

Aalborg Universitet

ETLMR

A Highly Scalable Dimensional ETL Framework Based on MapReduce

Liu, Xiufeng; Thomsen, Christian; Pedersen, Torben Bach

Published in:
Lecture Notes in Computer Science

DOI (link to publication from Publisher):
10.1007/978-3-642-23544-3_8

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Liu, X., Thomsen, C., & Pedersen, T. B. (2011). ETLMR: A Highly Scalable Dimensional ETL Framework Based
on MapReduce. Lecture Notes in Computer Science, 6862, 96-111. https://doi.org/10.1007/978-3-642-23544-
3_8

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2024

https://doi.org/10.1007/978-3-642-23544-3_8
https://vbn.aau.dk/en/publications/e7a2c404-ba7c-48ba-a884-8b49aec4db00
https://doi.org/10.1007/978-3-642-23544-3_8
https://doi.org/10.1007/978-3-642-23544-3_8

ETLMR: A Highly Scalable Dimensional ETL
Framework Based on MapReduce

Xiufeng Liu, Christian Thomsen, and Torben Bach Pedersen

Dept. of Computer Science, Aalborg University
{xiliu,chr,tbp}@cs.aau.dk

Abstract. Extract-Transform-Load (ETL) flows periodically populate data ware-
houses (DWs) with data from different source systems. An increasing challenge
for ETL flows is processing huge volumes of data quickly. MapReduce is estab-
lishing itself as the de-facto standard for large-scale data-intensive processing.
However, MapReduce lacks support for high-level ETL specific constructs, re-
sulting in low ETL programmer productivity. This paper presents a scalable di-
mensional ETL framework, ETLMR, based on MapReduce. ETLMR has built-in
native support for operations on DW-specific constructs such as star schemas,
snowflake schemas and slowly changing dimensions (SCDs). This enables ETL
developers to construct scalable MapReduce-based ETL flows with very few code
lines. To achieve good performance and load balancing, a number of dimension
and fact processing schemes are presented, including techniques for efficiently
processing different types of dimensions. The paper describes the integration of
ETLMR with a MapReduce framework and evaluates its performance on large re-
alistic data sets. The experimental results show that ETLMR achieves very good
scalability and compares favourably with other MapReduce data warehousing
tools.

1 Introduction

In data warehousing, ETL flows are responsible for collecting data from different data
sources, transformation, and cleansing to comply with user-defined business rules and
requirements. Traditional ETL technologies face new challenges as the growth of in-
formation explodes nowadays, e.g., it becomes common for an enterprise to collect
hundreds of gigabytes of data for processing and analysis each day. The vast amount
of data makes ETL extremely time-consuming, but the time window assigned for pro-
cessing data typically remains short. Moreover, to adapt rapidly changing business en-
vironments, users have an increasing demand of getting data as soon as possible. The
use of parallelization is the key to achieve better performance and scalability for those
challenges. In recent years, a novel “cloud computing” technology, MapReduce [6], has
been widely used for parallel computing in data-intensive areas. A MapReduce program
is written as map and reduce functions, which process key/value pairs and are executed
in many parallel instances.

We see that MapReduce can be a good foundation for the ETL parallelization. In
ETL, the data processing exhibits the composable property such that the processing of
dimensions and facts can be split into smaller computation units and the partial results

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2011, LNCS 6862, pp. 96–111, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 97

from these computation units can be merged to constitute the final results in a DW. This
complies well with the MapReduce paradigm in term of map and reduce.

ETL flows are inherently complex, which is due to the plethora of ETL-specific activ-
ities such as transformation, cleansing, filtering, aggregating and loading. Programming
of highly parallel and distributed systems is also challenging. To implement an ETL pro-
gram to function in a distributed environment is thus very costly, time-consuming, and
error-prone. MapReduce, on the other hand, provides programming flexibility, cost-
effective scalability and capacity on commodity machines and a MapReduce frame-
work can provide inter-process communication, fault-tolerance, load balancing and task
scheduling to a parallel ETL program out of the box. Further, MapReduce is a very pop-
ular framework and is establishing itself as the de-facto standard for large-scale data-
intensive processing. It is thus interesting to see how MapReduce can be applied to the
field of ETL programming.

MapReduce is, however, a generic programming model. It lacks support for high-
level DW/ETL specific constructs such as the dimensional constructs of star schemas,
snowflake schemas, and SCDs. This results in low ETL programmer productivity. To
implement a parallel ETL program on MapReduce is thus still not easy because of
the inherent complexity of ETL-specific activities such as the processing for different
schemas and SCDs.

In this paper, we present a parallel dimensional ETL framework based on MapRe-
duce, named ETLMR, which directly supports high-level ETL-specific dimensional
constructs such as star schemas, snowflake schemas, and SCDs. We believe this to be
the first paper to specifically address ETL for dimensional schemas on MapReduce.
The paper makes several contributions: We leverage the functionality of MapReduce
to the ETL parallelization and provide a scalable, fault-tolerable, and very lightweight
ETL framework which hides the complexity of MapReduce. We present a number of
novel methods which are used to process the dimensions of a star schema, snowflaked
dimensions, SCDs and data-intensive dimensions. In addition, we introduce the offline
dimension scheme which scales better than the online dimension scheme when handling
massive workloads. The evaluations show that ETLMR achieves very good scalability
and compares favourably with other MapReduce data warehousing tools.

