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Abstract

We investigate recursive nearest neighbor search in a sparse domain at the scale

of audio signals. Essentially, to approximate the cosine distance between the

signals we make pairwise comparisons between the elements of localized sparse

models built from large and redundant multiscale dictionaries of time-frequency

atoms. Theoretically, error bounds on these approximations provide efficient

means for quickly reducing the search space to the nearest neighborhood of

a given data; but we demonstrate here that the best bound defined thus far

involving a probabilistic assumption does not provide a practical approach for

comparing audio signals with respect to this distance measure. Our experiments

show, however, that regardless of these non-discriminative bounds, we only need

to make a few atom pair comparisons to reveal, e.g., the origin of an excerpted

signal, or melodies with similar time-frequency structures.

Keywords: Multiscale decomposition; sparse approximation; time-frequency

dictionary; audio similarity

1. Introduction1

Sparse approximation is essentially the modeling of data with few terms2

from a large and typically overcomplete set of atoms, called a “dictionary” [24].3
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Consider an x ∈ RK , and a dictionary D composed of N unit-norm atoms in the4

same space, expressed in matrix form as D ∈ RK×N , where N � K. A pursuit5

is an algorithm that decomposes x in terms of D such that ||x−Ds||2 ≤ ε for6

some error ε ≥ 0. (In this paper, we work in a Hilbert space unless otherwise7

noted.) When D is overcomplete, D has full row rank and there exists an infinite8

number of solutions to choose from, even for ε = 0. Sparse approximation aims9

to find a solution s that is mostly zeros for ε small. In that case, we say that x10

is sparse in D.11

Matching Pursuit (MP) is an iterative descent sparse approximation method12

based on greedy atom selection [17, 24]. We express the nth-order model of the13

signal x = H(n)a(n) + r(n), where a(n) is a length-n vector of weights, H(n)14

are the n corresponding columns of D, and r(n) is the residual. MP augments15

the nth-order representation, Xn = {H(n),a(n), r(n)}, according to:16

Xn+1 =


H(n+ 1) = [H(n)|hn],

a(n+ 1) = [aT (n), 〈r(n),hn〉]T ,
r(n+ 1) = x−H(n+ 1)a(n+ 1)

 (1)

using the atom selection criterion17

hn = arg min
d∈D
||r(n)− 〈r(n),d〉d||2 = arg max

d∈D
|〈r(n),d〉| (2)

where ||d|| = 1 is implicit. The inner product here is defined 〈x,y〉 ∆
=yTx. This18

criterion guarantees ||r(n + 1)||2 ≤ ||r(n)||2 [24]. Other sparse approximation19

methods include orthogonal MP [28], orthogonal least squares (OLS) [41, 33],20

molecular methods [9, 38, 19], cyclic MP and OLS [36], and minimizing a relaxed21

sparsity measure [6]. These approaches have higher computational complexities22

than MP, but can produce data models that are more sparse.23

Sparse approximation is data-adaptive and can produce parametric and mul-24

tiscale models having features that function more like mid-level “objects” than25

low-level projections onto sets of vectors [9, 19, 38, 8, 22, 27, 32, 34, 43]. These26

aspects make sparse approximation a compelling complement to state-of-the-art27

approaches for and applications of comparing audio signals based upon, e.g.,28
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monoresolution cepstral and redundant time-frequency representations, such as29

fingerprinting [42], cover song identification [26, 10, 3, 35], content segmentation,30

indexing, search and retrieval [16, 4], artist or genre classification [39].31

In the literature we find some existing approaches to working with audio sig-32

nals in a sparse domain. Features built from sparse approximations can provide33

competitive descriptors for music information retrieval tasks, such as beat track-34

ing, chord recognition, and genre classification [40, 32]. Sparse representation35

classifiers have been applied to music genre recognition [27, 5], and robust speech36

recognition [12]. Parameters of sparse models can be compared using histograms37

to find similar sounds in acoustic environment recordings [7, 8], or atoms can38

be learned to compare and group percussion sounds [34]. Biologically-inspired39

sparse codings of correlograms of sounds can be used to learn associations be-40

tween descriptive high-level keywords and audio features such that new sounds41

can be automatically categorized, and large collections of sounds can be queried42

in meaningful ways [22]. Outside the realm of audio signals, sparse approxi-43

mation has been applied to face recognition [44], object recognition [29], and44

landmine detection [25].45

In this paper, we discuss the comparison of audio signals in sparse domains,46

but not specifically for fingerprinting or efficient audio indexing and search —47

two tasks that have been convincingly solved [42, 13, 16, 18]. We explore the pos-48

sibilities and effectiveness of comparing, atom-by-atom, audio signals modeled49

using sparse approximation and large overcomplete time-frequency dictionaries.50

Our contributions are three-fold: 1) we generalize an iterative nearest-neighbor51

search algorithm to comparing subsequences [14, 15]; 2) we show that though52

sparse models of audio signals can be compared by considering pairs of atoms,53

the best bound so far derived [14, 15] does not make a practical procedure;54

and 3) we show experimentally that the hierarchic comparison of audio signals55

in a sparse domain still provides intriguing and informative results. Overall,56

our work here shows that a sparse domain can facilitate comparisons of audio57

signals in “hierarchical” ways through comparing individual elements of each58

sparse data model organized roughly in order of importance.59
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In the next two sections, we discuss and elaborate upon a recursive method60

of nearest neighbor search in a sparse domain [14, 15]. We extend this method to61

comparing subsequences, and examine the practicality of probabilistic bounds62

on the distances between neighbors. In the fourth section, we describe several63

experiments in which we compare a variety of audio signals through comparisons64

of their sparse models. We conclude with a discussion about the results and65

several future directions.66

2. Nearest Neighbor Search by Recursion in a Sparse Domain67

Consider a set of signals68

Y ∆
= {yi ∈ RK : ||yi|| = 1}i∈I (3)

where I = {1, 2, . . .} indexes this set, and a query signal xq ∈ RK , ||xq|| = 1.69

