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Abstract

Gait modification is a common nonsurgical approach to alter the mediolateral

distribution of knee contact forces, intending to decelerate or postpone the

progression of mechanically induced knee osteoarthritis (KOA). Nevertheless, the

success rate of these approaches is controversial, with no studies conducted to

assess alterations in tissue‐level knee mechanics governing cartilage degradation

response in KOA patients undertaking gait modifications. Thus, here we investigated

the effect of different conventional gait conditions and modifications on tissue‐level

knee mechanics previously suggested as indicators of collagen network damage, cell

death, and loss of proteoglycans in knee cartilage. Five participants with medial KOA

were recruited and musculoskeletal finite element analyses were conducted to

estimate subject‐specific tissue mechanics of knee cartilages during two gait

conditions (i.e., barefoot and shod) and six gait modifications (i.e., 0°, 5°, and 10°

lateral wedge insoles, toe‐in, toe‐out, and wide stance). Based on our results, the

optimal gait modification varied across the participants. Overall, toe‐in, toe‐out, and

wide stance showed the greatest reduction in tissue mechanics within medial tibial

and femoral cartilages. Gait modifications could effectually alter maximum principal

stress (~20 ± 7%) and shear strain (~9 ± 4%) within the medial tibial cartilage.

Nevertheless, lateral wedge insoles did not reduce joint‐ and tissue‐level mechanics

considerably. Significance: This proof‐of‐concept study emphasizes the importance

of the personalized design of gait modifications to account for biomechanical risk

factors associated with cartilage degradation.
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finite element modeling, gait modification, knee osteoarthritis, lateral wedge insole,
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1 | INTRODUCTION

Knee osteoarthritis (KOA) is a degenerative joint disease reported as

a leading cause of disability across the globe,1 affecting roughly one

out of five adults over the age of 45 years.2 Joint stiffness, chronic

pain, and functional disability caused by KOA profoundly affect the

quality of life, influencing both physical and psychological health

conditions.3 KOA is characterized by an irreversible deterioration of

knee cartilages and it is often associated with the abnormal

remodeling of the underlying bone.4 As there is no cure for the

disease, the current treatments are targeted towards symptom

control, starting with nonsurgical interventions, until the degree of

KOA severity imposes the necessity of surgical intervention such as

joint replacement.

Excessive mechanical loading of the knee has been strongly

associated with the progression of KOA.5,6 Accordingly, nonsurgical

interventions, such as gait modifications, have been introduced to

target KOA biomechanical risk factors. These interventions aim to

alter lower extremity kinematics and kinetics to favorably reduce or

redistribute knee joint contact forces (JCFs).7–11 Nevertheless, direct

measurement of knee JCF is currently limited to subjects with

instrumented knee implants.12 Due to this limitation, experimentally

measured knee abduction/adduction moment is widely used as a

surrogate measure for knee JCF to assess the effectiveness of

different gait modifications.7,9–11 However, it has been shown that

changes in knee abduction/adduction moment and JCF might be

poorly correlated to alterations within the local tissue‐level joint

mechanics, such as knee cartilage stress and strain,9,13 which are

thought to govern tissue remodeling and degradation response.5,14,15

As a result, outcomes of gait modification treatments are controver-

sial and may depend on the practitioners’ expertise.8,10,16–18

Due to the burden of experimental methods to assess detailed

knee mechanics, physics‐based simulations have become a tool of

choice to estimate joint‐ and tissue‐level knee mechanical

responses.8,9,11,13,19,20 Namely, musculoskeletal (MS) modeling has

been widely used to assess alterations in knee kinematics and kinetics

in different gait modifications such as toe‐in, toe‐out, and lateral

wedge insoles.8,10,19 However, these studies have used MS

models with rigid‐body knee joints incapable of accounting for

subject‐specific knee articulating surfaces (e.g., cartilage defects) and

omitted the interaction of ligaments and menisci with estimated knee

kinematics and kinetics. Furthermore, MS models cannot estimate

tissue‐level joint mechanics, such as stress and strain within the knee

cartilage. Thorough knowledge of tissue‐level knee mechanics is

essential to predict the degradation response of knee cartilage (e.g.,

due to gait modifications), such as collagen network damage, cell

death, and loss of proteoglycans, for which finite element (FE)

analysis has demonstrated a great potential.5,13–15 Nevertheless, to

the best of our knowledge, there are no studies assessing the effect

of gait modifications on tissue‐level joint mechanics of individuals

with KOA.