The running example: To show the use of ETLMR, we use a running example through-
out this paper. This example is inspired by a project which applies different tests to web
pages. Each test is applied to each page and the test outputs the number of errors de-
tected. The test results are written into a number of tab-separated files, which serve as
the data sources. The data is processed to be stored in a DW with the star schema shown
in Fig. 1. This schema comprises a fact table and three dimension tables. Note that
pagedim is a slowly changing dimension. Later, we will consider a partly snowflaked
(i.e., normalized) schema.

The remainder of the paper is structured as follows: Section 2 gives an overview of
ETLMR. Sections 3 and 4 present dimension processing and fact processing, respec-
tively. Section 5 introduces the implementation of ETLMR in the Disco MapReduce
framework, and presents the experimental evaluation. Section 6 reviews related work.
Finally, Section 7 concludes the paper and provides ideas for future work.

98 X. Liu, C. Thomsen, and T.B. Pedersen

Fig. 1. Star schema of the running example Fig. 2. Data flow on MapReduce

2 Overview

Fig. 2 illustrates the data flow using ETLMR on MapReduce. In ETLMR, the dimen-
sion processing is done at first in a MapReduce job, then the fact processing is done in
another MapReduce job. A MapReduce job spawns a number of parallel map/reduce
tasks1 for processing dimension or fact data. Each task consists of several steps, in-
cluding reading data from a distributed file system (DFS), executing the map function,
partitioning, combining the map output, executing the reduce function and writing re-
sults. In dimension processing, the input data for a dimension table can be processed by
different processing methods, e.g., the data can be processed by a single task or by all
tasks. In fact processing, the data for a fact table is partitioned into a number of equal-
sized data files which then are processed by parallel tasks. This includes looking up
dimension keys and bulk loading the processed fact data into the DW. The processing
of fact data in the reducers can be omitted (shown by dotted ellipses in Fig. 2) if no
aggregation of the fact data is done before it is loaded.

Algorithm 1. The ETL process

1: Partition the input data sets;
2: Read the configuration parameters and initialize;
3: Read the input data and relay the data to the map function

in the map readers;
4: Process dimension data and load it into dimension stores;
5: Synchronize the dimensions across the clustered comput-

ers, if applicable;
6: Prepare fact processing (connect to and cache dimen-

sions);
7: Read the input data for fact processing and perform trans-

formations in mappers;
8: Bulk load fact data into the DW.

Algorithm 1 shows the details of the
whole process of using ETLMR. The
operations in lines 2-4 and 6-7 are the
MapReduce steps which are responsible
for initialization, invoking jobs for pro-
cessing dimensions and facts, and return-
ing processing information. Line 1 and 5
are the non-MapReduce steps which are
used for preparing input data sets and syn-
chronizing dimensions among nodes (if
no DFS is installed).

ETLMR defines all the run-time parameters in a configuration file, including declara-
tions of dimension and fact tables, dimension processing methodologies, user-defined-
functions (UDFs) for processing data, number of mappers and reducers, and others. A
complete example is available at [9].

1 Map/reduce task denotes map tasks and reduce tasks running separately.

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 99

3 Dimension Processing

In ETLMR, each dimension table has a corresponding definition in the configuration
file. For example, we define the object for the dimension table testdim of the running
example by testdim = CachedDimension(name=’testdim’, key=’testid’, defaultidvalue
=-1, attributes=[’testname’, ’testauthor’], lookupatts=[’testname’,]). It is declared as
a cached dimension which means that its data can be temporarily kept in memory.
ETLMR also offers other dimension classes for declaring different dimension tables, in-
cluding SlowlyChangingDimension and SnowflakedDimension, each of which are con-
figured by means of a number of parameters for specifying the name of the dimension
table, the dimension key, the attributes of dimension table, the lookup attributes (which
identify a row uniquely), and others. Each class offers a number of functions for dimen-
sion operations such as lookup, insert, ensure, etc.

ETLMR employs MapReduce’s primitives map, partition, combine, and reduce to
process data. This is, however, hidden from the user who only specifies transformations
applied to the data and declarations of dimension tables and fact tables. A map/reduce
task reads data by iterating over lines from a partitioned data set. A line is first processed
by map, then by partition which determines the target reducer, and then by combine
which groups values having the same key. The data is then written to an intermediate
file (there is one file for each reducer). In the reduce step, a reduce reader reads a list of
key/values pairs from an intermediate file and invokes reduce to process the list. In the
following, we present different approaches to process dimension data.

3.1 One Dimension One Task

In this approach, map tasks process data for all dimensions by applying user-defined
transformations and by finding the relevant parts of the source data for each dimension.
The data for a given dimension is then processed by a single reduce task. We name this
method one dimension one task (ODOT for short).

The data unit moving around within ETLMR is a dictionary mapping attribute
names to values. Here, we call it a row, e.g., row={’url’:’www.dom0.tl0/p0.htm’,’size’:
’12553’,’serverversion’:’SomeServer/1.0’, ’downloaddate’:’2011-01-31’,’lastmoddate’:
’2011-01-01’, ’test’:’Test001’, ’errors’:’7’}. ETLMR reads lines from the input files
and passes them on as rows. A mapper does projection on rows to prune unnecessary
data for each dimension and makes key/value pairs to be processed by reducers. If we
define dimi for a dimension table and its relevant attributes, (a0, a1..., an), in the data
source schema, the mapper will generate the map output, (key, value) = (dimi.name,∏

a0,a1,...,an
(row)) where name represents the name of dimension table. The MapRe-

duce partitioner partitions map output based on the key, i.e., dimi.name, such that the
data of dimi will go to a single reducer (see Fig. 3). To optimize, the values with identi-
cal keys (i.e., dimension table name) are combined in the combiner before they are sent
to the reducers such that the network communication cost can be reduced. In a reducer,
a row is first processed by UDFs to do data transformations, then the processed row is
inserted into the dimension store, i.e., the dimension table in the DW or in an offline
dimension store (described later). When ETLMR does this data insertion, it has the fol-
lowing reduce functionality: If the row does not exist in the dimension table, the row

100 X. Liu, C. Thomsen, and T.B. Pedersen

is inserted. If the row exists and its values are unchanged, nothing is done. If there are
changes, the row in the table is updated accordingly. The ETLMR dimension classes
provide this functionality in a single function, dimi.ensure(row). For an SCD, this
function adds a new version if needed, and updates the values of the SCD attributes,
e.g., the validto and version.