Assume that we have generated sparse approximations for all of these sig-70

nals Ŷ ∆
= {{Hi(ni),ai(ni), ri(ni)} : yi = Hi(ni)ai(ni) + ri(ni)}i∈I using a dic-71

tionary D that spans the space RK , and giving the nq-order representation72

{Hq(nq),aq(nq), rq(nq)} for xq. Since D spans RK , D is “complete,” and any73

signal in RK is “compressible” in D, meaning that we can order the represen-74

tation weights in ai(ni) or aq(nq) in terms of decreasing magnitude, i.e.,75

0 < |[ai(ni)]m+1| ≤ |[ai(ni)]m| ≤ Cm−γ , m = 1, 2, . . . , ni − 1 (4)

for ni arbitrarily large, with C > 0, and where [a]m is the mth element of the76

column vector a. This can be seen in the magnitude representation weights in77

Fig. 1, which are weights of sparse representations of piano notes, described78

in Section 4.1. With MP and a complete dictionary, we are guaranteed γ > 079

because ||r(n+ 1)||2 < ||r(n)||2 for all n [24].80

Consider the Euclidean distance between two signals of the same dimension,81

which is the cosine distance for unit-norm signals. Thus, with respect to this82

distance, the yi ∈ Y nearest to xq is given by solving83

min
i∈I
||yi − xq|| = max

i∈I
〈xq,yi〉. (5)
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Figure 1: Gray lines show decays of representation weight magnitudes as a function of ap-

proximation order k for several decompositions of unit-norm signals (4-second recordings of

single piano notes described in Section 4.1). Thick black line shows a global compressibility

bound with its parameters.

We can express this inner product in terms of sparse representations84

〈xq,yi〉 =
〈
Hq(nq)aq(nq) + rq(nq),Hi(ni)ai(ni) + ri(ni)

〉
= aTi (ni)H

T
i (ni)Hq(nq)aq(nq) +O[rq, ri]. (6)

With a complete dictionary we can make O[rq, ri] negligible by choosing ε ar-85

bitrarily small, so we can express (5) as86

max
i∈I
〈xq,yi〉 ∼ max

i∈I
aTi (ni)Giqaq(nq) = max

i∈I

ni∑
m=1

nq∑
l=1

[Aiq •Giq]ml (7)

where [B •C]ml = [B]ml[C]ml is the Hadamard, or entry wise, product, [B]ml87

is the element of B in the mth row of the lth column, Giq
∆
=HT

i (ni)Hq(nq) is a88

ni×nq matrix with elements from the Gramian of the dictionary, i.e., G
∆
=DTD,89

and finally we define the outer product of the weights90

Aiq
∆
=ai(ni)a

T
q (nq). (8)

2.1. Recursive Search Limited by Bounds91

Since we expect the decay of the magnitude of elements in Aiq •Giq to be92

fastest in diagonal directions by (4), we define a recursive sum along the M93
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anti-diagonals starting at the top left:94

Siq(M)
∆
=Siq(M − 1) +

M∑
m=1

[Aiq •Giq]m(M−m+1) (9)

for M = 2, 3, . . . ,min(ni, nq), and setting Siq(1) = [Aiq •Giq]11. With this we95

can express the argument of (7) as96

〈xq,yi〉 ≈
ni∑
m=1

nq∑
l=1

[Aiq •Giq]ml = Siq(M) +R(M) (10)

where at step M , we are comparing M additional pairs of atoms to those con-97

sidered in the previous steps. R(M) is a remainder that we will bound. The98

total number of atom pairs contributing to Siq(M) (9) is99

P (M)
∆
=

M∑
m=1

m = M(M + 1)/2. (11)

The approach taken by Jost et al. [14, 15] to find the nearest neighbors of100

xq in Y bounds the remainder R(M) by compressibility (4). Assuming we have101

a positive upper bound on the remainder, i.e., R(M) ≤ R̃(M). we know lower102

and upper bounds on the cosine distance Liq(M) ≤ 〈xq,yi〉 ≤ Uiq(M), where103

Liq(M)
∆
=Siq(M)− R̃(M) (12)

Uiq(M)
∆
=Siq(M) + R̃(M). (13)

Finding elements of Y close to xq with respect to (5) can be done recursively104

over the approximation order M . For a given M , we find {Siq(M)}i∈I , com-105

pute the remainder R̃(M), and eliminate signals that are not sufficiently close106

to xq with respect to their cosine distance by comparing the bounds. This107

approach is similar to hierarchical ones, e.g., [21], where the features become108

more discriminable as the search process runs. (Also note that compressibility109

is similar to the argument made in justifying the truncation of Fourier series in110

early work on similarity search [1, 11, 30], i.e., that power spectral densities of111

many time-series decay like O(|f |−b) with b > 1.)112

Starting with M = 1, we compute the sets {Liq(1)}i∈I and {Uiq(1)}i∈I ,113

that is, the first-order upper and lower bounds of the set of distances of xq114
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Figure 2: Estimated remainder (assuming unit-norm signals) using bound in (16) with p = 0.2

(probability that remainder does not exceed bound) and n = 100 (number of elements in each

sparse model) as a function of the number of atom pairs already considered for several pairs

of compressibility parameters (C, γ) estimated from the dataset used to produce Fig. 1.

from all signals in Y. Then we find the index of the largest lower bound115

imax = arg maxi∈I Liq(1), and reduce the search space to I1
∆
= {i ∈ I : Uiq(1) ≥116

Limaxq(1)}, since all other data have a least upper bound on their inner prod-117

uct with xq than the greatest lower bound in the set. For the next step, we118

compute the sets {Liq(2)}i∈I1 and {Uiq(2)}i∈I1 , find the index of the maxi-119

mum imax = arg maxi∈I1 Liq(2), and construct the reduced set I2
∆
= {i ∈ I1 :120

Uiq(2) ≥ Limaxq(2)}. Continuing in this way, we find the elements of Y closest121

to xq at each M with respect to the cosine distance by recursing into the sparse122

approximations of the signals.123

2.2. Bounding the Remainder124

To reduce the search space quickly we desire that (12) and (13) converge125

quickly to the neighborhood of 〈xq,yi〉, or in other words, that the bounds on126

the remainder quickly become discriminative. Jost et al. [14, 15] derive three127

different bounds on R(M). From the weakest to the strongest, these are:128
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1. [Giq]ml = 1 (worst case scenario, and impossible for n > 1)129

R(M) ≤ C2 (||cγM ||1 + ||dγ ||1) (14)

2. [Giq]ml ∼ iid Bernoulli(0.5), Ω = {−1, 1} (impossible for n > 1)130

R(M) ≤ C2
√

ln 4
(
||cγM ||22 + ||dγ ||22

)1/2
(15)

3. [Giq]ml ∼ iid Uniform, Ω = [−1, 1],131

R(M) ≤ C2
√

2/3Erf−1(p)
(
||cγM ||22 + ||dγ ||22

)1/2
(16)

with probability 0 ≤ p ≤ 1132

where we define the following vectors for n
∆
= min(ni, nq) and M = 2, . . . , n133

cγM
∆
=
{

[l(m− l + 1)]−γ : m = M + 1, . . . , n; l = 1, . . . ,m
}

(17)

dγ
∆
=
{

[l(n−m+ 1)]−γ : m = 1, . . . , n− 1; l = m+ 1, . . . , n
}
. (18)

