmission. To avoid
this aliasing interference, the real and imaginary parts of QAM complex symbols are offset by half
symbol period and formed as the OQAM symbols. As illustrated in Fig. 4, the OQAM modulation
scheme can segment the complex-value signal into the real and imaginary parts fed into the adjacent
subcarrier to transmit information. The original aliasing interference can be transferred into the
imaginary domain by performing the appropriate phase shift ϕk, n. Due to the transferred imaginary
interference, FBMC techniques only need to transmit real-value symbols, which facilitates the relaxed
real orthogonality condition to replace the strict complex orthogonality condition. Meanwhile, a
complex-value FBMC symbol is transmitted by transmitting two real-value symbols, achieving the
identical information rate with the no CP-aided OFDM multicarrier.
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Figure 3: The framework of the FBMC-OQAM communications transmission systems

Figure 4: The framework of the OQAM modulation scheme

In Fig. 3, the prototype filter PT (·) and IFFT operation are employed to filter the OQAM symbols
in the frequency domain. As such, the FBMC transmitting signal x (t) can be presented as follows:

x (t) =
M−1∑
k=0

+∞∑
n=−∞

ck, n · pT , k (t − nM) , (1)

pT ,k (t) = pT (t) ej 2π
M k (t−KM+1), (2)

pT (t) = 1 + 2
K−1∑
k=1

(−1)kHk cos
(

2π
kt

KM

)
, (3)

where M denotes the number of subcarriers, K denotes the overlapping factor, pT ,k (t) denotes
the offset version of prototype filter PT (·) with a constant sampling interval of T/M and has a
non-zero coefficient during the range [0, KM − 1]. According to the PHYDYAS project [23], the
overlapping factor of the FBMC prototype filter K is set as 4 with the frequency-domain coefficients

H = [H0, H1, H2, H3] =
[
1, 0.97196,

√
2/2, 0.235147

]
. In formula (1), Ck,n denotes the n-th OQAM

modulation symbol in the k-th subcarrier as:

ck,n = dk,2nejϕk,2n + dk,2n+1ejϕk,2n+1 , (4)

ϕk,n = π

2
(k + n) , (5)
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where dk, n is the real-value symbol, ϕk, n is the additional phase. It can beused to generate the OQAM
symbols by alternately adding the real and imaginary parts in the time and frequency domains, as
shown in Fig. 4. Finally, the received FBMC signal r (t) is corrupted by the additive white Gaussian
noise (AWGN) channel. Its mathematical expression can be expressed as follows:

r (t) = x (t) + w (t) =
M−1∑
k=0

+∞∑
n=−∞

dk, nejϕk, n · ej 2πk
M(t−KM+1)−1

PT

(
t − nM

2

)−1 + w (t) , (6)

where w (t) represents the complex AWGN noise with zero mean and variance δ2
w = 1.

2.2 BMR Problem Formulation

With the help of AI, this paper can consider the FBMC BMR task as a pattern recognition
problem. Specifically, this paper needs to recognize the modulation types of received FBMC signals in
the receiver. In formula (1), Cn,i denotes the modulated signal by implementing the modulation schemes
on signal bits s. It is worth noting that Cn,i and s have a close relationship of Cn,i = F (s). Consequently,
this research can reformate the formula (6) as follows:

r (t) =
M−1∑
k = 0

+∞∑
n =−∞

F (s) · ej 2πk
M(t−KM+1)−1

PT

(
t − nM

2

)−1 + w (t) , (7)

where F (s) represents the modulation functions, entailing PSK and Offset Quadrature Amplitude
Modulation (OQAM). As such, the proposed AI-based BMR task aims to identify modulation format
F (·) from the candidate modulation set BPSK, QPSK, 8PSK, 16OQAM, 32OQAM, 64OQAM,
128OQAM, 256OQAM, and 512OQAM. Based on the maximum a posterior (MAP) criterion, the
final recognition decision FLast relies on the modulation modes with the maximum probability between
the i-th predicted label FP and the true label FT . And its mathematical expression is given by:

FLast = arg max
1≤i≤Nm

P
(
Fi

P = FT | r (t)
)

, (8)

where P (· | r (t)) denotes the posterior probability and Nm denotes the number of all modulation types.

3 Proposed FBMC-OQAM BMR Algorithm

In the following, the system architecture of the proposed FBMC-OQAM modulation recognition
algorithm is presented in Fig. 5. The proposed FBMC-OQAM BMR algorithm mainly consists of
two key modules: 1) FBMC signal constellation diagram preprocessing and 2) the proposed TCCNet
recognizer based on transform channel convolution strategy.