We have now introduced the most fundamental method for dimension processing
where only a limited number of reducers can be utilized. Therefore, its drawback is that
it is not optimized for the case where some dimensions contain large amounts of data,
namely data-intensive dimensions.

Fig. 3. ODOT Fig. 4. ODAT

3.2 One Dimension All Tasks

We now describe another approach in which all reduce tasks process data for all di-
mensions. We name it one dimension all tasks (ODAT for short). In some cases, the
data volume of a dimension is very large, e.g., the pagedim dimension in the running
example. If we employ ODOT, the task of processing data for this dimension table
will determine the overall performance (assume all tasks run on similar machines). We
therefore refine the ODOT in two places, the map output partition and the reduce func-
tions. With ODAT, ETLMR partitions the map output by round-robin partitioning such
that the reducers receive equally many rows (see Fig. 4). In the reduce function, two
issues are considered in order to process the dimension data properly by the parallel
tasks:

The first issue is how to keep the uniqueness of dimension key values as the data for
a dimension table is processed by all tasks. We propose two approaches. The first one is
to use a global ID generator and use post-fixing (detailed in Section 3.4) to merge rows
having the same values in the dimension lookup attributes (but different key values)
into one row. The other approach is to use private ID generators and post-fixing. Each
task has its own ID generator, and after the data is loaded into the dimension table,
post-fixing is employed to fix the resulting duplicated key values. This requires the
uniqueness constraint on the dimension key to be disabled before the data processing.

The second issue is how to handle concurrency problem when data manipulation
language (DML) SQL such as UPDATE, DELETE, etc. is issued by several tasks. Con-
sider, for example, the type-2 SCD table pagedim for which INSERTs and UPDATEs
are frequent (the SCD attributes validfrom and validto are updated). There are at least
two ways to tackle this problem. The first one is row-based commit in which a COM-
MIT is issued after every row has been inserted so that the inserted row will not be
locked. However, row-based commit is more expensive than transaction commit, thus,

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 101

it is not very useful for a data-intensive dimension table. Another and better solution is
to delay the UPDATE to the post-fixing which fixes all the problematic data when all
the tasks have finished.

In the following section, we propose an alternative approach for processing snow-
flaked dimensions without requiring the post-fixing.

3.3 Snowflaked Dimension Processing

In a snowflake schema, dimensions are normalized meaning that there are foreign key
references and hierarchies between dimension tables. If we consider the dependencies
when processing dimensions, the post-fixing step can be avoided. We therefore pro-
pose two methods particularly for snowflaked dimensions: level-wise processing and
hierarchy-wise processing.

Fig. 5. Level-wise processing Fig. 6. Hierarchy-wise processing

Level-wise processing. This refers to processing snowflaked dimensions in an order
from the leaves towards the root (the dimension table referred by the fact table is the
root and a dimension table without a foreign key referencing other dimension tables is
a leaf). The dimension tables with dependencies (i.e., with foreign key references) are
processed in sequential jobs, e.g., Job1 depends on Job0, and Job2 depends on Job1
in Fig. 5. Each job processes independent dimension tables (without direct and indirect
foreign key references) by parallel tasks, i.e., one dimension table is processed by one
task. Therefore, in the level-wise processing of the running example, Job0 first pro-
cesses topdomaindim and serverdim in parallel, then Job1 processes domaindim and
serverversiondim, and finally Job2 processes pagedim, datedim and testdim. It corre-
sponds to the configuration loadorder = [(’topdomaindim’, ’serverdim’), (’domaindim’,
’serverversiondim’), (’pagedim’, ’datedim’, ’testdim’)]. With this order, a higher level
dimension table (the referencing dimension table) is not processed until the lower level
ones (the referenced dimension tables) have been processed and thus, the referential
integrity can be ensured.

Hierarchy-wise processing. This refers to processing a snowflaked dimension in a
branch-wise fashion (see Fig. 6). The root dimension, pagedim, derives two branches,
each of which is defined as a separate snowflaked dimension, i.e., domainsf =
SnowflakedDimension([(domaindim, topdomaindim)]), and serverversionsf =
SnowflakedDimension([(serverversiondim, serverdim)]). They are processed by two
parallel jobs, Job0 and Job1, each of which processes in a sequential manner, i.e.,
topdomaindim followed by domaindim in Job0 and serverdim followed by serverver-
siondim in Job1. The root dimension, pagedim, is not processed until the dimensions
on its connected branches have been processed. It, together with datedim and testdim,
is processed by the Job2.

102 X. Liu, C. Thomsen, and T.B. Pedersen

Fig. 7. Before post-fixing Fig. 8. After post-fixing

3.4 Post-fixing

As discussed in Section 3.2, post-fixing is a remedy to fix problematic data in ODAT
when all the tasks of the dimension processing have finished. Four situations require
data post-fixing: 1) using a global ID generator which gives rise to duplicated values in
the lookup attributes; 2) using private ID generators which produce duplicated key val-
ues; 3) processing snowflaked dimensions (and not using level-wise or hierarchy.wise
processing) which leads to duplicated values in lookup and key attributes; and 4) pro-
cessing slowly changing dimensions which results in SCD attributes taking improper
values.