Appendix A gives derivations of these bounds, as well as the efficient computa-134

tion of (16) for the special case of γ = 0.5. The parameters (C, γ) describe the135

compressibility of the signals in the dictionary (4). The bounds of (15) and (16)136

are much more discriminative than (14) because they involve an `2-norm at the137

price of uncertainty in the bound. The bound in (16) is attractive because we138

can tune it with the parameter p, which is the probability that the remainder139

will not exceed the bound. Figure 2 shows bounds based on (16) for several140

pairs of compressibility parameters for the dataset used to produce Fig. 1.141

2.3. Estimating the Compressibility Parameters142

The bounds (14)–(16), and consequently the number of atom pairs we must143

consider before the bounds become discriminable, depend on the compressibility144

parameters, (C, γ) — which themselves depend in a complex way on the signal,145

the dictionary, and the method of sparse approximation. Figure 3 shows the146

error surface, feasible set, and the optimal parameters for the dataset used to147

produce Fig. 1. We describe our parameter estimation procedure in Appendix148

B. The resulting bound is shown in black in Fig. 1. These compressibility149

parameters also agree with those seen in Fig. 2.150
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Figure 3: Error surface as a function of the compressibility parameters for the dataset used

to produce Fig. 1, with the feasible set shaded at top left, and optimal parameters marked

by a circle.

3. Subsequence Nearest Neighbor Search in a Localized Sparse Do-151

main152

The recursive nearest neighbor search so far described has the obvious limi-153

tation that it cannot be applied to comparing subsequences of large data vectors,154

as is natural for comparing audio signals. Thus, we must adapt its structure to155

work for comparing subsequences in a set of data156

Y ∆
= {yi ∈ RNi : Ni ≥ K}i∈I (19)

(note that now we do not restrict the norms of these signals). We can create157

from the elements of Y a new set of all subsequences having the same length as158

a K-dimensional query xq (K < Ni):159

YK ∆
=

{
Ptyi/||Ptyi|| : t ∈ Ti = {1, 2, . . . Ni −K + 1},yi ∈ Y

}
(20)

where Pt extracts a K-length subsequence in yi starting a time-index t (it is an160

identity matrix of sizeK starting a column t in aK×Ni matrix of zeros). The set161

Ti are times at which we create length-K subsequences from yi. If we decompose162

each of these by sparse approximation, then we can use the framework in the163

previous section. However, sparse approximation is an expensive operation that164
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we want to do only once for the entire signal, and independent of the length of165

xq.166

To address this problem, we instead approximate each element in YK by167

building local sparse representations from the global sparse approximations of168

each yi, and then calculating their distance to xq using the framework in the169

previous section. From here on we consider only the K-length subsequences of170

a single element yi ∈ Y without loss of generality (i.e., all other elements of171

Y can be included as subsequences). Toward this end, consider that we have172

decomposed the Ni-length signal yi using a complete dictionary to produce the173

representation {Hi(ni),ai(ni), ri(ni)}. From this we construct the local sparse174

representations of yi:175

ŶK ∆
=
{
{PtHi(ni), ξtai(ni),Ptri(ni)} : t ∈ Ti

}
(21)

where the time partition Ti is the set of all times at which we extract a K-176

length subsequence from yi, and ξt is set such that ||ξtPtyi|| = 1, i.e., each177

length-K subsequence is unit-norm. For each K-dimensional subsequence, (7)178

now becomes179

max
t∈Ti

〈xq,Ptyi〉 = max
t∈Ti

[
〈Hq(nq)aq(nq), ξtPtHi(ni)ai(ni)〉+O[rq, ri]

]
≈ max

t∈Ti
ξta

T
i (ni)H

T
i (ni)P

T
t Hq(nq)aq(nq)

= max
t∈Ti

ξt

ni∑
m=1

nq∑
l=1

[Aiq •Giq(t)]ml (22)

where Aiq is defined in (8), we define the time-localized Gramian180

Giq(t)
∆
=HT

i (ni)P
T
t Hq(nq) (23)

and we have excluded the terms involving the residuals because we can make181

them arbitrarily small.182

3.1. Estimating the Localized Energy183

The only thing left to do is find an expression for ξt so that each subse-184

quence is comparable with the others with respect to the cosine distance. We185
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Figure 4: Short-term energy ratios, log10(
∑nt

j=1 wja
2
j/||Ptyi||2), over 1 s windows (hopped

125 ms) for MP decompositions using 8xMDCT [31] to a global residual energy 30 dB below

the initial signal enegy. Arrow points to line (top, gray) using weighting wj = 1. The other

line (bottom, black) uses (25). Data in (a) are described in Section 4.2; data in (b) are

described in Section 4.3.

assume that the localized energy can be approximated from the local sparse186

representation in the following way assuming ||Ptyi|| > 0187

ξt = ||Ptyi|| ≈
√

aTi (ni)HT
i (ni)PTt PtHi(ni)ai(ni) ≈

√√√√ nt∑
j=1

wja2
j (24)

where the nt weights aj ∈ {[ai(ni)]m : [HT
i (ni)P

T
t PtHi(ni)]ml 6= 0, 1 ≤ m, l ≤188

ni} are those associated with atoms having support in [t, t + K), and wj we189

define to weigh the contribution of a2
j to the localized energy estimate. We set190

ξt = 0 if
∑nt

j=1 a
2
j = 0.191

If all atoms contributing to the subsequence have their entire support in192

[t, t + K), and are orthonormal, then we can set each wj = 1. This does not193

hold for subsequences of a signal decomposed using an overcomplete dictionary,194

as shown by Fig. 4. For much of the time we see
∑nt

j=1 a
2
j ≥ ||Ptyi||2, which195

11



means our localized estimate of the segment energy is greater than its real value.196