3.1 FBMC Signal Constellation Diagram Preprocessing

Existing BMR works based on constellation diagrams [24] usually utilize the three-channel colour-
ful image, which will inevitably increase the computation complexity and trainable parameters of DL-
based models. To better balance the signal representation and model complexity, this paper transforms
the received signal r (t) into new representations using binary image preprocessing. Specifically, the
above transformation process can be divided into two steps, as follows:
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Figure 5: The architecture of the proposed FBMC-OQAM BMR algorithm

Firstly, this paper maps the input FBMC signal r (t) into scattering points on the two-dimensional
I/Q plane to generate the raw constellation diagram (RCD). Here, this paper puts each element in r (t)
into the corresponding pixel, yielding the constellation coordinate (ImgXm; ImgYm) as follows:

Img Xm (l, w) = round
{

Lc · (2 · SC)
−1

SC + Re [γ (l, w)]

}
, (9)

Img Ym (l, w) = round
{

Lc · (2 · SC)
−1

SC − Im [γ (l, w)]

}
, (10)
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where SC = Max {abs [Re (γ)]} · 1.5 denotes the boundary value of FBMC signal element, Lc denotes
the size of preprocessed constellation diagram and γ denotes the raw constellation diagram. Then, this
paper standardizes every pixel value of the above constellation diagram into the binary value with 0
or 255. After that, this paper can obtain the final binary constellation diagram. Mathematically, the
above binary image preprocessing can be described as follows:

γB =
{

255, if (Img Xm < SC) ‖ (Img Ym < SC)

0, else (11)

To conduct the visualization analysis, the BCD feature of nine modulation signals at SNR =
20 dB is presented in Fig. 6. As shown in Fig. 6, it is evident that nine modulation schemes have
different constellation clustering characteristics in terms of BCD features. Specifically, the OQAM
signal displays the cross-shaped constellation layout, which differs from PSK signals with sparse
constellation points. In other words, the higher-order OQAM signals correspond to the more intensive
cross-shaped constellation. Moreover, different orders of OQAM signals present the different cluster
densities of the constellation points. Therefore, the above diversity of various BCD features facilitates
the following FBMC modulation recognition task.

Figure 6: Binary constellation diagram of nine modulation types in FBMC-OQAM systems

3.2 TCCNet Recognizer Based on Transform Channel Convolution Strategy

With the input of BCD features, this paper develops a TCCNet modulation recognition model
using the 1D transform channel convolution strategy to accelerate the BMR recognition process, as
shown in Fig. 5. Specifically, this research transforms the Q channel axis of the BCD image into the
convolution channel axis, which promotes the application of 1D convolutional operation to calculate
the 2D image feature. As such, the BCD image recognition task can be shifted into a series recognition
task, which can significantly reduce the computational complexity. This work will detail the principle
and advantages of the proposed 1D TCC strategy compared with the traditional 2D convolution.
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For the case of traditional 2D convolution, the current work [24] directly leverages the 2D
constellation diagram as an input feature of AlexNet and Google-Inception-Network (GoogleNet)
models, which will induce high complexity and time consumption. As presented in Fig. 7a, this paper
sets the input map of a single BCD image as X2D ∈ R

I×Q×1, where I = 128 and Q = 128 are
image length and height, respectively. Additionally, the weight of 2D convolution can be expressed
as W 2D ∈ R

lω×lh×c×p where lw = lh = 2 denotes the size of the convolutional kernel, c = 1 denotes
the input channel, p denotes the kernel number. As shown in Fig. 7a, the 2D convolution utilizes
the sliding window to implement multiply addition calculation on the input map X2D, yielding the
output feature map as Y2D ∈ R

I×Q×p. As a note, the trainable parameter of 2D convolution is given by
MACs-2D = 2 × 2 × 1 × I × Q × p = 134, 217, 728.

