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Learning-based Virtual Inertia Control of an
Islanded Microgrid with High Participation of

Renewable Energy Resources
Mohammad Hossein Norouzi, Member, IEEE, Arman Oshnoei, Member, IEEE, Behnam

Mohammadi-Ivatloo, Senior Member, IEEE and Mehdi Abapour Member, IEEE

Abstract—Renewable energy sources (RESs) are increasingly
used to meet consumer demands in microgrids (MGs). However,
high RES integration introduces system frequency stability,
inertia, and damping reduction challenges. Virtual inertia (VI)
control has been recognized as an effective solution to improve
system frequency response in such circumstances. Conventional
control techniques for virtual inertia control (VIC), which rely
heavily on specific operating conditions, can lead to flawed
performance during contingencies due to their lack of adaptivity.
To address these challenges, this paper proposes a novel attitude
found on brain emotional learning (BEL) to emulate virtual
inertia and damping for effective frequency control. The BEL-
based controller is capable of quickly learning and handling
the complexity, non-linearity, and uncertainty intrinsic to the
MGs, and it operates independently of prior knowledge of the
system model and parameters. This characteristic enables the
controller to adapt to various operating conditions, improving its
robustness. The simulation results across three disturbance sce-
narios show that the proposed BEL-based controller significantly
improves the system’s response. The absolute maximum deviation
of frequency was reduced to 0.0561 Hz in the final scenario,
marking performance enhancements of 46.62% and 49.04%
when compared with the artificial neural network (ANN)-based
proportional-integral (PI) control and the standard proportional
control, respectively. This underlines the controller’s adaptability
and superior effectiveness in varying operating conditions.

Index Terms—Microgrid (MG) frequency control, Renewable
energy sources (RESs), Virtual inertia control (VIC), brain
emotional learning (BEL), artificial neural network (ANN), Pro-
portional integral (PI) control

NOMENCLATURE

Acronyms

ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
BEL Brain Emotional Learning
BESS Battery Energy Storage System
DFIG Doubly Fed Induction Generator
DG Distributed Generations
ESSs Energy Storage Systems
EmS Emotional Signal
GRC Generation Rate Constraint
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LFC Load Frequency Control
MGs Microgrids
MPC Model Predictive Control
PI Proportional-Integral
PV Photovoltaic
RESs Renewable Energy Sources
RoCoF Rate of Change of Frequency
SyG Synchronous Generator
SeI Sensory Inputs
VD Virtual Damping
VIC Virtual Inertia Control
VSyG Virtual Synchronous Generator

Parameters

β Factor of frequency bias
KV I Virtual Inertia Emulator gain
Tg Time constant of governor [s]
Tt Time constant of Turbine [s]
TESS Energy storage system constant [s]
D System damping coefficient
H System inertia
R Droop constant
S Apparent power [V.A]

Variables

∆Pth Output power change of Ggovernor [MW]
∆PV I Inertia power [MW]
∆PESS Output power change of ESS [MW]
∆Pdist Output power change of disturbances [MW]
∆f Frequency deviations [Hz]
∆PV Output power change of PV [MW]
∆PW Output power change of Wind [MW]

I. INTRODUCTION

A. Background and Motivation

Currently, there is growing evidence that the inevitable ef-
fects of traditional power generation systems cannot be ignored
[1]. To eliminate environmental problems such as greenhouse
emissions and the lack of fossil fuel, these conventional
generations can be replaced by renewable energy sources
(RESs) [2]. Since there is a connection between the frequency
of a system and the rotation speed and mass of the synchronous
generators (SyGs), the frequency stability and the rotor speed
regulation of the power grid generating units are connected [3].
Therefore, the microgrid (MG) infrastructure, which contains
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TABLE I
THE COMPARISON BETWEEN THE EXISTING PAPERS AND THIS WORK