This will make ξt and consequently (22) smaller.197

Instead, we make a more reasonable estimate of ||Ptyi|| by accounting for198

the fact that atoms can have support outside [t, t+K). For instance, if an atom199

has some fraction of support in the subsequence we multiply its weight by that200

fraction. We thus weigh the contribution of the jth atom to the subsequence201

norm using202

wj =



1, uj ≥ t, uj + sj ≤ t+K

(K/sj)
2, uj < t, uj + sj ≥ t+K

(uj + sj − t)2/s2
j , uj < t, t < uj + sj ≤ t+K

(t+K − uj)2/s2
j , t ≤ uj < t+K,uj + sj > t+K

(25)

where uj and sj are the position and scale, respectively, of the atom associated203

with the weight aj . In other words, if an atom is completely in [t, t + K), it204

contributes all of its energy to the approximation; otherwise, it contributes only205

a fraction based on how its support intersects [t, t+K). With this we are now206

slightly underestimating the localized energies, as seen in Fig. 4. In both of207

these cases for {wj}, however, we can assume by the energy conservation of MP208

[24] that as the subsequence length becomes larger our error in estimating the209

subsequence energy goes to zero, i.e.,210

lim
K→Ni

||Ptyi||2 −
nt∑
j=1

wja
2
j = ||Ptri(ni)||2. (26)

With a complete dictionary, the right hand side can be made zero. Signifi-211

cant departures from the energy estimate of subsequences can be due to the212

interactions between atoms [37].213

3.2. Recursive Subsequence Search Limited by Bounds214

Now, similar to (9) and (10), we can say,215

〈xq,Ptyi〉 ≈ ξt
nt∑
m=1

nq∑
l=1

[Aiq(t) •Giq(t)]ml = Siq(t,M) +R(t,M) (27)

12



where for M = 2, 3, . . . ,min(ni, nq), and with Siq(t, 1) = ξt[Aiq(t) •Giq(t)]11,216

Siq(t,M)
∆
=Siq(t,M − 1) + ξt

M∑
m=1

[Aiq(t) •Giq(t)]m(M−m+1). (28)

The problem of finding the subsequence closest to xq with respect to the co-217

sine distance can now be done iteratively over M by bounding each remainder218

R(t,M) using (14), (15), or (16), and the method presented in in Section 2.1.219

Furthermore, we can compare only a subset of all possible subsequences using220

a coarser time partition Ti.221

3.3. Practicality of the Bounds for Audio Signals222

The experiments by Jost et al. [14, 15] use small images (128 square) and223

orthogonal wavelet decompositions, which do not translate to audio signals de-224

composed over redundant time-frequency dictionaries. Jost et al. [14, 15] do225

not state the compressibility parameters they use, but for the high-dimensional226

audio signals with which we work in this paper it is not unusual to have γ ≈ 0.5227

when using MP and highly overcomplete dictionaries. We find that decom-228

posing 4 s segments of music signals (single channel, 44.1 kHz sample rate,229

representation weights shown in Fig. 1) using the dictionary in Table 1 requires230

on average 2,375 atoms to reduce the residual energy 20 dB below the initial231

signal energy. Thus, for the bound (16) using n = 2, 375 atoms, and with the232

parameters (C, γ) = (0.4785, 0.5) (in the feasible set), Fig. 5 clearly shows that233

in order to have any discriminable bound (say ±0.2 for unit-norm signals) we234

must either select a low value for p — in which case we are assuming the first235

atom comparison is approximately the cosine distance — or we must make over236

a million pairwise comparisons.237

This is not practical for signals of large dimension, and dictionaries contain-238

ing billions of time-frequency atoms. There is no possibility of tabulating the239

dictionary Gramian for quick lookup of atom pair correlations; and the cost of240

looking up atoms in million-atom decompositions is expensive as well. It is clear241

then that the tightest bound given in (16) is not practical for efficiently discrim-242
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Figure 5: Estimated remainder (assuming unit-norm signals) as a function of the number of

atom pairs already considered for dataset used to produce Fig. 1. Gray: bound in (15). Black,

numbered: bound in (16) for several labeled p (probability that remainder does not exceed

bound) with n = 2, 375 (number of elements in each sparse model), and (C, γ) = (0.4785, 0.5).

inating distances between audio signals with respect to their cosine distance (5)243

decomposed by MP and time-frequency dictionaries.244

4. Experiments in Comparing Audio Signals in a Sparse Domain245

Though approximate nearest neighbor subsequence search of sparsely ap-246

proximated audio signals with the bound (16) is impractical, we have found247

that approximating the cosine distance in a sparse domain has some intrigu-248

ing behaviors. We now present several experiments where we compare different249

types of audio data in a sparse domain under a variety of conditions. All signals250

are single channel, and have a sampling rate of 44.1 kHz. We decompose each251

by MP [17] using either the dictionary in Table 1, or the 8xMDCT dictionary252

[31].253

4.1. Experiment 1: Comparing Piano Notes254

In this experiment, we look at how well low-order sparse approximations255

of sampled piano notes embody their harmonic characteristics by comparing256
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s (samples/ms) ∆u (samples/ms) ∆f (Hz)

128/3 32/0.7 43.1

256/6 64/2 43.1

512/12 128/3 43.1

1024/23 256/6 43.1

2048/46 512/12 21.5

4096/93 1024/23 10.8

8192/186 2048/46 5.4

16384/372 4096/93 2.7

32768/743 8192/186 1.3

Table 1: Time-frequency dictionary parameters (44.1 kHz sampling rate): atom scale s, time

resolution ∆u, and frequency resolution ∆f . Finer frequency resolution for small-scale atoms

is achieved with interpolation by zero-padding.

them using the methods presented in Section 2. The data in set ‘A’ are 68 notes257

(chromatically spanning A0 to G#6) on a real and somewhat in-tune piano; and258

in set the data ‘B’ are 39 notes (roughly a C major scale C0 to D6) on a real259

and very out-of-tune piano with very poor recording conditions. We truncate260

all signals to have a dimension of 176,400 (4 seconds), and decompose each261

by MP [17] over a redundant dictionary of time-frequency Gabor atoms, the262

parameters of which are summarized in Table 1. We stop each decomposition263

once its residual energy drops 40 dB below the initial energy. We normalize the264

weights of each model by the square root energy of the respective signal. We do265

not align the time-domain signals such that the note onsets occur at the same266

time. Figure 1 shows the ordered decays of the weights in the sparse models of267

data set ‘A’.268

Figure 6(a) shows the magnitude correlations between all pairs of signals in269

set ‘A’ evaluated in the time-domain. The overtone series is clear as diagonal270

lines offset at 12, 19, 24, and 28, semitones from the main diagonal. Figure 6(b)271

shows the approximated magnitude correlations (9) using only M = 10 atoms272

from each signal approximation (thus P (10) = 55 atom pairs). Even though the273
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(a) ‘A’ Time-domain Inner Products (b) ‘A’ Sparse-domain Products