Example. Consider two map/reduce tasks, task 1 and task 2, that process the page di-
mension which we here assume to be snowflaked. Each task uses a private ID generator.
The root dimension, pagedim, is a type-2 SCD. Rows with the lookup attribute value
url=’www.dom2.tl2/p0.htm’ are processed by both the tasks.

Figure 7 depicts the resulting data in the dimension tables where the white rows
were processed by task 1 and the grey rows were processed by task 2. Each row is
labelled with the taskid of the task that processed it. The problems include duplicate
IDs in each dimension table and improper values in the SCD attributes, validfrom,
validto, and version. The post-fixing program first fixes the topdomaindim
such that rows with the same value for the lookup attribute (i.e., url) are merged into
one row with a single ID. Thus, the two rows with topdom = tl2 are merged into
one row. The references to topdomaindim from domaindim are also updated to
reference the correct (fixed) rows. In the same way, pagedim is updated to merge the
two rows representing www.dom2.tl2. Finally, pagedim is updated. Here, the post-
fixing also has to fix the values for the SCD attributes. The result is shown in Fig. 8.

Algorithm 2. post fix(dim)
refdims← The referenced dimensions of dim
for ref in refdims do

itr← post fix(ref)
for ((taskid, keyvalue), newkeyvalue) in itr do

Update dim set dim.key = newkeyvalue where
dim.taskid=taskid and dim.key=keyvalue

ret← An empty list
Assign newkeyvalues to dim’s keys and add
((taskid, keyvalue), newkeyvalue) to ret

if dim is not the root then
Delete the duplicate rows, which have identical values in
dim’s lookup attributes

if dim is a type-2 SCD then
Fix the values on SCD attributes, e.g., dates and version

return ret

The post-fixing invokes a recursive
function (see Algorithm 2) to fix the
problematic data in the order from the
leaf dimension tables to the root dimen-
sion table. It comprises four steps: 1)
assign new IDs to the rows with du-
plicate IDs; 2) update the foreign keys
on the referencing dimension tables;
3) delete duplicated rows which have
identical values in the business key at-
tributes and foreign key attributes; and
4) fix the values in the SCD attributes

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 103

if applicable. In most cases, it is not needed to fix something in each of the steps for a
dimension with problematic data. For example, if a global ID generator is employed, all
rows will have different IDs (such that step 1 is not needed) but they may have duplicate
values in the lookup attributes (such that step 3 is needed). ETLMR’s implementation
uses an embedded SQLite database for data management during the post-fixing. Thus,
the task IDs are not stored in the target DW, but only internally in ETLMR.

3.5 Offline Dimensions

In ODOT and ODAT, the map/reduce tasks interact with the DW’s (“online”) dimen-
sions directly through database connections at run-time and the performance is affected
by the outside DW DBMS and the database communication cost. To optimize, the off-
line dimension scheme is proposed, in which the tasks do not interact with the DW
directly, but with the distributed offline dimensions residing physically in all nodes. It
has several characteristics and advantages. First, a dimension is partitioned into mul-
tiple smaller-sized sub-dimension, and small-sized dimensions can benefit dimension
lookups, especially for a data-intensive dimension such as pagedim. Second, high per-
formance storage systems can be employed to persist dimension data. Dimensions are
configured to be fully or partially cached in main memory to speedup the lookups when
processing facts. In addition, offline dimensions do not require direct communication
with the DW and the overhead (from the network and the DBMS) is greatly reduced.
ETLMR has offline dimension implementations for one dimension one task (ODOT (of-
fline) for short) and hybrid. As the ODOT (offline) is similar to the ODOT we discussed
in Section 3.1, we now only describe the latter. Hybrid combines the characteristics of
ODOT and ODAT. In this approach, the dimensions are divided into two groups, the
most data-intensive dimension and the other dimensions. The input data for the most
data-intensive dimension table is partitioned based on the business keys, e.g., on the url
of pagedim, and processed by all the map tasks (this is similar to ODAT), while for the
other dimension tables, their data is processed in reducers, a reducer exclusively pro-
cessing the data for one dimension table (this is similar to ODOT). As the input data
for most data-intensive dimension is partitioned based on business keys, the rows with
identical business key values are processed within the same mapper such that when we
employ a global ID generator to generate the dimension key values, the post-fixing is
not needed. This improves the processing performance.

In the offline dimension scheme, the dimensions are expected to reside in the nodes
permanently and will not be loaded into the DW until this is explicitly requested.

4 Fact Processing

Fact processing is the second phase in ETLMR, which consists of looking up of dimen-
sion keys, doing aggregation on measures (if applicable), and loading the processed
facts into the DW. Similarly to the dimension processing, the definitions and settings of
fact tables are also declared in the configuration file. ETLMR provides the BulkFact-
Table class which supports bulk loading of facts to DW. For example, the fact table of
the running example is defined as testresultsfact=BulkFactTable(name=’testresultsfact’,
keyrefs=[’pageid’, ’testid’, ’dateid’], measures=[’errors’], bulkloader=UDF pgcopy,

104 X. Liu, C. Thomsen, and T.B. Pedersen

bulksize=5000000). The parameters are the fact table name, a list of the keys referenc-
ing dimension tables, a list of measures, the bulk loader function, and the size of the
bulks to load. The bulk loader is a UDF which can be configured to satisfy different
types of DBMSs.