References Model-free control VI control method ESS type Considering damping properties Control scheme
[7] No MPC BESS No Not adaptive
[8] No H∞ BESS No Not adaptive
[9] No Derivative BESS Yes Not adaptive
[10] No FOC BESS&FC Yes Not adaptive
[13] No ANFIS BESS&FC No Not adaptive
[16] No MPC BESS No Not adaptive
[18] No H∞ BESS No Not adaptive
[20] No Derivative BESS No Not adaptive
[21] No Derivative BESS No Not adaptive
[23] No MPC BESS No Not adaptive
[26] No Derivative BESS No Not adaptive
[30] No MPC BESS Yes Not adaptive

This study Yes BEL BESS Yes Adaptive

energy storage systems (ESSs), wind and photovoltaic (PV)
generation, and distributed generations (DGs), has shown to be
a possible technique for reducing environmental concerns and
solving the energy crisis issues [4]. To minimize the carbon
intensity of electricity production, renewable energies have
become vital, which brings stability problems in balancing
the frequency response of the system [5]. However, the high
presence of renewable energies declines the inertia signifi-
cantly and brings more deviation in frequency or voltage of
the system contrary to the conventional generation [6]. The use
of inverters, acting as connectors between the grid and RESs,
is a crucial factor in the decrease of inertia [3]. The dynamic
stability of MGs under the high deployment of RESs remains a
critical concern for current and future MG design [7]. A poten-
tial solution to address these stability problems involves using
an inertia control structure that emulates virtual inertia (VI)
power-based generation, thus enhancing system resiliency,
operation, and stability [8]. Despite this potential solution,
the topic is still under active research, with various strategies
being investigated. The following section has reviewed the
relevant literature to summarize the proposed solutions, their
limitations, and opportunities for further exploration.

B. Literature Review

Several investigations have addressed the frequency control
issue in low inertia MGs using ESSs equipped with VI support.
In [7], VI control using model predictive control is provided
for grid frequency stabilization in disturbance and uncertainty
situations, but this controller has disadvantages like complex
design and high cost. In [9], a VI control scheme based
on a derivative method is used to improve the inertia and
damping of the system to emulate the virtual damping (VD)
and VI simultaneously and enhance the frequency stabilization
of an islanded MG, which is proposed and successfully
tested. Authors of [10] have proposed novel modeling of VI
control that improves frequency stability, and also a fractional
controller is presented as secondary control of the system. In
[8] and [11], the authors have presented an extended virtual
synchronous generator (VSyG) to make the frequency control
of low inertia MGs robust in various disturbances and remove
the unwanted effects of frequency measurements. In [12], an
adaptive VI control method, operating without the need for

communication, is proposed for the purpose of mitigating
power oscillations in cascaded-type VSyGs. Supporting MG
first frequency control using the VI in doubly fed induction
generator (DFIG) and also adaptive neuro-fuzzy inference
system (ANFIS)-based controller in the secondary control loop
is investigated in [13]. Authors of [14] have ensured that
implementing a special VSyG that emulates SyGs charac-
teristics is an effective way of frequency control, regulating
voltage amplitude in both operation modes of MGs. Authors
of [15] and [16] have applied a model predictive control
method to control the frequency of a multi-area interconnected
power system considering nonlinear properties with high PV
generation. In [17], an inverter-based VI control method is
presented to achieve frequency control and MG stability, and
dynamic impacts were also investigated. An H∞ controller
is compared to an optimal proportional-integral (PI)-based
VI control in [18] and demonstrates the effectiveness of
the optimal controlling method. In [19], the authors have
proposed a derivative method-depend on VI in the superca-
pacitor to regulate the MG frequency with different types of
distributed energy resources. Refs. [19], [20], [21] and several
published papers in this context overlook the effectiveness
and importance of VD in the system’s dynamic performance
while adding this property to MGs is necessary for frequency
stability and extending damping characteristics to MG. The
comparison study between predictive control (MPC) and PI
controlling methods using an MG’s battery ESS to regulate
and improve the frequency/voltage of the studied system is
addressed in [22]. Authors of [23] presented the robustness
and advantages of proposing an MPC control strategy against
different parameters of an islanded MG. In [24], a two-
stage controller design combines a tilt fractional-order integral
derivative and a proportional derivative with filter controllers.
This design, tuned by an artificial hummingbird algorithm,
considers high RES penetration and EV integration in a
two-area interconnected power system. In [25], a fractional-
order controller-based VI control technique is suggested to
facilitate frequency stabilization in multi-area power systems
with high penetration of RESs. In [30], a two-layer multiple-
MPC strategy is presented. This strategy manages an ESS
equipped with VI control, aiming to address the load frequency
control (LFC) problem in an isolated MG. A comparison
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of the studied papers from different perspectives is provided
in Table 1. Conforming to the aforementioned literature and
Table 1, many previous studies have focused on improving
control methods through the static derivative technique, aiming
to reduce frequency fluctuations without considering damping
properties and the VD technique. Also, previous research
mainly developed model-based control approaches for VI,
which heavily depend on the specific operating conditions,
compromising their reliability and robustness.