(c) ‘B’-‘A’ Time-domain Inner Products (d) ‘B’-‘A’ Sparse-domain Products

Figure 6: |Siq(10)| (9) for two sets of recorded piano notes. (a) and (b): Set ‘A’ compared

with itself in time and sparse domains (M = 10). (c) and (d): Set ‘B’ (rows) compared with

set ‘A’ (columns) in time and sparse domains (M = 10). Elements on main diagonals in (a)

and (b) are scaled by 0.25 to increase contrast of other elements.

mean number of atoms in this set of models is about 7000 we still see portions274

of the overtone series. The diagonal in Fig. 6(b) does not have a uniform275

color because low notes have longer sustain times than high notes, and the276

sparse models thus have more time-frequency atoms with greater energies spread277

over the support of the signal. Figure 6(c) show the magnitude correlations278

between sets ‘B’ and ‘A’ evaluated in the time-domain; and Fig. 6(d) shows the279
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magnitude correlations (9) using only M = 10 atoms from each model. In a280

sparse domain, we can more clearly see the relationships between the two sets281

because the first 10 terms of each model are most likely related to the stable282

harmonics of the notes, and not to the noise. We can see a diatonic scale starting283

around MIDI number 36, as well as the fact that the pitch scale in data set ‘B’284

lies somewhere in-between the semitones in data set ‘A’.285

Figure 7(a) shows the approximate magnitude correlations |Siq(M)| (9), as286

well as the upper and lower bounds on the remainder using the tightest bound287

(16) with p = 0.2, and n = 100, for the signal A3 from set ‘A’ and the rest of the288

set. Here we can see that the lower bound for the largest magnitude correlation289

exceeds the upper bound of all the rest after comparing only M = 19 atoms290

from each decomposition. All but five of the signals can be excluded from the291

search after M = 6. The four other signals having the largest approximate292

magnitude correlation are labeled, and are harmonically related to the signal293

through its overtone series. With a signal selected from set ‘B’ and compared to294

set ‘A’, Fig. 7(b) shows that we must compare many more atoms between the295

models until the bounds have any discriminability. After P (M) = 1500 atom296

comparisons we can see that the largest magnitudes |Siq(M)| (9) are roughly297

harmonically related to the detuned D5 from set ‘B’.298

As a final part of this experiment, we look at the effects of comparing atoms299

with parameters within some subset. As done in Fig. 6(d), we compare the300

sparse approximations of two different sets of piano notes, but here we only301

consider those atoms that have scales greater than 186 ms. This in effect means302

that we look for signals that share the same “long-term” time-frequency be-303

haviors. The resulting |Siq(10)| (9) is shown in Fig. 8. We see correlations304

between the notes much more clearly compared with Fig. 6(d). Removing the305

short-term phenomena improves “tonal”-level comparisons between the signals306

because non-overlapping yet energetic short atoms are replaced by atoms rep-307

resentative of the note harmonics.308
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(a) Signal A3 from ‘A’ with (C, γ) = (0.78, 0.60)
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(b) Signal D5 from ‘B’ with (C, γ) = (1.17, 0.70)
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Figure 7: Black: |Siq(M)| (9) as a function of the number of atom pairs considered for the

set of piano notes in ‘A’ with a signal from either (a) ‘A’ (note A3) or (b) ‘B’ (note D5

approximately). Gray: for each Siq(M), magnitudes of Liq(M) (12) and Uiq(M) (13) using

bound in (16) with p = 0.2 (probability that remainder does not exceed bound), and n = 100

(number of elements in each sparse model). Largest magnitude correlations are labeled. Note

differences in axes.

4.2. Experiment 2: Comparing Speech Signals309

In this experiment, we test how efficiently using (28) we can find in a speech310

signal the time from which we extract some xq. We also test how distortion in311

the query affects these results. We make a signal by combining six segments of312
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Figure 8: |Siq(10)| (9) for two sets of recorded piano notes in a sparse domain using only the

atoms with duration at least 186 ms. Compare with Fig. 6(d).

speech, a short music segment, and white noise, shown in Fig. 4(a). The six313

speech segments are the same phrase spoken by three females and three males:314

“Cottage cheese with chives is delicious.” We extract from one of these speech315

signals the word “cheese,” to create xq with duration of 603 ms, shown at top in316

Fig. 9. We decompose this signal using MP and the 8xMDCT dictionary [31].317

We distort the query in two ways: with additive WGN (AWGN), and with318

an interfering sound having a high correlation with the dictionary. In the first319

case, shown in the middle in Fig. 9, the signal x′q = (αxq + n)/||αxq + n|| is320

the original xq distorted by a unit-norm AWGN signal n. We set α = 0.3162321

such that 10 log10(||αxq||2/||n||2) = 20 log10(|α|) = −10 dB. For this signal,322

we find the following statistics from 10,000 realizations of the AWGN signal:323

E
[
|〈xq,n〉|

]
≈ 1 × 10−5, Var

[
|〈xq,n〉|

]
≈ 4 × 10−6. We also find the fol-324

lowing statistics for the 8xMDCT dictionary: E [maxd∈D |〈n,d〉|] ≈ 5 × 10−4,325

Var [maxd∈D |〈n,d〉|] ≈ 2 × 10−5. Thus, the noise signal is not well-correlated326

either with the original signal or the 8xMDCT dictionary. In the second case,327
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Figure 9: Log spectrograms of the query signals with which we search. Top: query of male

saying “cheese.” Middle: query distorted with additive white Gaussian noise (AWGN) with

SNR = −10 dB. Bottom: query distorted with interfering crow sound with SNR = −5 dB.

shown at the bottom of Fig. 9, we distort the signal by adding the sound of328

a crow c so that x′q = (αxq + c)/||αxq + c||2 with ||c|| = 1. Here, we set329

α = 0.5623 given by 20 log10(|α|) = −5 dB. For this interfering signal, we find330

that |〈xq, c〉| ≈ 2 × 10−3, but maxd∈D |〈c,d〉| ≈ 0.21, which is higher than331

maxd∈D |〈xq,d〉| ≈ 0.17. In this case, unlike for the AWGN interference, it is332

likely that the sparse approximation of the signal with the crow interference will333

have atoms in its low-order model due to the crow and not the speech. We do334

not expect the AWGN interference to be a part of the signal model created by335

MP until much later iterations.336

Fig. 10 shows |Siq(t,M)| (28) aligned with the original signal for four values337

of M using the sparse approximations of the clean and distorted signals. We plot338

at the rear of these figures the localized magnitude time-domain correlation of339

the windowed and normalized signal with the query xq. In Fig. 10(a), using the340

clean xq, we clearly see its position even when using a single atom pair for each341

100 ms partition of the time-domain. We see the same behavior in Fig. 10(b)–342
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(a) Clean signal
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(b) Signal with AWGN at 10 dB energy
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(c) Signal with crow signal at 5 dB energy
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Figure 10: |Siq(M, t)| (28) as a function of time and the number of atoms M (labeled at

right) considered from each representation for each localized sparse approximation. Localized

magnitude correlation of each signal with query is shown by the thin black line in front of the

gray time-domain signal at rear.