Algorithm 3 shows the pseudocode for processing facts.
The function can be used as the map function or as the reduce function. If no aggre-

gations (such as sum, average, or count) are required, the function is configured to be

Algorithm 3. process fact(row)
Require: A row from the input data and the config
1: facttbls← the fact tables defined in config
2: for facttbl in facttbls do
3: dims← the dimensions referenced by facttbl
4: for dim in dims do
5: row[dim.key]← dim.lookup(row)
6: rowhandlers← facttbl.rowhandlers
7: for handler in rowhandlers do
8: handler(row)
9: facttbl.insert(row)

the map function and the reduce step is omit-
ted for better performance. If aggregations
are required, the function is configured to
be the reduce function since the aggregations
must be computed from all the data. This ap-
proach is flexible and good for performance.
Line 1 retrieves the fact table definitions in
the configuration file and they are then pro-
cessed sequentially in line 2–8. The process-
ing consists of two major operations: 1) look
up the keys from the referenced dimension tables (line 3–5), and 2) process the fact data
by the rowhandlers, which are user-defined transformation functions used for data type
conversions, calculating measures, etc. (line 6–8). Line 9 invokes the insert function to
insert the fact data into the DW. The processed fact data is not inserted into the fact
table directly, but instead added into a configurably-sized buffer where it is kept tem-
porarily. When a buffer becomes full, its data is loaded into the DW by using the bulk
load. Each map/reduce task has a separate buffer and bulk loader such that tasks can do
bulk loading in parallel.

5 Implementation and Evaluation

ETLMR uses and extends pygrametl [14], a Python code-based programming frame-
work, which enables high programmer productivity in implementing an ETL program.
We choose Disco [2] as our MapReduce platform since it has the best support for
Python. In the rest of this section, we measure the performance achieved by the pro-
posed methods. We evaluate the system scalability on various sizes of tasks and data
sets and compare with other business intelligence tools using MapReduce.

5.1 Experimental Setup

All experiments are conducted on a cluster of 6 nodes connected through a gigabit
switch and each having an Intel(R) Xeon(R) CPU X3220 2.4GHz with 4 cores, 4 GB
RAM, and a SATA hard disk (350 GB, 3 GB/s, 16 MB Cache and 7200 RPM). All
nodes are running the Linux 2.6.32 kernel with Disco 0.2.4, Python 2.6, and ETLMR
installed. The GlusterFS DFS is set up for the cluster. PostgreSQL 8.3 is used for the
DW DBMS and is installed on one of the nodes. One node serves as the master and
the others as the workers. Each worker runs 4 parallel map/reduce tasks, i.e., in total
20 parallel tasks run. The time for bulk loading is not measured as the way data is
bulk loaded into a database is an implementation choice which is independent of and

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 105

outside the control of the ETL framework. To include the time for bulk loading would
thus clutter the results. We note that bulk loading can be parallelized using off-the-shelf
functionality.

5.2 Test Data

We continue to use the running example. We use a data generator to generate the test
data for each experiment. In line with Jean and Ghemawat’s assumption that MapRe-
duce usually operates on numerous small files rather than a single, large, merged file [5],
the test data sets are partitioned and saved into a set of files. These files provide the in-
put for the dimension and fact processing phases. We generate two data sets, bigdim
and smalldim which differ in the size of the page dimension. In particular, 80 GB
bigdim data results in 10.6 GB fact data (193,961,068 rows) and 6.2 GB page dimen-
sion data (13,918,502 rows) in the DW while 80 GB smalldim data results in 12.2 GB
(222,253,124 rows) fact data and 54 MB page dimension data (193,460 rows) in the
DW. Both data sets produce 32 KB test (1,000 rows) and 16 KB date dimension data
(1,254 rows).

5.3 Scalability of Proposed Processing Methods

In this experiment, we compare the scalability and performance of the different ETLMR
processing methods. We use a fixed-size bigdim data set (20 GB), scale the number of
parallel tasks from 4 to 20, and measure the total elapsed time from start to finish.
The results for a snowflake schema and a star schema are shown in Fig. 9 and Fig. 10,
respectively. The graphs show the speedup, computed by T4,odot,snowflake/Tn where
T4,odot,snowflake is the processing time for ODOT using 4 tasks in a snowflake schema
and Tn is the processing time when using n tasks for the given processing method.

We see that the overall time used for the star schema is less than for the snowflake
schema. This is because the snowflake schema has dimension dependencies and hier-
archies which require more (level-wise) processing. We also see that the offline hybrid
scales the best and achieves almost linear speedup. The ODAT in Fig. 10 behaves simi-
larly. This is because the dimensions and facts in offline hybrid and ODAT are processed
by all tasks which results in good balancing and scalability. In comparison, ODOT, off-
line ODOT, level-wise, and hierarchy-wise do not scale as well as ODAT and hybrid
since only a limited number of tasks are utilized to process dimensions (a dimension is
only processed in a single task). The offline dimension scheme variants outperform the
corresponding online ones, e.g., offline ODOT vs. ODOT. This is caused by 1) using
a high performance storage system to save dimensions on all nodes and provide in-
memory lookup; 2) The data-intensive dimension, pagedim, is partitioned into smaller
chunks which also benefits the lookup; 3) Unlike the online dimension scheme, the off-
line dimension scheme does not communicate directly with the DW and this reduces
the communication cost considerably. Finally, the results show the relative efficiency
for the optimized methods which are much faster than the baseline ODOT.