C. Contributions

To fulfill this major gap, this paper suggests an innovative
brain-emotional learning (BEL) approach designed to emulate
virtual inertia and damping, thereby contributing to effective
system frequency control. The suggested controller operates in
a model-free manner, thereby controlling the VI loop without
the required knowledge of the system’s model and parameters.
This feature bypasses any dependency of the control system on
the specific operating point conditions. Essentially, it prevents
the need for any preliminary knowledge of the system’s param-
eters or structural configuration. A detailed simulation analysis
is provided to establish the advantages of the presented control
structure, especially under conditions of high RES penetration
and load disturbances. The main contributions of this paper
can be itemized as follows:

• Proposing a novel BEL-based approach for VI in MGs
with high penetration of RESs. This approach enables the
system to emulate virtual inertia and damping simultane-
ously for effective frequency regulation.

• Enhancement and improvement of the control system
to handle complexities, non-linearity, and uncertainties
associated with MGs. It indicates better adaptability to
changes in parameters and fluctuations in loads.

• Providing comparative analysis to highlight the proposed
controller’s superior effectiveness and robustness against
conventional techniques such as an ANN-PI controller
and a proportional (P) control method.

D. Paper organization

This paper is classified as follows. Section 2 explains the
frequency control process for the MG. The mathematical
model for the BEL design is presented in section 3. Section
4 describes the ANN-based-controlling method. Section 5
delivers numerical simulations and arguments. Eventually,
concluding remarks are provided in section 6.

II. FREQUENCY CONTROL IN MGS

When a MG experiences an imbalance between consump-
tion and generation, it can lead to frequency deviation, creating
issues with frequency stability. This represents a significant
challenge in the control, design, and operation of MGs [6].
In such situations, an inertia response, which is driven by
the kinetic energy sourced from a generating unit, initially
regulates the system’s frequency for approximately 10 sec-
onds [27]. To maintain an acceptable frequency during MG
operation, a hierarchical control structure is necessary. This

structure typically includes three distinct control loops: (1)
an inertia control loop, (2) a primary control loop, and (3) a
secondary control loop. These loops are designed to effectively
reduce and overcome frequency deviation, as illustrated in Fig.
1[8]. Following a disturbance, the primary control attempts to
stabilize the frequency within 10 to 30 seconds. Lastly, the
secondary control, also known as LFC, restores the frequency
to its appropriate bandwidth from 30 seconds to 30 minutes
post-deviation [28].
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Fig. 1. Frequency response when a contingency occurs.
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Fig. 2. The schematic of the studied system.