Figure 7: The illustration of the comparison between the proposed 1D TCC convolution and tradi-
tional 2D convolution. (Note that two convolution schemes have the same size of convolution kernel
size by setting I = 128, Q = 128, p = 2048 and q = 32)

For the case of the 1D TCC convolution in Fig. 7b, this work recognizes each column of the
BCD image as the 1D temporal feature rather than the 2D grayscale matrix. This feature facilitates
the lightweight 1D convolution operation rather than complicated 2D convolution. In detail, this paper
exchanges the Q channel and input channel in the BCD feature map X2D ∈ RI×Q×1 to produce the trans-
formed feature map X1D ∈ RI×1×Q. To achieve a fair comparison, this paper sets that two convolutions
schemes have the same convolution weight, where W 1D ∈ Rlω×c×Q×q with q = (2 × p)/Q = 32. After the
convolution between X1D and W 1D, its final output feature map can be expressed as Y1D ∈ RI×1×q.
Accordingly, the trainable parameter of 1D TCC convolution can be presented as MACs-1D =
2 × 1 × Q × I × 1 × q = 1,048,576.
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Compared with traditional 2D convolution, it is obvious that the 1D TCC convolution can reduce
the training parameter of 133,169,152. Therefore, the 1D TCC convolution is a lightweight way to deal
with the image recognition task since it possesses a lower computation complexity than traditional 2D
convolution methods. This advantage facilitates its application in low-latency scenarios.

As shown in Fig. 5, the proposed TCCNet model mainly consists of three TCC units, two Dropout
layers, two Dense layers, and one Flatten layer. Specifically, each TCC unit contains one 1 × 1
residual convolution layer, two rectified linear unit (ReLU) activation layers, and three dilated causal
convolution layers. The function of TCC units is to leverage the residual connection and dilated
causal convolution for faster recognition speed. Because the dilated causal convolution can learn
more prominent features with the exponential information expansion. The 1 × 1 residual convolution,
inspired by the ResNet structure, can prevent the vanishing gradient. Mathematically, the dilated
causal convolution and the 1 × 1 residual convolution can be presented as follows:

ψ (s) = xd ∗ ξ (s) =
m−1∑

ker=0

ξ (ker) · xs−d·ker, (12)

Y = ReLU (x + Psi (s)) , (13)

where d and ker are the dilation factor and filter size, respectively. This paper sets that the dilation
factor of three dilated causal convolution layers are d1 = 1, d2 = 8 and d3 = 16 to fit the traits of
dilated causal convolution. However, all filter size in three layers is ker = 8.

For the deployment of TCCNet into the FBMC industrial cognitive radio networks, the overall
BMR process can be divided into two parts: the offline training phase and the online testing phase,
as depicted in Fig. 8. Note that the offline training is performing the model training before the
model testing, regardless of the local Graphic Processing Units (GPU) or the website GPU. For
the TCCNet model training, the stochastic gradient descent (SGD) algorithm is adopted to perform
the backpropagation, namely, to update the model weight and bias parameters Wand b, as follows:

W l = W l − η
∂L (W , b)

∂W l , (14)

bl = bl − η
∂L (W , b)

∂bl , (15)

where K b denotes the sample number in one batch and log (·) denotes the logarithmic operation. For
the online testing phase, this paper loads the well-trained model parameters W and b into the TCCNet
model to perform the FBMC BMR task.

L (W , b) =

Kb∑
j=1

[
Fj

T log
(
Fj

P

) + (
1 − Fj

T

)
log

(
1 − rj

)
Fj

P

]

−Kb

, (16)
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Figure 8: The implementation of offline training and online testing in the proposed TCCNet BMR
model

4 Experiments and Simulation Results

In this section, this paper implements several experiments to validate the BMR performance of
the proposed TCCNet algorithm in the FBMC-OQAM systems.

4.1 Datasets and Implementation Details

This paper considers a modulation candidate pool of nine modulation types P = {BPSK,
QPSK, 8PSK, 16OQAM, 32OQAM, 64OQAM, 128OQAM, 256OQAM, 512OQAM}. The whole
SNR ranges from −10 dB to 30 dB with a 2 dB gap. After the binary transformation of the
constellation diagram, 600, 200 and 200 images per SNR per mode are generated as the training,
validating and testing datasets, respectively. The datasets used in this letter are generated through
the matrix laboratory (MATLAB) platform. The key simulation parameters in FBMC systems can
be summarized as follows: the overlap factor of the prototype filter is four, the carrier frequency is
6 kHz, the number of subcarriers is 128, the carrier spacing is 100 Hz, and the sampling frequency is
8 kHz.