(c) for the two distorted signals, but in the case where the crow sound interferes343

we find the query for M ≥ 2, or with at least three atom pair comparisons. The344

first atom of the decomposed query with the crow is modeling the crow and not345

the content of interest, and so we must increase the order of the model to find346

the location of xq. As we increase the number of pairs considered we also find347
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Clean Signal Signal + WGN Signal + Crow

# t (s) |Siq | content t (s) |Siq | content t (s) |Siq | content

1 10.0 0.798 “cheese” 10.0 0.236 “cheese” 10.0 0.409 “cheese”

2 13.6 0.199 “cheese” 13.6 0.080 “cheese” 13.6 0.060 “cheese”

3 11.3 0.153 “-ives is-” 15.1 0.051 “delicious” 16.9 0.030 “cheese”

4 16.9 0.149 “cheese” 11.3 0.045 “-ives is-” 6.9 0.012 “cheese”

5 15.1 0.141 “delicious” 16.9 0.042 “cheese” 1.3 0.011 “cheese”

6 18.3 0.076 “delicious” 18.3 0.028 “delicious” 18.3 0.010 “delicious”

7 1.3 0.057 “cheese” 8.1 0.014 “delicious” 13.2 0.010 “cottage”

8 8.1 0.035 “delicious” 12.0 0.012 “-licious” 15.1 0.009 “delicious”

9 2.4 0.026 “delicious” 5.2 0.011 “delicious” 16.0 0.004 “cott-”

10 6.9 0.024 “cheese” 6.8 0.010 “cheese” 22.8 0.003 WGN

Table 2: Times, values and signal content for first 10 peaks in |Siq(t, 10)| (P (10) = 55) in

Figs. 10(a)–(c). Highest-rated distances in each (bold) points to the origin of signal.

other segments that point in the same direction as xq. Table 2 gives the times348

and content of the ten largest values in |Siq(t, 10)|. For the clean and AWGN349

distorted xq, “cheese” appears five of the six times it exists in the original signal.350

Curiously, these same five instances are the five smallest distances when xq has351

the crow interference.352

We perform the same test as above but using a much longer speech signal353

(about 21 minutes in length) excerpted from a book-on-CD, “The Old Man and354

the Sea” by Ernest Hemingway, read aloud by a single person. From this signal355

we create several queries xq, from words to sentences to an entire paragraph of356

duration 35 s. We decompose each signal over the dictionary in Table 1 until the357

global residual energy is 20 dB below the initial energy. The approximation of358

the entire 21 m signal has 1,004,001 atoms selected from a dictionary containing359

2,194,730,297 atoms.360

One xq we extract from the signal is the spoken phrase, “the old man said”361

(861 ms in length). This phrase appears 26 times in the long excerpt. We362

evaluate |Siq(t,M)| (28) every 116 ms, and find the time at which xq originally363

appears using only M = 1 atom pair comparisons for each time partition. The364
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Figure 11: Polyphonic orchestral query: sonogram (top) and time-frequency tiles (bottom) of

50-order sparse approximation.

next highest ranked positions have values of 75% and 67% that of the largest365

|Siq(t, 1)|. When M = 50, the values of the second and third largest values366

|Siq(t, 50)| drop to 62% and 61% that of the largest value. In the top 30 ranked367

subsequences for M = 5 we find only one of the other 25 appearances of “the old368

man said” (rank 26); but we also find “the old man agreed” (rank 11), and “the369

old man carried” (rank 16). All other results have minimal content similarity to370

the signal, but have time-frequency overlap in parts of the atoms of each model.371

We perform the same test with a sentence extracted from the signal, “They372

were as old as erosions in a fishless desert” (2.87 s), which only appears once. No373

matter the M = [1, 50] we use, the origin of the excerpt remains at a rank of 6374

with a value |Siq(t, 50)| at 67.5% that of the highest rank subsequence. We find375

that if we shift the time partition forward by 11.6 ms its ranking jumps to first,376

with the second ranked subsequence at 73%. We observe a similar effect for a377

query consisting of an entire paragraph (35 s). We find its origin by comparing378

M = 2 or more atoms from each model using a time partition of 116 ms. This379

result, however, disappears when we evaluate |Siq(t,M)| using a coarser time380

partition of 250 ms.381
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(a) Query compared with original signal
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Figure 12: |Siq(t,M)| (28) for three values of M for the query and two different signals.

Arrows mark the appearances of the ‘A’ theme, and their appearance number. Magnitude

correlation of query with localized and normalized signal is shown by the solid gray area in

front of the black time-domain signal at rear.

4.3. Experiment 3: Comparing Music Signals382

While the previous experiment deals with single-channel speech signals, in383

this experiment we make comparisons between polyphonic musical signals ex-384

cerpted from a commercial recording of the fourth movement of Symphonie385

Fantastique by H. Berlioz. For the query, we use a 10.31 s segment of the third386

appearance of the ‘A’ theme of the movement (bars 33 – 39, located around 13387

– 22 s in Fig. 4(b)). Figure 11 shows the sonogram and time-frequency tiles of388

the model of xq using the 50 atoms with the largest magnitude weights selected389

from the 8xMDCT dictionary [31]. We add no interfering signals as we do in390

the previous experiment.391

Fig. 12(a) shows |Siq(t,M)| (28) over the first minute of the original signal,392

for three values of M , including M = 50, the time-frequency representation of393
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which is shown at bottom of Fig. 11. For |Siq(t, 50)| we can see a strong spike394

located around 13 s corresponding with the query, but we also see spikes at395

about 2 s and around 43 s. The former set of spikes correspond with the second396

appearance of the ‘A’ theme, when only low bowed strings are playing the theme397

in G-minor. This is quite similar to the instrumentation of the query: low bowed398

strings and a legato bassoon in counterpoint in E[-major. The latter set of spikes399

is around the end of the fifth appearance of the theme, which is played in G-400

minor on low pizzicato strings with a staccato bassoon. For M = 10, we see a401

conspicuous spike at the time of the fifth appearance around 34 s, as well as of402

the fourth appearance around 24 s, where the theme is played in E[-major like403

the query. Finally, we test how the sparse approximation of this query compares404

with subsequences from a different recording of this movement, which is also in405

a different tempo. Figure 12(b) shows |Siq(t,M)| (28) for three different values406

of M . We see high similarity with the first and second appearances of the main407

theme, but not the third, which is what the query contains.408

4.4. Discussion409

There is no reason to believe that a robust and accurate speech or melody410

recognition system can be created by comparing only the first few elements411

of greedy decompositions in time-frequency dictionaries. What appears to be412

occurring for the short signals, both the “cheese” and “the old man said,” is413

that the first few elements of their sparse and atomic decomposition create a414

prosodic representation that is comparable to others at the atomic level. For415

the longer signals, such as sentences, paragraphs, and orchestral theme, a few416

atoms cannot adequately embody the prosody, but we still see that by only417

making a few comparisons we are able to locate the excerpted signal — as long418

as the time partition is fine enough. This is due to the atoms of the models419

acting in some sense as a time-frequency fingerprint, an example of which is in420