A. Dynamic Modeling of Studied MG

Traditional power generation systems that utilize conven-
tional resources like coal and fossil fuels pose environmental
hazards and fall short of meeting the increasing power demand
[25]. Despite being gradually replaced by renewable energy
units, these conventional units play an essential role in main-
taining the inertia stability of the power system [29]. The stud-
ied MG, as illustrated in Fig. 2, comprises various generation
units such as thermal, solar, and wind power plants along with
diverse loads. This assortment helps to capture the multisource
nature of the MG. The thermal power station is a traditional



4

power unit, with industrial and residential loads consuming
the generated power. Furthermore, it’s worth noting that wind
farms and solar power plants are not equipped with inertia
or damping controllers [10]. Consequently, integrating RESs
into the MG, with their inherent probabilistic nature, changes
the operating point, decreasing system inertia. This decline
could impact the damping property, causing instability and
frequency deviation in the MG [7]. A battery ESS (BESS) is
introduced to address this issue. The BESS’s ability to charge
and discharge allows for the regulation of power discrepan-
cies between generation and consumption within the initial
10 seconds. Furthermore, wind and solar power plants and
loads are considered as disturbances because they introduce
uncertainty into the system and do not contribute to frequency
stabilization. According to Fig. 2, the control center sends
the frequency fluctuations signal to the thermal power plant
and VI control-based BESS via telecommunication joints. The
mentioned signal, the BESS and thermal unit participate in the
MG frequency regulation. A telecommunication network also
exists, facilitating data and information exchange [10].

The mathematical structure of the studied MG is provided
in Fig. 3. The governor nonlinear generation rate constraint
(GRC) is used and assumed as 10% per minute [10]. The
frequency deviation of the studied MG is calculated as:

∆f = 1
2Hs+D (∆Pth +∆Pw +∆PPV +∆PV I −∆Pload)

(1)
where

∆Pth = (
1

1 + sTt
)(

1

1 + sTg
)(u− 1

R
∆f) (2)

∆PW =
1

1 + sTW
(∆PWind) (3)

∆PPV =
1

1 + sTPV
(∆PSolar) (4)

where ∆Pth is the generated power by the thermal power
plant; ∆Pw denotes the power of the wind system; ∆PPV is
solar power change; ∆PV I is the power change of VI-based
ESS unit.

B. Virtual Inertia Control of MG

The VI is a specific manifestation of the VSyG. This
concept was introduced as an emulation of the rotating mass
inertia and damping properties of traditional SyG, owing to
their effectiveness. Unlike the fixed inertia of a real SyG,
VI provides superior performance and increased flexibility. It
operates based on the rate of change of frequency (RoCoF)
through an ESS, enhancing the system’s stability and resilience
[7].

By injecting extra active power into the system, VI reduces
frequency deviations and improves stability. This way, RESs
such as wind and solar plant units in the MG can effectively
emulate the inertia typically provided by traditional units,
further contributing to system stability [10]. The MG’s inertia
constant (H) is defined as:

H =
∑

(HSSyG)/SMG (5)

where SSyG denotes the power of the SyG, and SMG indicates
the power of the MG. The main idea of emulating rotating
inertia is the derivative method which adds the ESS power to
the system in case of contingencies. To reduce the sensibility
of this technique to the noise, a low-pass filter is used in the
system. The block diagram of this technique is illustrated in
Fig. 4(a). The conventional VI is represented as:

∆PV I =
KV I

1 + sTESS
(
d(∆f)

dt
) (6)

where the KV I is the gain of VI. The proposed VI control,
depicted in Fig. 4(b), provides the VI and VD in low inertia
and damping operations during the MG set-point value contin-
gencies to improve the frequency response. The propounded
VI control supplies emulations of damping properties and
inertia simultaneously into the power system, which improves
the stability and resiliency of the system and reduces frequency
deviation in the case of high participation of RESs [16]. The
VI and VD parts are used to modify the injected active power
to the system and improve the time-based stabilization on the
MG. Accordingly, the proposed intelligent method plays the
supporter role of conventional generators. The proposed BEL-
based VI control is represented as:

∆PV I = (KV I(
d(u)

dt
) +DV I∆f)

1

1 + sTESS
(7)

where DV I shows the VD of the proposed VI; and u is the
generated control signal by the proposed BEL controller.

