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To provide an improved understanding of the behavior of screw piles in disturbed soil, as a series of companion papers, labora-

tory tests with full scale tapered jacking piles were performed in the current study. The designated tapered pile has the similar 

dimensions, material properties and cone-shaped bottom, with the exception of threads eliminated.  

The main objectives of this paper are to: (1) establish the robust and efficient simple high strain dynamic testing (HSDT) re-

quirements for validating displacement tapered piles capacities while exploring the installation effect; (2) determine a correlation 

between static and dynamic bearing capacity in compression for steel tapered piles installed by jacking in sand with various relative 

densities. 

Out of nine large-scale laboratory expriments at Aalborg University Offshore Geotechnics Laboratory [1-3] with the tank filled 

with Aalborg University Sand No.1, this research exclusively presents some lessons learned from an exemplar tapered jacking pile 

installation (Test 4) in dry sand (relative density 𝐷𝑟 = 73%) and its response to monotonic and impact loadings. The selected piles 

have diameter of D=76 mm and 89 mm with length of 2.07 m. The layout of the miniature CPTs carried out to measure soil state is 

shown in Fig. 1, with four CPTs performed following each jacking installation campaign to study the soil state after the installation 

of the piles (Fig. 1). In order to fulfill the objectives, the piles are installed by a static compression load that includes an unload-

ing/reloading step, followed by dynamic testing in order to facilitate the determination of the bearing capacity (Fig. 2). The hammer 

test was carried out on both piles, by a hammer from increasing drop heights of 218, 418, 618, 818 and 1018 mm (Fig.3). The 

hammer consists of a sleigh with multiple attached steel plates weighting 19.31 kg on average and the sleigh itself weighs 18.55 kg. 

Tapered pile jacking resulted in dilation extending to a depth of 2.8𝐷𝑝𝑖𝑙𝑒when diameter exceeds from 76 mm to 89 mm. By contrast, 

in the region around pile P76, the soil was entirely densified. The tendency to densify the soil near tip area due to jacking installation 

is observed in both tests, where the initial viod ratio varied from 0.67 to  0.59  and from 0.63 to 0.57 corresponding to piles P76 and 

P89, respectively (Fig.4). 

 
 

Figure 1: An overview of the miniature CPT tests per-

fomed for P76 and P89, , Ø [mm]. 

Figure 2: Measured axial compression load test response 

resulting from static and impact loading (pile P76: test 4). 
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Figure 3: HSDT tetsing configuration Figure 4: Relative densities prior to and post installation 

for Test 4 determined from a single CPTu test and 

selected CPT tests. 

Subseuqntluy, Danish Pile Driving Formulas (DDR) introduced by [4] was ustilised which is according to the required potential 

energy from a hammer stroke to exceed the pile penetration resistance. The mass of the hammer G is defined by: 

𝐺 =
𝑅𝑠𝑠 + 0.5𝑠0

𝜂ℎ𝑑𝑟𝑜𝑝

 
(1) 

where elastic settlement 𝑠0=
𝑅𝑠𝑙𝑝

𝐴.𝐸𝑠𝑡𝑒𝑒𝑙
, A is cross-sectional area, E is the Young’s modulus, l is the installed length of pile which is 

approximately 1.9 m,  and  𝑅𝑠 is the maximum static force required to install the pile. The efficiency factor 𝜂 is set as 1. During the 

impact loading tests, the settlement of the pile is measured with a 1 mm accuracy for each hammer stroke, and the limiting settlement, 

s was set to yield a certain level (0.1D) when the drop height ℎ𝑑𝑟𝑜𝑝 is 618 mm. Thus, the dynamic bearing capacity 𝑅𝑑 = 

(𝜂ℎ𝑑𝑟𝑜𝑝𝐺)/(𝑠 +
1

2
𝑠0) , 𝑅𝑠 and ratio=𝑅𝑑/𝑅𝑠 are shown in Table 1.  

Table 1. Summary of static and dynamic bearing capacity for P76 and P89  

Test no. Static bearing capacity 

𝑅𝑠 [kN] 

Dynamic bearing capacity 

𝑅𝑑 [kN] 

Ratio 

P76-4 89 64.5 0.7 

P89-4 123.4 83.8 0.68 
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