5.4 System Scalability

In this experiment, we evaluate the scalability of ETLMR by varying the number of
tasks and the size of the data sets. We select the hybrid processing method, use the

106 X. Liu, C. Thomsen, and T.B. Pedersen

Fig. 9. Parallel ETL for
snowflake schema, 20 GB

Fig. 10. Parallel ETL for star
schema, 20 GB

4 8 12 16 20
The number of tasks, n

1
3
5
7
9

11
13
15
17
19
21
23
25

S
pe

ed
up

,T
1
/
T

n

Compared wiht 1-task ETLMR
Compared with pygrametl

Fig. 11. Speedup with increas-
ing tasks, 80 GB

offline dimension scheme, and conduct the testing on a star schema, as this method
not only can process data among all the tasks (unlike ODOT in which only a limited
number of tasks are used), but also showed the best scalability in the previous exper-
iment. In the dimension processing phase, the mappers are responsible for processing
the data-intensive dimension pagedim while the reducers are responsible for the other
two dimensions, datedim and testdim, each using only a single reducer. In the fact pro-
cessing phase, no reducer is used as no aggregation operations are required.

We first do two tests to get comparison baselines by using one task (named 1-task
ETLMR) and (plain, non-MapReduce) pygrametl, respectively. Here, pygrametl also
employs 2-phase processing, i.e., the dimension processing is done before the fact pro-
cessing. The tests are done on the same machine with a single CPU (all cores but one
are disabled). The tests process 80 GB bigdim data. We compute the speedups by using
T1/Tn where T1 represents the elapsed time for 1-task ETLMR or for pygrametl, and
Tn the time for ETLMR using n tasks. Fig. 11 shows that ETLMR achieves a nearly
linear speedup in the number of tasks when compared to 1-task ETLMR (the line on the
top). When compared to pygrametl, ETLMR has a nearly linear speedup (the lower line)
as well, but the speedup is a little lower. This is because the baseline, 1-task ETLMR,
has a greater value due to the overhead from the MapReduce framework.

To learn more about the details of the speedup, we break down the execution time
of the slowest task by reference to the MapReduce steps when using the two data sets
(see Table 1). As the time for dimension processing is very small for smalldim data,
e.g., 1.5 min for 4 tasks and less than 1 min for the others, only its fact processing
time is shown. When the bigdim data is used, we can see that partitioning input data,
map, partitioning map output (dims), and combination (dims) dominate the execution.
More specifically, partitioning input data and map (see the Part.Input and Map func.
columns) achieve a nearly linear speedup in the two phases. In the dimension process-
ing, the map output is partitioned and combined for the two dimensions, datedim and
testdim. Also here, we see a nearly linear speedup (see the Part. and Comb. columns).
As the combined data of each is only processed by a single reducer, the time spent on
reducing is proportional to the size of data. However, the time becomes very small since
the data has been merged in combiners (see Red. func. column). The cost of post-fixing
after dimension processing is not listed in the table since it is not required in this case

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 107

Table 1. Execution time distribution, 80 GB (min.)

Testing data Phase Task
Num

Part.
Input

Map
func.

Part. Comb. Red.
func.

Others Total

bigdim data

dims

4 47.43 178.97 8.56 24.57 1.32 0.1 260.95
8 25.58 90.98 4.84 12.97 1.18 0.1 135.65
12 17.21 60.86 3.24 8.57 1.41 0.1 91.39
16 12.65 47.38 2.50 6.54 1.56 0.1 70.73
20 10.19 36.41 1.99 5.21 1.32 0.1 55.22

(results in

facts

4 47.20 183.24 0.0 0.0 0.0 0.1 230.44
10.6GB facts) 8 24.32 92.48 0.0 0.0 0.0 0.1 116.80

12 16.13 65.50 0.0 0.0 0.0 0.1 81.63
16 12.12 51.40 0.0 0.0 0.0 0.1 63.52
20 9.74 40.92 0.0 0.0 0.0 0.1 50.66

smalldim data facts

4 49.85 211.20 0.0 0.0 0.0 0.1 261.15
8 25.23 106.20 0.0 0.0 0.0 0.1 131.53
12 17.05 71.21 0.0 0.0 0.0 0.1 88.36

(results in 16 12.70 53.23 0.0 0.0 0.0 0.1 66.03
12.2GB facts) 20 10.04 42.44 0.0 0.0 0.0 0.1 52.58

Fig. 12. Proc. time when scaling up
bigdim data

Fig. 13. Proc. time when scaling up
smalldim data

where a global key generator is employed to create dimension IDs and the input data is
partitioned by the business key of the SCD pagedim (see section 3.4).

In the fact processing, the reduce function needs no execution time as there is no
reducer. The time for all the other parts, including map and reduce initialization, map
output partitioning, writing and reading intermediate files, and network traffic, is rel-
atively small, but it does not necessarily decrease linearly when more tasks are added
(Others column). To summarize (see Total column), ETLMR achieves a nearly linear
speedup when the parallelism is scaled up, i.e., the execution time of 8 tasks is nearly
half that of 4 tasks, and the execution time of 16 tasks is nearly half that of 8 tasks.

We now proceed to another experiment where we for a given number of tasks size
up the data sets from 20 to 80 GB and measure the elapsed processing time. Fig. 12 and
Fig. 13 show the results for the bigdim and smalldim data sets, respectively. It can be
seen that ETLMR scales linearly in the size of the data sets.