III. BRAIN EMOTIONAL LEARNING CONTROLLER DESIGN

The BEL is considered as a model-free controller across
various control engineering applications. Its quick learning
capability makes it appropriate for robust and rapid decision-
making in nonlinear systems, particularly those with inherent
uncertainties. The controller comprises the Amygdala, respon-
sible for emotional learning, the Orbitofrontal cortex, Sensory
Cortex, and Thalamus. The model takes two inputs - Sensory
Inputs (SeI) and Emotional Signal (EmS). The preprocessed
signal from the Thalamus is received by the Sensory Cortex,
which then forwards it to the Amygdala and Orbitofrontal
Cortex. [31]. The output from the BEL is derived by taking the
difference between the outputs from network A and network
O, which is represented by:

u(t) = A(t)−O(t) (8)

The SeI and EmS inputs are provided into Network A. The
SeI input is then subjected to multiplication with a connection
weight (M) to generate Network A’s output, as illustrated by:

A(t) = SeI(t)M(t) (9)

which M(t) can changes as below:

M(t) =

t∫
0

δm(t)dt+m(0) (10)

where

δm(t) = αSeI(t)[max(0, EmS(t)−A(t)−Aa(t)] (11)
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Fig. 3. Frequency response model of the MG.
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Fig. 4. VI control: (a) conventional, (b) proposed control structure
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Fig. 5. BEL’s Controlling Structure.

Aa(t) = max[SeI(t)]Ma(t) (12)

In this context, α represents the rate of learning; Aa denotes
a neuron that directly gets the maximum sensory signals from
the Thalamus; max[SeI] refers to the peak of all sensory
signals [32]. The Ma can described as follows:

Ma(t) =

t∫
0

δm(t)dt+Ma(0) (13)

Network O receives inputs from SeI and EmS, along with the
previous model output. The output of network O is calculated
by multiplying the connection weight (N) with the SeI signal.

O(t) = SeI(t)N(t) (14)

where N(t) changes as below:

N(t) =

t∫
0

δn(t)dt+ n(0) (15)

where

δn(t) = βSeI(t)[A(t)−O(t)− EmS(t)] (16)

where β is the inhibition rate; taking the initial states m(0) =
n(0) = Ma(0) = 0 into consideration, the BEL output in (8)
can be expressed as:

u(t) = SeI(t)[α

∫ t

0

SeI(t)[max(0, EmS(t)−A(t)−Aa(t))]dt

− β

∫ t

0

SeI(t)[A(t)−O(t)− EmS(t)]dt].

(17)

To obtain the desired performance of BEL-based controller,
it is vital to make a connection between SeI, EmS, and the
controller’s output (u) [33]. The SeI and EmS inputs are
defined as below:

SeI = ϕ1∆f + ϕ2

∫
∆fdt (18)

EmS = γ1∆f + γ2

∫
∆fdt+ γ3u (19)

where ϕ1, ϕ2 are the weighting coefficients for the SeI signal
and γ1,γ2,γ3 are the weighting coefficients for the EmS signal.
These coefficients are determined via a trial-and-error process.
The reason behind employing the SeI and EmS functions is
to reach a rapid response, minimal overshoot and steady-state
error, and minimal divergence from a reference point [34].
The proposed control scheme is illustrated in Fig. 5 and also
the BEL’s block diagram is depicted in Fig. 6 [32-34]. In this
study, α and β are set at 0.86 and 0.98, respectively. These
values are chosen to strike a balance between the learning rate
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and the model’s stability. Contrary to traditional controllers
that are typically arranged for static operating conditions, the
BEL method operates independently of such conditions and
exhibits resilient performance against load disturbances and
uncertainties [35].