In this study, we aimed to (1) estimate tissue‐level knee

mechanics of individuals with KOA undertaking different gait

modifications and (2) investigate whether the optimal gait modifica-

tion (i.e., the one with the most reduction in knee mechanics

associated with KOA progression) differs when using subject‐specific

tissue‐level knee mechanics (i.e., using FE analysis) compared with

joint‐level knee mechanics (i.e., using MS analysis) or the conven-

tional recommendations reported in the literature. To this end, we

utilized our previously developed multiscale MS‐FE analysis work-

flow, accounting for subject‐specific kinematics, kinetics, and

articulating surfaces of the knee.13,21 We hypothesized that the

optimum gait modification, which minimizes knee mechanics, might

differ when using tissue‐level than joint‐level knee mechanics.

2 | METHODS

2.1 | Participants and data collection

Five participants with previously diagnosed medial tibiofemoral

osteoarthritis22 were recruited for this study (Table 1). The study

procedures, as well as the use of the collected data, were approved

by the NHS Greater Glasgow and Clyde ethical committee (permis-

sion number 15‐WS‐0287 183203). Written informed consent was

obtained from participants.

The motion data were collected in the Human Performance Lab

of Glasgow Caledonian University, consisting of three‐dimensional

TABLE 1 Participants’ characteristics.

Patient number Sex Age (years) Mass (kg) Height (m) Test leg

K/L gradea

Medial Lateral

1 F 64 74 1.56 Right 4 2

2 M 60 112 1.84 Left 4 3

3 F 56 90 1.63 Right 4 2

4 M 74 89 1.66 Right 4 2

5 M 58 71.2 1.68 Left 4 2

Abbreviations: F, female; M, male.
aKellgren and Lawrence grade.
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(3D) marker trajectories (Qualisys Opus camera system sampling at

120Hz, Qualisys AB) and ground reaction forces (Kistler force plates

sampling at 2000Hz, Kistler Group). We studied a total of eight

different gait conditions and modifications (Figure 1), consisting of

normal barefoot walking (“barefoot”), normal shod walking (“shod”),

walking with subject‐specifically made23 0°, 5°, and 10° lateral wedge

insoles (“insole‐0,” “insole‐5,” and “insole‐10”), walking with toes

slightly turned inwards (“toe‐in”), walking with toes slightly turned

outwards (“toe‐out”), and walking with a wider stance (“wide”). Gait

modifications were bilateral and toe‐in, toe‐out, and wide‐stance

were performed relative to participants’ normal walking line‐of‐

progression. Participants walked at their self‐selected speed with

standardized shoes.24 The walkway was long enough to reach stable

gait speed. Five trials were recorded for each gait style.

In addition to the motion data, two sets of magnetic resonance

images (MRIs) were taken from each participant (Figure 1), consisting

of (1) MRI of the entire lower extremity and (2) detailed knee MRI from

participants’ selected knee (Table 1) using a 3T Siemens

Prisma scanner. For the lower extremity MRI (i.e., used to create

subject‐specific MS models), a Peripheral Angio 36 coil was used in

combination with a T1W‐Vibe‐Dixon sequence taken in the transverse

plane (in‐plane resolution 1.4mm, slice thickness 1.4mm).8 The

detailed knee MRI (i.e., used to create subject‐specific FE models)

was acquired using a quad knee coil and sagittal 3D‐DESS‐WE

sequence (in‐plane resolution 0.6mm, slice thickness = 0.7mm).

2.2 | MS analysis

The MS modeling of the current study are explained in greater detail

in our previous study,8,25 and hence, here we provide a brief

explanation.