For the algorithm evaluation, the hardware configuration contains an Intel i7-9700K Center
Processing Unit (CPU) and an RTX2060 graphics card. This paper employs the DL framework of
Tensorflow 2.4 as the software platform for model training and testing. The number of total epochs in
the training process is 50, with an initial learning rate of 0.001. In the model training, this paper adopts
the Adam optimizer and the loss function of categorical cross-entropy with a mini-batch step of 128.
For the dropout rate, we choose a moderate parameter value of 0.3. In the testing process, the average
correct recognition accuracy per SNR PSNR

cr = (
NSNR

r /NSNR
All

)×100% is employed as the evaluation index
by 1800 Monte Carlo trials per SNR, where NSNR

r and NSNR
All denote the number of correct recognized

trials and the total trials at each SNR, respectively. As a note, the source FBMC-OQAM signal and
AWGN noise are realized randomly in every trial, which is conducive to enhancing the generalization
ability of TCCNet in various experimental scenes. The k-fold cross-validation strategy (k = 5) is
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adopted to perform numerous training and testing procedures to obtain a mean value of recognition
accuracy.

4.2 Performance Analysis of Proposed TCCNet

4.2.1 Accuracy Comparisons with Other Existing Methods

To evaluate the proposed TCCNet, this paper calculates the recognition accuracy of six BMR
algorithms, containing the SVM-RBF [8] (SVM using the nine expert features), the I/Q-CLDNN
[25] (CLDNN using the I/Q feature), the I/Q-ResNet [26] (Residual Network (ResNet) using the
I/Q feature), the A/P-LSTM [27] (Long Short Term Memory (LSTM) using the amplitude-phase
(A/P) feature), the A/P-GRU [28] (Gate Recurrent Unit (GRU) using the A/P feature) and the CD-
AlexNet [24] (AlexNet using the CD feature). An identical amount of signal samples implements
all experiments. As illustrated in Fig. 9, this paper observes that the TCCNet performs better than
other BMR methods with the SNR ranges distributed from 0 dB to 30 dB. Specifically, compared
with baseline CD-AlexNet, the proposed TCCNet can obtain an SNR gain of around 2 dB when
the recognition accuracy is 88%. In addition, the previous I/Q-CLDNN, I/Q-ResNet, A/P-LSTM,
A/P-GRU and SVM-RBF fail to exceed the maximum recognition accuracy of 80% at the SNR
of 30 dB. It also can be observed from Fig. 9 that TCCNet model can obtain an approximate 8%
accuracy improvement over the subprime CD-AlexNet model when the SNR is 12 dB, which can
be explained by the fact that the TCCNet adopt the transform channel convolution to reduce the
effects of interference pixels and AWGN noise. However, when the SNR is below 0 dB, CD-AlexNet
outperforms TCCNet with around 4% performance advantages. Because the constellation diagram is
too obscure to represent the signal feature under the low SNR cases, which limits the TCCNet. This
can be accepted since CD-AlexNet, and other models only obtain a recognition accuracy below 60%.

Figure 9: The recognition accuracy among different methods

4.2.2 Complexity Comparisons with Other Existing Methods

Furthermore, this paper evaluates the computational complexity between the proposed TCCNet
and other previous methods regarding the total training time (s) and average testing time per sample
(ms). Note that all algorithms are trained and tested on the same hardware platform, with GTX1660Ti
GPU, 32 GB RAM and Intel i7-9700K CPU. In Fig. 10a, the proposed TCCNet obtains the lowest
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training time among other methods besides SVM-RBF. However, the recognition accuracy of SVM-
RBF could be better to qualify for the BMR task. Thus this paper cannot select SVM-RBF as the
final recognizer. The proposed TCCNet can achieve around 29.682 and 2.356 times faster than the
suboptimal CD-AlexNet and I/Q-CLDNN, respectively. Moreover, as shown in Fig. 10b, the TCCNet
has a similar testing time per sample with the RCD-AlexNet and performs faster than other models
based on time-series I/Q and A/P features. Therefore, those indicate that the proposed TCCNet is
attractive since it can have a shorter inference time and the best recognition accuracy.

Figure 10: Complexity comparison among existing BMR methods

4.2.3 Recognition Accuracy among Different Modulation Types

In Fig. 11, this paper explores the BMR performance of nine modulation types with the proposed
TCCNet. This paper can observe in Fig. 11 that the accuracy of most modulation signals can be
improved by increasing the SNR. Note that the 512OQAM type presents an accuracy trend of reducing
after improving in the entire SNR range. Because 512OQAN has the inevitable feature confusion
with the 128OQAM type at the SNR range from 2 dB to 16 dB, which also can be found in the
confusion matrix of Fig. 12. In addition, the low-order modulation types display a higher recognition
accuracy than the counterpart of high-order cases. Because the high-order modulated signal has
overcrowded constellation points, which inevitably reduces signal representation and deteriorates
the BMR accuracy. Moreover, the performance of all modulation modes tends to be stable when
SNR≥18 dB since the signal energy is enough to distinguish various modulation types at high SNRs.