SeI 

GENERATOR

EmS 

GENERATOR

A ( ) ( )A t O t−

( )O t

( )A t

f∆

( )U t

( ) ( ) ( )A t SeI t M t=
0

( ) ( ) (0)

t

M t m t dt m= +

( ) ( )[max(0, ( ) ]am t SeI t EmS A t A = − −

aA

( ) max[ ( )] ( )a aA t SeI t M t=
0

( ) ( ) (0)

t

a aM t m t dt m= +

( ) ( )[max(0, ]a am t SeI t EmS A = −

( ) ( ) ( )O t SeI t N t=
0

( ) ( ) (0)

t

N t n t dt n= +

( ) ( )[ ( ) ( ) ( )]n t SeI t A t O t EmS t = − −

 

Fig. 6. Block diagram of proposed BEL controller.

IV. ARTIFICIAL NEURAL NETWORK STRUCTURE

The rationale for using the ANN method in this study
originates from the limitations of a PI controller, particularly
its performance being sensitive to fixed-tuned parameters. This
implies that the controller maintains constant gains throughout
all working conditions [36]. However, the dynamic tuning
of controller gains amidst disturbances can be an effective
strategy. This study, therefore, proposes an ANN-based ap-
proach to enhance the PI controller’s capability. This method
generates online supplementary gains for the PI controller
in the VI control loop to maintain a fair comparison. The
ANN technique adapts the PI controller to different changes
in the MG, significantly speeding up the parameter adaptation.
Input signals of the ANN-based tuning unit include the MG
output and a fundamental data set. The primary objective
of this approach is to minimize frequency deviation (∆f )
under various MG operating modes. Hence, ANN generates
appropriate set points, which are sent to the PI controller,
ensuring MG stability under severe conditions [37]. The ANN,
characterized by its inherently non-linear processing units
or neurons, comprises three basic elements: weights wj =
[w1j , w2j , ..., wnj ], an activation function g(j), and a bias
parameter φ. The activation function can take various forms,
including sign, tangent sigmoid, and logarithmic sigmoid. The
output of the hidden layer is computed based on the weighted
input and bias, as mathematically represented in (20):

Hj = g

(
n∑

i=1

wijyi + φ

)
j = 1, 2, ..., L (20)

Here, L denotes the hidden layer nodes.
Subsequently, the output of the output layer is computed as:

Oc =

L∑
j=1

Hjwjc + φ c = 1, 2, ...,m (21)

The goal of learning process is to make the mean squared
error minimum, defined as:

E =
1

2

N∑
r=1

(∆f −∆fref )
2 (22)

where N denotes the all samples; and ∆fref signifies the
reference frequency deviation, which is set to zero. The
nonlinear neurons can update the of weight [38]. The ANN
output layer holds two neurons corresponding to the control
variables, namely the proportional and integral gains of the
PI controller [39]. It is considered that the parameters of the
gains of PI controllers are fixed and not able to overpass ±
0.4.

V. SIMULATION RESULTS AND DISCUSSIONS

Various case studies are conducted to assess the perfor-
mance of the proposed control scheme. The simulations are
carried out using MATLAB/Simulink software. As illustrated
in Fig. 2, industrial and residential loads wind turbine and PV
are represented using the signal builder block. The thermal
power plant’s model employs first-order transfer functions,
dead zone, and saturation blocks. The ESS is modeled us-
ing derivative, gain, and first-order transfer function blocks.
The MATLAB/Simulink configuration parameters utilize a
fixed-step solver to apply the studied LFC system with the
suggested control loop. More information are given in [30].
A comparison study is done to study the effectiveness of
the presented BEL controlling technique. To this end, the
controller is compared to the ANN-based PI and P controllers.
The parameters of the studied MG are given in Table II.