The MS analyses were performed in AnyBody Modeling System

(v 7.1, AnyBody Technology).26 Subject‐specific MS models were

built based on the generic human body model from AnyBody

Managed Model Repository (AMMR, v 1.6), which were updated to

utilize Twente Lower Extremity Model (TLEM v 2.0).27 Using lower

extremity MRI of participants, the pelvis, femur, tibia, patella, talus,

F IGURE 1 Workflow of the study (graphic is adapted from Dzialo et al.8).
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and foot bones were first manually segmented in MIMICS (v 19,

Materialise). These segmented bones were used to morph the

cadaver‐based stereolithography files from the TLEM v 2.027 to the

subject‐specific shapes using a Radial‐basis Function approach

(Figure 1). Through the morphing, muscle insertion points and muscle

wrapping surfaces were made subject‐specific.8 Additionally, subject‐

specific hip centers, knee axes, and ankle axes were obtained through

surface fits. In the MS models, the hip joint was modeled with a ball‐

and‐socket (3 DoF) joint, and tibiofemoral, patellofemoral, ankle, and

subtalar joints were modeled as hinge‐type (1 DoF) joints. Hill‐type

muscle‐tendon units were used and muscles’ isometric strength were

obtained based on body mass index, segments’ mass, and segments’

length.28 For each walking trial, the muscle forces (f )i
m were estimated

by minimizing the following cost function8,25:







∑ v

f

N
Costfunction =

i

M

=1
i

i
m

i

3

(1.a)

subjected to:

Cf d= (1.b)

f N i M0 ≤ ≤ , = 1, 2, …, ,i i (1.c)

where vi is the muscle volume normalization factor of the ith

muscle,25,29f i
m is the force generated by the ith muscle, Ni is the

instantaneous maximum isometric force of the ith muscle, and M is

the total number of muscles in the MS model. Eq. 1.b represents

equations of motion, in which C is a coefficient matrix for all the

unknown forces (f) in the MS model, f is the vector of unknown

forces consisting of muscle (f i
m) and JCFs, and d is a vector containing

all inertial, Coriolis, and external forces applied to the MS model.

Of note, research studies have shown that the cost function in

Eq. 1.a, which minimizes the sum of cubed muscle forces, provides a

more accurate estimation of knee JCF and muscle activations than

commonly used criterion of the sum of squared muscle forces.25,30

Moreover, in the TLEM,27 muscles with a wide insertion area are

subdivided into multiple branches. However, such a subdivision of

muscles can affect the muscle and joint reaction force estimates.31

Consequently, previous studies25,29,32 have defined a normalization

factor (vi in Eq. 1.a) based on the muscle volume, which accounts for a

proper subdivision of the force among split and nonsplit muscles.

2.3 | FE analysis

2.3.1 | Creating subject‐specific FE models

Detailed knee MRI of the participants were used to create subject‐

specific FE models (Figure 1). The distal femur and proximal tibia from

the detailed knee MRI were used to register the lower limb and

detailed knee scans. Knee joint cartilages (consisting of femoral, tibial,

and patellar cartilages), the underlying subchondral bones, and

menisci were manually segmented in MIMICS (v 19, Materialise),

and then the 3D geometries were meshed in HyperMesh (v 2019,

Altair) using C3D8P elements. We were not interested in the

subchondral bone mechanics; however, they were modeled to bear

the load and provide contact in the regions where the cartilage was

utterly worn out. Thus, only a thin layer of each subchondral bone

(with several millimeters of thickness) was modeled to minimize the

computational costs. Menisci horn attachment and knee ligament

insertion points were also extracted from participants’ MRI. Anterior

and posterior cruciate ligaments (ACL and PCL), medial and lateral

collateral ligaments (MCL and LCL), medial and lateral patellofemoral

ligaments (MPFL and LPFL), and patellar ligament (connecting patella

to the tibia) were included in the FE models. Ligament properties,

consisting of prestrain and stiffness, were based on our previous

studies,21,33–38 in which we observed knee secondary kinematics and

center of pressure (CoP) comparable to in vivo and in vitro data.