108 X. Liu, C. Thomsen, and T.B. Pedersen

5.5 Comparison with other Data Warehousing Tools

There are some MapReduce data warehousing tools available, including Hive [15,16],
Pig [10] and Pentaho Data Integration (PDI) [3]. Hive and Pig both offer data stor-
age on the Hadoop distributed file system (HDFS) and scripting languages which have
some limited ETL abilities. They are both more like a DBMS instead of a full-blown
ETL tool. Due to the limited ETL features, they cannot process an SCD which requires
UPDATEs, something Hive and Pig do not support. It is possible to process star and
snowflake schemas, but it is complex and verbose. To load data into a simplified version
of our running example (with no SCDs) require 23 statements in Pig and 40 state-
ments in Hive. In ETLMR – which in contrast to Pig and Hive is dimensional – only
14 statements are required. ETLMR can also support SCDs with the same number of
statements, while this would be virtually impossible to do in Pig and Hive. The details
of the comparison are available in the full paper [9].

PDI is an ETL tool and provides Hadoop support in its 4.1 GA version. However,
there are still many limitations with this version. For example, it only allows to set a
limited number of parameters in the job executor, customized combiner and mapper-
only jobs are not supported, and the transformation components are not fully supported
in Hadoop. We only succeeded in making an ETL flow for the simplest star schema,
but still with some compromises. For example, a workaround is employed to load the
processed dimension data into the DW as PDI’s table output component repeatedly
opens and closes database connections in Hadoop such that performance suffers.

In the following, we compare how PDI and ETLMR perform when they process the
star schema (with page as a normal dimension, not an SCD) of the running example. To
make the comparison neutral, the time for loading the data into the DW or the HDFS is
not measured, and the dimension lookup cache is enabled in PDI to achieve a similar
effect of ETLMR using offline dimensions. Hadoop is configured to run 4 parallel task
trackers in maximum on each node, and scaled by adding nodes horizontally. The task
tracker JVM option is set to be -Xmx256M while the other settings are left to the default.
Table 2 shows the time spent on processing 80 GB smalldim data when scaling up the
number of tasks. As shown, ETLMR is significantly faster than PDI for Hadoop in
processing the data. Several reasons are found for the differences. First, compared with
ETLMR, the PDI job has one more step (the reducer) in the fact processing as its job
executor does not support a mapper-only job. Second, by default the data in Hadoop
is split which results in many tasks, i.e., 1192 tasks for the fact data. Thus, longer
initialization time is observed. Further, some transformation components are observed
to run with low efficiency in Hadoop, e.g., the components to remove duplicate rows
and to apply JavaScript.

Table 2. Time for processing star schema (no SCD), 80 GB smalldim data set, (min.)

Tasks 4 8 12 16 20
ETLMR 246.7 124.4 83.1 63.8 46.6

PDI 975.2 469.7 317.8 232.5 199.7

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 109

6 Related Work

We now compare ETLMR to other parallel data processing systems using MapReduce,
and parallel DBMSs. In addition, we study the current status of parallel ETL tools.
MapReduce is a framework well suited for large-scale data processing on clustered com-
puters. However, it has been criticized for being too low-level, rigid, hard to maintain
and reuse [10,15]. In recent years, an increasing number of parallel data processing
systems and languages built on the top of MapReduce have appeared. For example, be-
sides Hive and Pig (discussed in Section 5.5), Chaiken et al. present the SQL-like lan-
guage SCOPE [4] on top of Microsoft’s Cosmos MapReduce and distributed file system.
Friedman et al. introduce SQL/MapReduce [7], a user-defined function (UDF) frame-
work for parallel computation of procedural functions on massively-parallel RDBMSs.
These systems or languages vary in the implementations and functionalities provided,
but overall they give good improvements to MapReduce, such as high-level languages,
user interfaces, schemas, and catalogs. They process data by using query languages, or
UDFs embedded in the query languages, and execute them on MapReduce. However,
they do not offer direct constructs for processing star schemas, snowflaked dimensions,
and slowly changing dimensions. In contrast, ETLMR runs separate ETL processes on
a MapReduce framework to achieve parallelization and ETLMR directly supports ETL
constructs for these schemas.

Another well-known distributed computing system is the parallel DBMS which first
appeared two decades ago. Today, there are many parallel DBMSs, e.g., Teradata, DB2,
Objectivity/DB, Vertica, etc. The principal difference between parallel DBMSs and
MapReduce is that parallel DBMSs run long pipe-lined queries instead of small inde-
pendent tasks as in MapReduce. The database research community has recently com-
pared the two classes of systems. Pavlo et al. [11], and Stonebraker et al. [13] conduct
benchmarks and compare the open source MapReduce implementation Hadoop with
two parallel DBMSs (a row-based and a column-based) in large-scale data analysis. The
results demonstrate that parallel DBMSs are significantly faster than Hadoop, but they
diverge in the effort needed to tune the two classes of systems. Dean et al. [5] argue
that there are mistaken assumptions about MapReduce in the comparison papers and
claim that MapReduce is highly effective and efficient for large-scale fault-tolerance
data analysis. They agree that MapReduce excels at complex data analysis, while par-
allel DBMSs excel at efficient queries on large data sets [13].

In recent years, ETL technologies have started to support parallel processing. Infor-
matica PowerCenter provides a thread-based architecture to execute parallel ETL ses-
sions. Informatica has also released PowerCenter Cloud Edition (PCE) in 2009 which,
however, only runs on a specific platform and DBMS. Oracle Warehouse Builder (OWB)
supports pipeline processing and multiple processes running in parallel. Microsoft SQL
Server Integration Services (SSIS) achieves parallelization by running multiple threads,
multiple tasks, or multiple instances of a SSIS package. IBM InfoSphere DataStage
offers a process-based parallel architecture. In the thread-based approach, the threads
are derived from a single program, and run on a single (expensive) SMP server, while
in the process-based approach, ETL processes are replicated to run on clustered MPP
or NUMA servers. ETLMR differs from the above by being open source and based
on MapReduce with the inherent advantages of multi-platform support, scalability on

110 X. Liu, C. Thomsen, and T.B. Pedersen

commodity clustered computers, light-weight operation, fault tolerance, etc. ETLMR is
also unique in being able to scale automatically to more nodes (with no changes to the
ETL flow itself, only to a configuration parameter) while at the same time providing au-
tomatic data synchronization across nodes even for complex structures like snowflaked
dimensions and SCDs. We note that the licenses of the commercial ETL packages pre-
vent us from presenting comparative experimental results.