TABLE II
PARAMETERS OF STUDIED MG AND CONTROLLERS

Parameter Value Parameter Value
f 60 Hz TIN 0.04s

TPV 1.8s TIC 0.004s
TWTG 1.5 s TFC 0.28s
Tg 0. 4s Tt 0.01s
R 2.4 pu Hz/MW TESS 0.1s
P 0.11 BEL (alpha-beta) 0.86-0.98
Kp -10 Ki 0.86
Kd 0.591 λ 0.01
µ 0.3

A. Step load change

In the first scenario, the system experiences a 30% step
load change without the presence of PV and WT systems.
The frequency response of the proposed BEL and ANN-based
PI controller is illustrated in Fig. 7. From the figure, it can
be observed that the BEL-based controller successfully min-
imized frequency deviation more effectively than the ANN-
based PI controller. Quantitative error indices like the abso-
lute maximum deviation (AMD) and settling time have been
incorporated to assess frequency deviation. These results are
presented in Table 3. It is notable that by leveraging the BEL-
based controller, the AMD value of frequency has diminished
to 0.15 Hz. Conversely, when the ANN-based PI is applied,
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the AMD value remains at 0.1667 Hz. Stated differently, the
proposed controller has offered a performance enhancement of
10.02% in comparison to the PI controller. The table shows the
settling time value of fluctuations is the minimum while using
the suggested control scheme . Fig. 8 shows the output power
of the ESS when utilizing the BEL controller. It is evident from
the figure that the ESS, controlled by the proposed method,
charges and discharges more efficiently in response to the
applied disturbance, compared to when the ANN-based PI
controller controls the ESS.
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Fig. 7. Comparison of frequency responses of the MG with different
controllers (first scenario).
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Fig. 8. ESS Power variation provided to the MG with different controllers
(first scenario).

TABLE III
COMPARATIVE ANALYSIS OF THE PROPOSED CONTROLLER AND

ANN-BASED PI CONTROL (FIRST SCENARIO).

Controller type ∆f(Hz) Settling Time (s)
Proposed controller 0.15 4.4546

ANN-Based PI control 0.1667 7.3304

B. Sequence of step load changes

Fig. 9 (a)-(c) shows the application of a sequence of step
load changes over a 200-second duration to the system, along-
side the generation power of the PV and WT systems. Fig. 10
illustrates the performance of the proposed VI control under
this scenario. It’s noticeable that the BEL controller contributes
more virtual inertia to the MG. The ESS power variation is
shown in Fig. 11. The positive/negative variations in ESS
power respectively indicate charge/discharge. More discharge
from the ESS leads to an increase in the provision of virtual

inertia to the MG. Peaks in deviation occur when unexpected
changes in loads or RESs occur. The results suggest that the
inertia loop, controlled by the BEL controller, delivers more
power to the system, as shown in Fig. 10. It results in a
better frequency performance compared to the ANN-based PI
controller. Consequently, the implementation of the proposed
VI control reduces transient excursion and provides additional
virtual inertia, thereby enhancing the stability and robustness
of the MG across various operational modes. For this scenario,
frequency deviation assessment is also performed using AMD
and settling time indices, as shown in Table IV which this anal-
ysis is based on the change in frequency that occurs at 155 s.
It’s highlighted that the BEL technique reduces the AMD rate
of frequency to 0.0741 Hz, a 44.74% improvement over the
ANN-based PI’s 0.1341 Hz. Furthermore, the table indicates
that the proposed control scheme achieves the shortest settling
time.

 

 

  
Fig. 9. Fluctuations in (a): wind system generation; (b): solar system
generation; and (c): load power.
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Fig. 10. Comparison of Frequency deviation in MG with different controllers
(second scenario).

C. Random load change

Finally, in the last scenario, the effectiveness of the proposed
learning-based VI control under the operation of MG with
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Fig. 11. ESS power variation with different controllers (second scenario).

TABLE IV
COMPARATIVE ANALYSIS OF THE PROPOSED CONTROLLER AND

ANN-BASED PI CONTROL (SECOND SCENARIO).