Subchondral bones were modeled as linear elastic (Young's

modulus = 15 GPa, Poisson's ratio = 0.339). Knee cartilages were

modeled using a fibril‐reinforced poroviscoelastic (FRPVE) material

model and menisci were modeled using a fibril‐reinforced poroelastic

material model21 (Figure 1). These biphasic FRP(V)E material models

have been developed to account for the interaction of fibrillar (i.e.,

collagen network) and nonfibrillar (i.e., proteoglycan) matrices, as

well as the interstitial fluid flow within the knee cartilages and

menisci.13,21,35,40,41 The FRP(V)E material parameters of healthy

tissues were obtained from the literature, as no studies reported

material parameters for osteoarthritic human tissue, that is, verified

at joint level analysis. ACL, PCL, MCL, and LCL were modeled using

nonlinear spring bundles,21,35,42 whereas MPFL, LPFL, patellar

tendon, and menisci horn attachments were modeled using linear

spring bundles.21,35,43–45 More details on the material models and

parameters can be found in Supporting Information: Section 1.1.

2.3.2 | Boundary conditions, loading, and FE analysis

The FE models had a 6‐DoF tibiofemoral and a 6‐DoF patellofemoral

joints, and contact interactions were defined to include all the

possible contacts, that is, cartilages, menisci, and subchondral bones.

We exploited a kinematics‐kinetics‐driven MS‐FE modeling

approach, developed and verified in our previous studies,13,21,34,35

to provide the FE models with inputs. Of note, the modeling

approach has shown great potential for estimating knee JCF25,33,35

and contact pressure,34 and predicting locations susceptible to

osteoarthritis.37,38

First, two reference points (i.e., femoral and patellar) were

defined within the FE models according to the origin of the femoral

and patellar coordinate systems of the associated MS model

(Figure 1). Then, femoral and patellar cartilages and subchondral

bones were coupled to the reference points, correspondingly. The FE

models’ inputs were applied to the femoral and patellar reference

points, whereas all the nodes on the bottom of the tibia (i.e., either

tibial cartilage or tibial subchondral bone) were fixed to the ground

(Figure 1).
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Inputs to the FE models (Figure 1) consisted of (1) knee flexion

angle, (2) the net forces and moments on femur coming from the

gravitational, inertial, muscle, and hip joint reaction forces, and (3) the

net forces and moments applied on patella coming from the gravity,

inertia, and the quadriceps muscles. The FE analyses were performed

in Abaqus (v 6.20, Dassault Systèmes) using soil consolidation

analysis and the whole stance phase of each gait trial was analyzed.

FE analysis took ~15 h for each trial on an Intel Xeon 6248 CPU

(single‐core analysis). More details on the boundary conditions can be

found in Supporting Information: Section 1.2.

2.4 | Postprocessing of the results

The FE analysis could be successfully completed for 141 out of 200

study trials (≥2 trials per subject per gait style, except for the toe‐in

modification of participant 1, toe‐out modification of participant 4,

and wide modification of participant 5). FE analysis of the rest of the

trials (59 trials) did not converge due to mesh distortion caused by

the excessively worn cartilages during the analysis. Here we made

overall comparisons across the participants and gait conditions and

modifications, using the mean profile of the successfully analyzed

trials. Also, we compared different gait modifications to shod walking,

assuming that it is the most conventional footwear in daily activities.

We investigated secondary knee kinematics, tibiofemoral JCF,

tibial cartilage CoP, and maximum and impulse of mechanical

responses of knee cartilages, including maximum principal stress,

maximum shear strain, and collagen fibril strain. Here, secondary

knee kinematics were estimated within FE analysis and refer to the

tibiofemoral and patellofemoral DoF, excluding knee flexion (primary

knee kinematics estimated using inverse kinematics). Also, the force

passing through the subchondral bone refers to the force transmitted

only through the contact regions between the tibial subchondral

bone and either femoral cartilage, femoral subchondral bone, or

menisci (i.e., excluding the JCF passing through the tibial cartilage).