7 Conclusion and Future Work

As business intelligence deals with continuously increasing amounts of data, there is
an increasing need for ever-faster ETL processing. In this paper, we have presented
ETLMR which builds on MapReduce to parallelize ETL processes on commodity com-
puters. ETLMR contains a number of novel contributions. It supports high-level ETL-
specific dimensional constructs for processing both star schemas and snowflake schemas,
SCDs, and data-intensive dimensions. Due to its use of MapReduce, it can automati-
cally scale to more nodes (without modifications to the ETL flow) while it at the same
time provides automatic data synchronization across nodes (even for complex dimen-
sion structures like snowflakes and SCDs). Apart from scalability, MapReduce also
gives ETLMR a high fault-tolerance. Further, ETLMR is open source, light-weight,
and easy to use with a single configuration file setting all run-time parameters. The re-
sults of extensive experiments show that ETLMR has good scalability and compares
favourably with other MapReduce data warehousing tools.

ETLMR comprises two data processing phases, dimension and fact processing. For
dimension processing, the paper proposed a number of dimension management schemes
and processing methods in order to achieve good performance and load balancing. The
online dimension scheme directly interacts with the target DW and employs several di-
mension specific methods to process data, including ODOT, ODAT, and level-wise and
hierarchy-wise processing for snowflaked dimensions. The offline dimension scheme
employs high-performance storage systems to store dimensions distributedly on each
node. The methods, ODOT and hybrid allow better scalability and performance. In the
fact processing phase, bulk-load is used to improve the loading performance.

Currently, we have integrated ETLMR with the MapReduce framework, Disco. In the
future, we intend to port ETLMR to Hadoop and explore a wider variety of data storage
options. In addition, we intend to implement dynamic partitioning which automatically
adjusts the parallel execution in response to additions/removals of nodes from the clus-
ter, and automatic load balancing which dynamically distributes jobs across available
nodes based on CPU usage, memory, capacity and job size through automatic node
detection and algorithm resource allocation.

References

1. wiki.apache.org/hadoop/PoweredBy (June 06, 2011)
2. http://www.discoproject.org/ (June 06, 2011)
3. http://www.pentaho.com (June 06, 2011)

wiki.apache.org/hadoop/PoweredBy
http://www.discoproject.org/
http://www.pentaho.com

ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce 111

4. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE:
easy and efficient parallel processing of massive data sets. PVLDB 1(2), 1265–1276 (2008)

5. Dean, J., Ghemawat, S.: MapReduce: A Flexible Data Processing Tool. CACM 53(1), 72–77
(2010)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: Proc.
of OSDI, pp. 137–150 (2004)

7. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A Practical Approach to
Self-describing, Polymorphic, and Parallelizable User-defined Functions. PVLDB 2(2),
1402–1413 (2009)

8. Kovoor, G., Singer, J., Lujan, M.: Building a Java MapReduce Framework for Multi-core
Architectures. In: Proc. of MULTIPROG, pp. 87–98 (2010)

9. Liu, X., Thomsen, C., Pedersen, T.B.: ETLMR: A Highly Scalable Dimensional
ETL Framework Based on MapReduce. In: DBTR-29. Aalborg University (2011),
www.cs.aau.dk/DBTR

10. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-so-foreign
Language for Data Processing. In: Proc. of SIGMOD, pp. 1099–1110 (2008)

11. Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker, M.:
A Comparison of Approaches to Large-scale Data Analysis. In: Proc. of SIGMOD,
pp. 165–178 (2009)

12. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapRe-
duce for Multi-core and Multiprocessor Systems. In: Proc. of HPCA, pp. 13–24 (2007)

13. Stonebraker, M., Abadi, D., DeWitt, D., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:
MapReduce and Parallel DBMSs: friends or foes? CACM 53(1), 64–71 (2010)

14. Thomsen, C., Pedersen, T.B.: pygrametl: A Powerful Programming Framework for Extract-
Transform-Load Programmers. In: Proc. of DOLAP, pp. 49–56 (2009)

15. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive: A Warehousing Solution Over a Map-reduce Framework. PVLDB 2(2),
1626–1629 (2009)

16. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony, S., Liu, H., Murthy,
R.: Hive – A Petabyte Scale Data Warehouse Using Hadoop. In: Proc. of ICDE, pp. 996–1005
(2010)

17. Yoo, R., Romano, A., Kozyrakis, C.: Phoenix Rebirth: Scalable MapReduce on a Large-scale
Shared-memory System. In: Proc. of IISWC, pp. 198–207 (2009)

www.cs.aau.dk/DBTR

	ETLMR: A Highly Scalable Dimensional ETL Framework Based on MapReduce
	Introduction
	Overview
	Dimension Processing
	One Dimension One Task
	One Dimension All Tasks
	Snowflaked Dimension Processing
	Post-fixing
	Offline Dimensions

	Fact Processing
	Implementation and Evaluation
	Experimental Setup
	Test Data
	Scalability of Proposed Processing Methods
	System Scalability
	Comparison with other Data Warehousing Tools

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