4.2.4 Confusion Matrices

To illustrate the recognition performance intuitively, the confusion matrices of the proposed
TCCNet recognizer are visualized in Fig. 12 at SNR = 12 dB and 20 dB. From Fig. 12a, this paper
can observe that the proposed TCCNet presents an apparent confusion between two pairs of high-
order classes (64OQAM/256OQAM and 128OQAM/512OQAM) because these OQAM signals have
numerous overlapped constellation points in the I/Q plane. Especially for the high-order modula-
tion, the AWGN noise will easily induce feature interference and increase the similarity between
64OQAM/256OQAM and 128OQAM/512OQAM. With the increase of SNR, the confusion problem
of high-order modulation schemes can be eliminated in Fig. 12b, where TCCNet can remarkably
achieve a 100% recognition accuracy when SNR = 20 dB. Generally, these confusion matrices in
Fig. 12 are consistent with the simulation results in Fig. 9. This result means that the high-order
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modulation recognition is a big challenge for the proposed TCCNet and existing models, which still
needs to be solved in the future.

Figure 11: The recognition accuracy of nine modulation types

Figure 12: Confusion matrices of the proposed TCCNet under two SNR cases of 12 dB and 20 dB

4.2.5 Visualization of Learned Modulation Features

In Fig. 13, this paper visualizes the learned feature distribution of the proposed TCCNet by the T-
SNE (T-Distributed Stochastic Neighbor Embedding) tool. It is visible that the overlapping problem
can be alleviated effectively with the increase of SNR values. Specifically, a two-pair overlapping
problem mainly occurs between 64OQAM/256OQAM and 128OQAM/512OQAM at SNR = 12 dB,
which aligns with the confusion matrix results in Fig. 12. At SNR = 20 dB, different modulation types
can converge to tighter clusters independently, which improves the differentiation among different
modulation types and constructs the visible division border for the deep neural network. From the
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above results, it can be validated that the 100% accuracy of TCCNet comes from effective feature
selection and extraction.

Figure 13: The feature distribution of different modulation types extracted from the proposed TCCNet

4.2.6 Effects of Model Parameters

Fig. 14 explores the impacts of the number of convolution filters in the range [8, 64] and the input
image pixel values from (64 × 64) to (128 × 128). Generally, the recognition accuracy improves along
with the increment of filter numbers and image pixel values. For the SNR of 10 dB, the Filters = 32,
16, and 8 cases achieve around 87.33%, 83.83% and 77.89% accuracy, respectively, where the Filters
= 32 has an advantage of 3.5% over Filters = 16 cases and 9.44% over Filters = 8 cases. However,
the endless increase of filters will cause an adverse influence on TCCNet performance, with a slight
2.15% performance deterioration from Filters = 32 to Filters = 64. Moreover, the proposed TCCNet
can obtain the best performance with pixel = (128 × 128). These results imply that the bigger pixel
value contains more conducive information to capture more discriminative features.

Figure 14: Effects of the different convolution filters and image pixel values on the recognition accuracy
of the proposed TCCNet
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5 Conclusion

This article proposes a viable BMR framework using transform channel convolution, TCCNet,
to identify new OQAM modulation types in the emerging FBMC-OQAM industry cognitive radio
network. To maximize the discrimination among various OQAMs, this paper generates the BCD image
as the learning content of TCCNet. The novel transforms channel convolution strategy is presented
to convert the 2D BCD into 1D series-like format, which supports faster recognition speed and lower
network complexity. Another advantage of the TCCNet is that it does not rely on the prior channel
knowledge of the receiver. Simulation results verify the efficacy of the proposed TCCNet to recognize
nine modulation signals with a recognition accuracy of 100% at SNR=18 dB.

This work contributes to the future B5G intelligent receiver design and opens up new BMR
research directions for the emerging FBMC-OQAM ICRNet. For the research limitation of this paper,
supervised learning with enough samples is employed to perform the FBMC modulation recognition.
However, this paper has yet to consider the small sample learning technique in FBMC BMR
research to reduce the need for a massive sample. In the future, more powerful prepossessing features
can be further investigated to improve recognition accuracy and more challenging generalization
ability. Additionally, this paper will explore meta-learning technologies to reduce the needs of the
labelled training dataset and achieve a BMR method driven by small-scale labelled data samples.
Cyclostationary theory can be a promising solution to investigate further to improve the performance
of high-order modulation schemes.
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