However, the tibiofemoral JCF refers to the sum of the forces

passing through the tibial cartilage and its underlying subchon-

dral bone.

To calculate the maximum and impulse of tissue mechanics, first,

the elements of each compartment (e.g., medial tibial cartilage) that

were in contact with any other surfaces (such as femoral cartilage,

bones, and menisci) were detected separately at each time point.

From these elements, the element with the maximum tissue

mechanical response and its neighboring elements (elements shar-

ing ≥ 1 node) were selected at each time point of the cycle. This was

done separately for maximum principal stress, maximum shear strain,

and collagen fibril strain. Next, the average of the tissue mechanical

response was calculated from these selected (neighboring) elements,

resulting in curves of the instantaneous maximum tissue mechanical

responses over the contact area. From these, the maximum values

(i.e., the peak of the trial) and the area under the curves (i.e., the time

integral called the impulse) were calculated. The maximum values are

discussed in the manuscript, while impulses of tissue mechanical

responses are presented in the Supporting Information for interested

readers.

3 | RESULTS

For two out of five participants, that is, Participants 2 and 5, the gait

modifications had minor effects (near complete overlap) on the peak

of the secondary knee kinematics (Figure 2) and total tibiofemoral

JCF as well as medial to total tibiofemoral JCF (Figure 3). Across all

the participants, the use of lateral wedge insoles caused only minor

alterations in the estimated secondary knee kinematics, tibiofemoral

JCF, and the CoP on the medial tibial cartilage compared with toe‐in,

toe‐out, and wide gait modifications (Figures 2, 3, and Supporting

Information: Figure S1).

We observed measurable changes in the peak of the tissue‐level

joint mechanics in all study participants across different gait

modifications in both tibial (Figures 4 and 5) and femoral cartilages

(Figure 5 and Supporting Information: Figure S2). Nevertheless, the

gait modification that minimized tissue mechanics (e.g., the maximum

principal stress, maximum shear strain, and collagen fibril strain)

differed across the study participants and, in some cases, also across

the region of interest (i.e., tibial or femoral cartilages). Regarding the

lateral wedge insoles, our results did not show an overall decreasing

(or increasing) trend in the peak of tissue mechanics in medial tibial

and femoral cartilages when increasing the inclination angle of the

insoles from 0 to 5 and 10 degrees (Figures 4, 5, and Supporting

Information: Figures S1–S3).

In Participant 1, the peak of the tissue mechanical responses was

the lowest during barefoot and toe‐in walking within the medial tibial

cartilage, while wide stance modification was the one with greatest

changes in tissue mechanics. That is, it increased the maximum

principal stress by about +17% and the maximum shear strain by

about +7% within medial tibial cartilage compared with shod walking

(Figures 4–6). In Participant 1, walking with lateral wedge insoles

increased tissue mechanics within the medial tibial cartilage (Figure 5

and Supporting Information: Figure S2). Changes in the medial

femoral cartilage tissue mechanics across the modifications were

marginal in participant 1 (Figure 5 and Supporting Information:

Figure S2).

In Participant 2, toe‐out was the gait modification that produced

the greatest reduction in tissue mechanics of medial tibial cartilage

(Figures 4–6). Toe‐out also decreased tissue mechanics in medial

femoral cartilage, but to a lesser degree than tibial cartilage (Figure 5

and Supporting Information: Figure S2). Compared with shod walking,

toe‐out reduced the maximum principal stress by about −11% within

the medial tibial cartilage (Figure 6). Nonetheless, in Participant 2,

toe‐in and insole‐5 were the gait modifications with the greatest

increase in the tissue mechanics in medial tibial and femoral

cartilages, that is, about +14% in maximum principal stress and

+7% in maximum shear strain within medial tibial cartilage, compared

with shod walking (Figures 4–6 and Supporting Information:

Figure S2).
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In Participant 3, toe‐in and wide stance were the gait modifica-

tions, which produced the greatest reduction in medial tibial cartilage

tissue mechanics, that is, about −6% in maximum principal stress of

medial tibial cartilage compared with shod walking. Toe‐in also

decreased tissue mechanics in medial femoral cartilage; however,

toe‐out was the modification with the greatest reduction in medial

femoral cartilage tissue mechanics, that is, about −28% in maximum

principal stress and −12% in maximum shear strain compared with

shod walking. In Participant 3, barefoot walking and insole‐10

produced the greatest increase in tissue mechanics within medial

tibial cartilage, that is, up to +26% in maximum principal stress and

+5% in maximum shear strain compared with shod walking

(Figures 4–6 and Supporting Information: Figure S2).

In Participant 4, toe‐out and wide stance were the gait

modifications, which produced the greatest reduction in both medial

tibial and femoral cartilages tissue mechanics, that is, about −37% in

maximum principal stress and −26% in maximum shear strain

compared with shod walking (Figures 4–6 and Supporting Informa-

tion: Figure S2). Nonetheless, shod walking produced the greatest

tissue mechanics within the medial tibial and femoral cartilages, that

is, about +15% in maximum principal stress and +14% in maximum

shear strain of medial tibial cartilage compared with barefoot walking

(Figures 4–6 and Supporting Information: Figure S2).

In Participant 5, shod walking produced the least tissue

mechanics load within medial tibial and femoral cartilages, that is,

about −13% in maximum principal stress and −2% in maximum shear

strain of medial tibial cartilage, compared with barefoot walking

(Figures 4–6 and Supporting Information: Figure S2). Toe‐in and toe‐

out were modifications with the greatest increase in tissue mechanics

within tibial and femoral cartilages, that is, about +28% in maximum

principal stress and about +14% in maximum shear strain of medial

tibial cartilage compared with shod walking (Figures 4–6 and

Supporting Information: Figure S2).

4 | DISCUSSION

In this study, using subject‐specific MS‐FE analysis, we investigated

whether and how different gait modifications affected knee cartilage

mechanics in individuals with medial tibiofemoral KOA. The MS

F IGURE 2 Secondary knee kinematics (i.e., femur relative to tibia) of study participants during walking with different gait modifications
estimated by the FE models of the study. Plots show the average profile of each subject's gait modification.

ESRAFILIAN ET AL. | 331

 1554527x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jor.25686 by A

alborg U
niversity L

ibrary, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



models were generated using participants’ lower limb MRI, account-

ing for subject‐specific joints’ center, muscle insertion points, and

muscle moment arms. Then the participants’ FE models were

generated using manually segmented tibial, femoral, and patellar

cartilages and subchondral bones, menisci, and knee ligaments. The

FRPVE FE models enabled the estimation of tissue mechanics within

fibrillar (i.e., collagen network) and nonfibrillar (i.e., proteoglycans)

matrices of knee cartilages. Of note, excessive maximum principal

stress and collagen fibril strain have been reported to indicate

collagen network damage,5,6 whereas excessive maximum shear

strain is reported to indicate cell death and loss of proteoglycans14,46

in knee cartilage.