Fig. 11. Through the cosine distance, the relative time and frequency locations421

of the atoms in the query and subsequence are being compared. Subsequences422

that share atoms in similar configurations will be gauged closer to xq than those423
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that do not.424

By using the cosine distance it is not unexpected that (28) will be extremely425

sensitive to a partitioning of the time-domain. This comes directly from the426

definition of the time-localized Gramian (23), as well as the use of a dictionary427

that is not translation invariant. There is no need to partition the time axis428

when using a parameterized dictionary if we assume that some of the atoms429

in the model of xq will have parameters that are nearly the same as some of430

those in the relevant localized sparse representations. In such a scenario, we can431

search a sparse representation for the times at which atoms exist that are similar432

in scale and modulation frequency to those modeling xq. Then we can limit our433

search to those particular times without considering any uniform and arbitrary434

partition of the time-domain. With non-linear greedy decomposition methods435

such as MP and time-variant dictionaries, however, such an assumption cannot436

be guaranteed; but its limits are not yet well-known.437

5. Conclusion438

In this paper, we have extended and investigated the applicability of a439

method of recursive nearest neighbor search [14, 15] for comparing audio signals440

using pairwise comparisons of model elements in a sparse domain. The multi-441

scale descriptions offered by sparse approximation over time-frequency dictio-442

naries are especially attractive for such tasks because they provide flexibility in443

making comparisons between data, not to mention a capacity to deal with noisy444

signals. After extending this method to the task of comparing subsequences445

of audio signals, we find that the strongest bound known for the remainder is446

too weak to quickly and efficiently reduce the search space. Our experiments447

show, however, that by comparing elements of sparse models we can judge448

with relatively few comparisons whether signals share the same time-frequency449

structures, and to what degrees, although this can be quite sensitive to the450

time-domain partitioning. We also see that we can approach such comparisons451

hierarchically, starting from the most energetic content to the least, or starting452
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from the longest scale phenomenon to the shortest.453

We are continuing this research in multiple directions. First, since we know454

that the inner product matrix Giq(t) (23) will be very sparse for all t in time-455

frequency dictionaries, this motivates designing a tighter bound based on a456

Laplacian distribution of elements in Giq(t) with a large probability mass ex-457

actly at zero. This bound would be much more realistic than that provided by458

assuming the elements of the Gramian are distributed uniform (16). Another459

part of the problem is of course that the sums in (9) and (28) are not such that460

at step M the P (M) largest magnitude values of Aiq •Giq are actually being461

summed. By our assumption in (4), we know that the decay of the magnitudes462

of the elements in Aiq will be quickest in diagonal directions, but dependent463

upon the element position in the matrix. These diagonal directions are simply464

given by465  ∂/∂γi

∂/∂γq

m−γi l−γq = −m−γi l−γq
 γi/m

γq/l

 (29)

where we now recognize that the weights of two different representations can466

decay at different rates. With this, we can make an ordered set of index pairs467

by468

Λ = {(m, l)λ : |[Aiq]λ| ≥ |[Aiq]λ+1|}λ=1,2,...,ninq
(30)

and define a recursive sum for 1 < m ≤ ninq469

Siq(m)
∆
=Siq(m− 1) + [Aiq •Giq]Λm (31)

setting Siq(1) = [Aiq • Giq]11. We do not yet know the extent to which this470

approach can ameliorate the problems with the non-discriminating bound (16),471

as we have yet to design an efficient way to generate a satisfactory Λ, and472

estimate the bounds of the corresponding remainder — whether it is like that473

in (16), or another that uses the fact that Giq(t) will be very sparse, even when474

xq = yi. We think that using a stronger bound and this indexing order will475

significantly reduce the number of pairwise comparisons that must be made476
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before determining a subsequence is not close enough with respect to the cosine477

distance. Furthermore, we can make the elements of Aiq decay faster, and thus478

increase γ, by using other sparse approximation approaches, such as OMP [28,479

23] or CMP [36]. And we cannot forget the implications of choosing a particular480

dictionary. In this work we have used two different parametric dictionaries, one481

of which is designed for audio signal coding [31]. Another interesting research482

direction is to use dictionaries better suited for content description than coding,483

such as content-adapted dictionaries [20, 2, 19].484

Finally, and specifically with regards to the specific problem of similar-485

ity search in audio signals, the cosine distance between time-domain samples486

makes little sense because it is too sensitive to signal waveforms whereas hu-487

man perception is not. Instead, many other possibilities exist for comparing488

sparse approximation, such as comparing low-level histograms of atom param-489

eters [7, 34]; comparing mid-level structures such as harmonics [9, 38, 8]; and490

comparing high-level patterns of short atoms representing rhythm [32]. There491

also exists the Matching Pursuit Dissimilarity Measure [25], where the atoms of492

one sparse model are used to decompose another signal, and vice versa to see493

how well they model each other. We are exploring these various possibilities494

with regards to gauging more generally similarity in audio signals at multiple495

levels of specificity within a sparse domain.496
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Appendix A. Proof of Remainder Bounds506

To show (14), we can bound R(M) loosely by assuming the worst case sce-507

nario of [Giq]ml = 1 for all its elements. Knowing that R(M) is the sum of the508

elements of the matrix Aiq •Giq except for the first P (M) values, and assuming509

(4), we can say510

C−2R(M) ≤
n∑

m=M+1

m∑
l=1

[
l(m− l + 1)

]−γ
+

n−1∑
m=1

n∑
l=m+1

[
l(n−m+ 1)

]−γ
= ||cγM ||1 + ||dγ ||1. (A.1)

where cγM and dγ are defined in (17) and (18). This worst case scenario is not511

possible using MP because of its update rule (1).512

We can find the tighter bound in (15) by assuming the distribution of513

signs of the elements of Giq is Bernoulli equiprobable, i.e., P {[Giq]ml = 1} =514