Controller type ∆f(Hz) Settling Time(s)
Proposed controller 0.0741 6.1539

ANN-Based PI 0.1341 26.7857

high penetration of PV and WT systems is fully tested. A
P control method is also employed for comparison purposes,
in addition to the ANN-based PI controller. This scenario
presents an ordinary operating mode of the proposed MG with
the participation of RESs and loads (consisting of residential
and industrial). The generation power of wind and solar
systems is shown in Fig. 13 (a) and (b), respectively. A severe
load fluctuation of 800 s, as shown in Fig. 13 is considered.

The performance of proposed VI control is shown in Fig. 14
and 15.The inertia control method to stabilize the frequency
of the MG is shown in this figure. Obviously, the suggested
VI is more effective in minimizing the load fluctuations and
mitigates the frequency deviations in comparison with other
strategies. Similar to the previous two scenarios, key indicators
of the AMD and settling time are used to assess frequency
deviation, as presented in Table V which this analysis is based
on the change in frequency that occurs at 180 s. The table
illustrates that when the BEL-based controller is applied, the
AMD value decreases to 0.0561 Hz. This indicates a perfor-
mance improvement of 46.62% compared to an AMD value
of 0.1051 Hz with the ANN-based PI, and an enhancement of
49.04% when compared to an AMD value of 0.1101 Hz with
the standard P controller. Fig. 15 illustrates the variations in
the output power of the ESS. It can be observed that the ESS
when controlled by the proposed method, experiences a higher
degree of charge/discharge in response to system disturbances
compared to other approaches.

TABLE V
COMPARATIVE ANALYSIS OF THE PROPOSED CONTROLLER AND

ANN-BASED PI CONTROL (THIRD SCENARIO).

Controller type ∆f(Hz) Settling Time (s)
BEL 0.0561 9.8123

ANN-Based PI 0.1051 21.1376
P 0.1101 71.2831

 

Fig. 12. The considered power disturbances of: (a) solar system and (b): wind
system.

 

 

  
Fig. 13. The load deviations of studied MG (a): residential and (b): industrial.
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Fig. 14. Comparison of Frequency deviation in MG with different controllers
(third scenario).
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Fig. 15. ESS power variation with different controllers (third).

VI. CONCLUSION

This study presented a significant advancement in address-
ing frequency stability challenges in MGs with high integration
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of RESs. A novel control strategy was implemented, applying
a BEL-based VI control method, which demonstrated superior
adaptability and robustness across diverse operating condi-
tions. The system analysis highlighted critical parameters like
the peak overshoot and undershoot of frequency deviations
and the control of charging/discharging of the ESS. These
parameters were key to comparing the dynamic performance
of the proposed control method with other techniques. The
main findings can be summarized as follows:

1) The BEL-based control strategy exhibited superior
adaptability and robustness under various operating con-
ditions.

2) Notably, the BEL-based controller reduced the AMD of
frequency to 0.0561 Hz in the final scenario, indicat-
ing performance enhancements of 46.62% and 49.04%
compared to ANN-based PI and standard P controllers,
respectively.

3) The BEL-based controller demonstrated better control
of ESS charging/discharging, thus contributing to more
efficient utilization of the ESS unit.

4) The BEL-based controller proved more resilient in high
RES penetration scenarios, demonstrating its robustness
for various MG designs.

The effectiveness of the proposed controller provides a fa-
vorable basis for future research. Some potential directions
include:

1) Expanding the application of the BEL-based VI control
to multi-area interconnected MGs. This extension could
reveal further benefits of the proposed controller in
enhancing overall MG stability in high RESs integration
scenarios.

2) Investigating the performance of the BEL-based VI
control in more complex and dynamic MGs and power
systems, where the interaction of multiple sources, loads,
and storage devices further complicates the frequency
control task.

3) Incorporating advanced machine learning techniques to
improve the learning capability and responsiveness of
the BEL-based controller, aiming for a more intelligent
and self-adaptive control solution for future MGs.
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