Our results suggested that conventional approaches, that is,

based on joint‐level mechanics, might fail in providing participants

with the most appropriate gait modification to minimize the tissue

mechanics and, potentially, postpone the onset and progression of

KOA (Figure 6). More importantly, the use of subject‐specific tissue‐

level mechanics (here obtained from FRPVE FE modeling) showed

potential for differentiating the effect of gait modifications on the

knee mechanics, which was not evident using joint‐level mechanics

obtained from MS analysis (e.g., Participants 2 and 5 in Figure 3

compared with Figures 4–6). This was in line with our hypothesis and

can be attributed to the inclusion of participant's joint geometries,

the interaction of knee ligaments, and the use of the complex FRPVE

material model in the FE models, compared with the rigid‐body MS

analysis.47 It has been shown that tissue‐level knee mechanics can be

substantially affected by alterations in knee articulating surfaces, for

example, due to cartilage defect, which is common in participants

with KOA.14,47 Moreover, due to muscle weakness,48 individuals with

KOA often have limited capability to coordinate their muscles, for

example, to favorably control knee alignment, (un)load the knee, and

reduce the load‐related pain.49 This limited capability may emphasize

the importance of evidence‐based and subject‐specific design of gait

modifications in individuals with KOA to avoid excessive tissue‐level

loading13,19 and reduce pain.50,51

Nevertheless, there were also agreements between our study

results and those reported in the literature, namely the controver-

sial effectiveness of lateral wedge insoles. Lateral wedge insoles

F IGURE 3 The tibiofemoral joint contact force (JCF) of the participants during walking with different gait modifications estimated by the
finite element (FE) models of the study. Plots show the average profile of each subject's gait modification. Top row: total JCF. Middle row: the
ratio of the medial JCF to the total JCF. Bottom row: the ratio of the JCF passing through the tibial subchondral bone to the total tibiofemoral
JCF (patients with no plots mean zero JCF through the subchondral bone during the cycle). Note that the JCF passing through the tibial
subchondral bone is the JCF passes through the contact area between the tibial subchondral bone and either of femur or menisci.
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intend to shift the ground reaction force towards the outside of

the foot and consequently reduce the knee adduction moment.7,50

However, it is widely reported that the use of lateral wedge insoles

provides small or almost no symptomatic or structural benefits for

patients with KOA, compared with flat insoles.16,17,52,53 Our

results also showed a minimum (and in some cases, a detrimental)

effect of the lateral wedge insoles on the knee kinematics

(Figure 2), JCF (Figure 3), and tissue‐level knee mechanics

(Figures 4–6 and Supporting Information: Figures S2 and S3).

Hence, in line with the literature, our results indicated that using

lateral wedge insoles is unlikely to decelerate the progression of

mechanically induced KOA.

We also provided examples of the subject‐specific design of gait

modification, that is, to reduce tissue‐level joint mechanics in the

interest of decelerating or postponing KAO (Figure 6). Importantly,

the participant's most‐appropriate gait modification (i.e., the one with

the greatest reduction in knee cartilage mechanics) was different

when using tissue‐level mechanics (such as stress and strain)

compared with using joint‐level knee mechanics (such as knee

abduction/adduction moment and JCF8). Overall, the differences

originated from the stress concentration (e.g., at lesions or edges) and

the nonlinear response of the FRPVE material model. Likewise, our

previous study also showed that joint‐level mechanics (e.g., moments

and JCF) are unlikely to represent tissue‐level mechanics (such as

F IGURE 4 The peak of the maximum principal stress (previously suggested as the indicator of collagen network damage) and maximum
shear strain (previously suggested as the indicator of proteoglycan loss and cell death) within the medial and lateral tibial cartilage of study
participants during the gait cycles of different gait modifications. Plots show average profile of each gait modification.
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stress and strains)13 governing tissue degradation and remodeling

response. For instance, in Participant 5, toe‐in was the gait

modification with the greatest reduction in the medial tibiofemoral

JCF (Figure 2, consistent with our previous study on the same

participant8). In contrast, our FE analysis showed that toe‐in caused

the greatest tissue‐level knee mechanics compared with other

modifications (Figure 6), as CoP moved towards the posterior and

lateral edge of the medial tibia (Supporting Information: Figure S1),

causing stress concentration (Figure 6). To summarize, our subject‐

specific analysis suggested the potential for enhancing the effective-

ness of gait modifications, that is, planning for the reduction of

tissue‐level joint mechanics to slow down or postpone KOA.

Our study also had limitations. First, we did not evaluate the

effect of long‐term use of gait modifications, which may alter the

outputs. Nevertheless, the utilized workflow has shown potential for

analysis of follow‐up assessments.14,54 Also, some gait modifications

(i.e., toe‐in, toe‐out, and wide stance) were not standardized, as this

would be difficult to achieve in practice. We pragmatically allowed

these modifications to be determined by the participant based on

comfort and feasibility to maintain the adaptation over a distance.