P {[Giq]ml = −1} = 0.5. Thus, defining a random variable bi : R 7→ {−1, 1},515

and its probability mass function fB(bi) = 0.5δ(bi + 1) + 0.5δ(bi − 1) using the516

Dirac function, δ(x), we create a random vector b with n2 − P (M) elements517

independently drawn from this distribution. Placing this into the double sums518

of (A.1) provides the bound519

C−2R(M) ≤

∣∣∣∣∣∣bT
cγM
dγ

∣∣∣∣∣∣ ≤ ||cγM ||1 + ||dγ ||1. (A.2)

This weighted Rademacher sequence has the property that [14]520

P
{∣∣bT s∣∣ > R

}
≤ 2 exp

(
−R2/2||s||22

)
, R > 0 (A.3)

which becomes P
{∣∣bT s∣∣ ≤ R} ≥ max

{
0, 1− 2 exp

(
−R2/2||s||22

)}
by the ax-521

ioms of probability. With this we can find an R such that P
{∣∣bT s∣∣ ≤ R} will522

be greater than or equal to some probability 0 ≤ p ≤ 1, i.e.,523

R(p) =
(
||cγM ||22 + ||dγ ||22

)1/2 [
2 ln

2

1− p

]1/2

. (A.4)

This value can be minimized by choosing p = 0, for which we arrive at the524

residual upper bound in (15). Note that even though we have set p = 0, we still525
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have an unrealistically loose bound by the impossibility of MP of choosing two526

sets of atoms for which all entries of their Gramian Giq are in {−1, 1}.527

Finally, to show (16), we can model the elements of the Gramian as random528

variables, ui : R 7→ [−1, 1], independently and identically distributed uniformly529

fU (ui) =

0.5, −1 ≤ ui ≤ 1

0, else.

(A.5)

Substituting this into (14) gives a weighted sum of random variables satisfying530

C−2R(M) ≤

∣∣∣∣∣∣uT
cγM
dγ

∣∣∣∣∣∣ ≤ ||cγM ||1 + ||dγ ||1. (A.6)

where u is the random vector. For large M , this sum has the asymptotic531

property [14, 15]:532

P{|uT s| < R} = Erf

√
3R2

2||s||22
. (A.7)

Setting this equal to 0 ≤ p ≤ 1 and solving for R produces the upper bound533

(16). We can reach the upper bound (15) if we set p = 0.9586, but note that534

(16) can be made zero. This bound can still be extremely loose because the535

Gramian of two models in time-frequency dictionaries will be highly sparse.536

Computing the `2-norm in these expressions, however, leads to evaluating537

the double sums538

||cγM ||2 =

n∑
m=M+1

m∑
l=1

1

[l(m− l + 1)]2γ
(A.8)

||dγ ||2 =

n−1∑
m=1

n∑
l=m+1

1

[l(n−m+ 1)]2γ
(A.9)

which can be prohibitive for large n. The dimensionality of cγM is n(n+ 1)/2−539

P (M), and of dγ is n(n − 1)/2. We approximate these values in the following540

way for γ = 0.5, using the partial sum of the harmonic series541

n∑
m=1

1

m
= lnn+ γE +

1

2n
− 1

12n2
+

1

120n4
+O(n−6) (A.10)
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where γE ≈ 0.5772 is the Euler-Mascheroni constant. To find ||d0.5||2542

||d0.5||2 =

n−1∑
m=1

n∑
l=m+1

1

l(n−m+ 1)

=

n−1∑
m=1

1

n−m+ 1

[
n∑
l=1

1

l
−

m∑
l=1

1

l

]

≈
n−1∑
m=1

1

n−m+ 1

[
lnn/m− n−m

2nm
+
n2 −m2

12n2m2

]
. (A.11)

To find ||c0.5
M ||2 we first use partial fractions and then the partial sum of the543

harmonic series:544

||c0.5
M ||2 =

n∑
m=M+1

m∑
l=1

1

l(m− l + 1)

=

n∑
m=M+1

1

m+ 1

m∑
l=1

1

l
+

1

m− l + 1

≈
n∑

m=M+1

1

m+ 1

[
lnm+ γE +

1

2m
− 1

12m2
+

m∑
l=1

1

l

]

≈ 2

n∑
m=M+1

1

m+ 1

(
lnm+ γE +

1

2m
− 1

12m2

)
. (A.12)

With these expressions we can avoid double sums in calculating the bounds.545

Appendix B. Estimating the Compressibility Parameters546

The compressibility parameters (C, γ) must be estimated for the set of547

weights in Ŷ (??), as well as those of xq. Since by (4) the parameters (C, γ)548

bound from above the decay of all the ordered weights, only the largest mag-549

nitude weights matter for their estimation. Thus, we define a vector, a, of the550

largest n magnitude weights from each row in the set {{ai(ni)}i∈I ,aq(nq)},551

which is equivalent to taking the largest weights at each approximation order.552

Good compressibility parameters can be given by553

min
C,γ
||Czγ − a||2 + λC subject to Czγ � a (B.1)

where we define zγ
∆
= [1, 1/2γ , . . . , 1/nγ ]

T
, and add a multiple of C in order to554

keep it from getting too large since the bounds (14)–(16) are all proportional to555
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it. The constraint is added to ensure all elements of the difference Czγ − ai are556

positive such that (4) is true.557

To remove the γ component from the exponent, and since all of the elements558

of z and a are positive and non-zero, we can instead solve the problem559

min
C,γ
|| lnC1 + γ ln z− lna||2 + λ lnC

= min
C,γ

[
(lnC)2n+ γ2|| ln z||2 + || lna||2 + λ lnC

+ 2γ(ln z)T (lnC1− lna)− 2 lnC(lna)T1

]
(B.2)

subject to the constraint Czγ � a. Taking the partial derivative of this with560

respect to γ and C, we find561

γo =
(ln z)T (lna− lnC1)

|| ln z||2 (B.3)

Co = exp

[
λ+

1

n

n∑
i=1

[lna− γ ln z]i

]
. (B.4)

Starting with some initial value of C then, we use the following iterative method562

1. solve for γ given a C in (B.3);563

2. find the new C in (B.4) using this γ;564

3. set C ′ = exp [max(lna− γo ln z)] and evaluate the error ||C ′zγ − a||2;565

4. repeat until the error begins to increase.566

The factor λ in effect controls the step size for convergence. A typical value567

we use is λ = ±0.03 based on experiments (the sign of which depends on if the568

objective function decreases with decreasing C).569
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