The use of a 1 DoF knee joint within the MS analyses may be

addressed as a study limitation. However, previous studies have

shown that an MS model with a subject‐specific 1 DoF knee model

could estimate knee JCF comparable with in vivo measurements25,55

and also with the JCF estimated by an MS model with subject‐

specific 12 DoF knee joint.25 Moreover, it has been reported that a

12 DoF knee FE model driven by a 1 DoF knee MS model could

estimate secondary knee kinematics favorably comparable with the in

vivo measurements, with those estimated by a 12 DoF MS‐FE model,

and those estimated by a 12 DoF MS model.33,34,56

Static optimization has demonstrated the potential for detecting

changes in knee JCF induced by gait modifications,8,57 although

muscle recruitment strategies may differ in patients with KOA58 than

in normal individuals or those with knee implants (i.e., used in the

study by Marra et al.25). Future studies should investigate methods to

improve the included muscle recruitment criteria, for example,

including co‐contractions explicitly in the MS analysis. One sugges-

tion could be electromyography (EMG)‐assisted MS models.33–35,59

However, EMG‐assisted approaches typically include simplifications

of the underlying anatomy, frequently leave out the effects of deep

muscles, and as such, may not show more accurate estimates of the

in vivo joint forces when compared with instrumented implant

data.25,60 Nevertheless, here we were unable to explicitly verify

estimated muscle activations or utilize EMG‐assisted MS‐FE pipelines

due to the lack of EMG measurements in our data set. Also, muscle

strengths within the MS models were set according to the

literature,8,28 since study participants were unable to perform

maximum isometric strength measurements. Moreover, the material

parameters, structure, and composition of knee cartilages, menisci,

subchondral bones, and ligaments may vary across the individuals

due to, for example, aging and tissue deterioration.46 However, the

fact remains that there are no practical methods to fully extract

subject‐specific material properties of knee load‐bearing tissue.

Additionally, previous investigations have reported that measure-

ment errors and uncertainties can substantially affect the calibration

of material model parameters, for example, in ligaments.61 Hence, the

material parameters of the FE models were adopted from the

literature, including our previously verified MS‐FE models. None-

theless, it has been reported that the use of softer or stiffer materials

(i.e., representative of healthy or osteoarthritic cartilage) may change

the magnitude of the estimated tissue mechanics, but the pattern and

distribution of tissue mechanics remain comparable.54 Importantly,

our investigations in the current study did not focus on the

magnitudes of the estimated tissue mechanics, but we compared

the relative tissue mechanics across the undertaken gait modifica-

tions. Moreover, gait modifications had a marginal effect on the knee

CoP (Supporting Information: Figure S1) across the gait modifica-

tions. This potentially attenuates alterations in relative tissue

F IGURE 5 The peak of the maximum principal stress (top row) and maximum shear strain (bottom row) within the medial tibial cartilage (on
the left) and medial femoral cartilage (on the right) of study participants. Error bars show SDs. The corresponding magnitudes (mean ± SD) are
shown in the bars for ease of reading.
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mechanics (e.g., at maximum knee JCF) due to neglecting possible

regional changes in material properties.

In conclusion, our proof‐of‐concept study suggested that the

optimal gait modification of individuals may be different (and even

opposed) when using tissue‐level mechanics, compared with using

joint‐level knee mechanics such as knee abduction/adduction

moment and JCF. We also demonstrated examples of using multi-

scale simulations to assist in choosing optimal gait modification

producing minimum tissue mechanics, which may decelerate or

postpone KOA progression. This offers great potential for clinicians’

decision‐making regarding the subject‐specific design of gait modifi-

cations. In the future, with a larger cohort and follow‐up data, we will

expand and validate this proof‐of‐concept study by adapting our

rapid (several minutes) MS‐FE modeling techniques35,62 and cartilage

degradation algorithms5,14 to provide an automated in silico tool for

subject‐specific design of nonsurgical corrective healthcare plans,

such as gait modifications, gait retraining, and rehabilitation protocols

for individuals with KOA.13
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