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ABSTRACT

Knowledge Graphs (KGs) represent heterogeneous domain knowl-
edge on the Web and within organizations. There exist shapes con-
straint languages to define validating shapes to ensure the quality
of the data in KGs. Existing techniques to extract validating shapes
often fail to extract complete shapes, are not scalable, and are prone
to produce spurious shapes. To address these shortcomings, we pro-
pose theQuality Shapes Extraction (QSE) approach to extract
validating shapes in very large graphs, for which we devise both an
exact and an approximate solution.QSE provides information about
the reliability of shape constraints by computing their confidence
and support within a KG and in doing so allows to identify shapes
that are most informative and less likely to be affected by incom-
plete or incorrect data. To the best of our knowledge, QSE is the
first approach to extract a complete set of validating shapes from
WikiData. Moreover, QSE provides a 12x reduction in extraction
time compared to existing approaches, while managing to filter out
up to 93% of the invalid and spurious shapes, resulting in a reduc-
tion of up to 2 orders of magnitude in the number of constraints
presented to the user, e.g., from 11,916 to 809 on DBpedia.
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1 INTRODUCTION

Knowledge Graphs (KGs), stored as collections of triples of the
form ⟨𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏 𝑗𝑒𝑐𝑡⟩ using the Resource Description
Framework (RDF) [10], are in widespread use both within compa-
nies [29, 43, 44] and on theWeb [46, 49]. Nonetheless, as KGs quickly
accrue more data, practical applications impose further demands
in terms of quality assessment and validation [34, 38, 52]. Hence,
shapes constraint languages, e.g., SHACL [23], and ShEx [35], have
been proposed to validate KGs by enforcing constraints represented
in the form of validating shapes. For instance, we can express that
an entity of type Student requires a name, a registration number,
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(a) RDF Graph

(b) Validating Shapes

Figure 1: An example RDF Graph and Validating Shapes

and should be enrolled in some courses; and that these attributes
should be of type string, integer, and Course, respectively – see
Figures 1a and 1b for an example KG and corresponding shapes.

Often, validating shapes are manually specified by domain ex-
perts. Yet, when trying to specify validating shapes for already-
existing large-scale KGs, data scientists are in need of tools that can
speed up this process [38]. Thus, various tools have been proposed
to automatically [9, 12, 20, 26] or semi-automatically [5, 32, 36] pro-
duce a set of validating shapes for a target KG. Unfortunately, these
methods suffer from 3 important limitations: (1) they are not able
to produce complete shapes, e.g., they can identify that a student
should have a property of type takesCourse but they do not extract
the fact that the object should be of type Course; (2) the shapes
they produce are easily affected by errors and inconsistencies in
the KG, e.g., if some departments, by mistake, are attached the
property hasAdvisor, a corresponding spurious shape is extracted;
and (3) they do not scale to large KGs, e.g., they cannot process the
full English WikiData, and they take days to process a subset of it.
Therefore, in this work, we present the first techniques for efficient

extraction of validating shapes from very large existing KGs that also

ensures robustness against the effects of spuriousness.
Spuriousness poses important challenges to automatic shape

extraction methods. For instance, in DBpedia [4], some of the enti-
ties representing musical bands are wrongly assigned to the class
dbo:City. As a consequence, when shapes are extracted from its
instance data using existing approaches, the resulting node shape
for dbo:City specifies that cities are allowed optional properties like
dbo:genre and dbo:formerBandMember. Hence, due to the effect
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of spuriousness, existing approaches generate tens of thousands of
shapes (our experiments show that standard extraction processes
produce more than 2 million property shapes for WikiData [49]).
Thus, it becomes unmanageable for domain experts to manually
identify valid shapes. SheXer [12] is the only existing approach
that attempts to tackle this issue by filtering shapes based on a
“trustworthiness” score. Unfortunately, this score does not directly
translate into how frequently a shape is satisfied in a dataset, so it
is still prone to generate spurious shapes, and it is also hard to tune.
Furthermore, SheXer is not able to efficiently process large KGs.

Therefore, to tackle the issue of spuriousness, we study and for-
malize the problem of support-based shapes extraction and propose
the Quality Shapes Extraction (QSE) approach as a solution
to this problem. To tackle the issue of scalability, we devise two
efficient algorithms, QSE-Exact and QSE-Approximate. Hence, QSE
can filter out shapes affected by spurious or erroneous data based

on robust and easily understandable measures. QSE allows shapes
extraction both from KGs available as files as well as SPARQL end-
points. Moreover, our efficient approximation algorithm enables
shape extraction even on a commodity machine by sampling the KG
entities via a dynamic multi-tiered reservoir sampling technique.

We perform a thorough experimental evaluation using both
synthetic (LUBM [18]) and real (DBpedia [4], YAGO-4 [46], Wiki-
Data [49]) KGs demonstrating the benefits of our approach. The
shapes produced by our approach are of high quality and instru-
mental for easily finding errors in real KGs. The results show that
QSE-Exact can extract shapes from the entireWikiData’s 2015 dump
in 16 minutes and from 2021’s dump (1.9B triples) in 2.5 hours. Sim-
ilarly, QSE-Approximate can extract shapes from WikiData’s 2021
dump in 90 minutes on a 32GB machine while still achieving 100%
precision and 95% recall in the set of shapes produced. Hence, our
sampling strategy is accurate and efficient both when extracting
shapes from a file as well as when using an endpoint.

2 RDF SHAPES AND THE QSE PROBLEM

In the following, we first introduce the KG data model and the
concepts of validating shapes, their support, and confidence, then
we define our focus: the Quality Shapes Extraction problem.

2.1 Preliminaries

The standard model for encoding KGs is the Resource Description
Framework (RDF [10]), which describes data as a set of ⟨𝑠, 𝑝, 𝑜⟩
triples stating that a subject 𝑠 is in a relationship with an object 𝑜
through predicate 𝑝 . Therefore, we define an RDF graph as follows:

Definition 2.1 (RDF graph). Given pairwise disjoint sets of IRIs I,
blank nodes B, and literals L, an RDF Graph G:⟨𝑁, 𝐸⟩ is a graph
with a finite set of nodes 𝑁⊂(I∪B∪L) and a finite set of edges
𝐸⊂{⟨𝑠, 𝑝, 𝑜⟩∈(I∪B) × I × (I∪B∪L)}.

Moreover, we distinguish two special subsets of the IRIs I: pred-
icates P and classes C. The set of predicates P⊂I is the subset
of IRIs that appear in the predicate position 𝑝 in any ⟨𝑠, 𝑝, 𝑜⟩∈G.
Among predicates P, we identify the type predicate a∈P, which
corresponds to IRI rdf:type [51] or wdt:P31WikiData [49], as the
predicate that connects all entities that are instances of a class to the
node representing the class itself, i.e., their type. Thus, all the IRIs
that are classes in G form the subset C:{𝑐∈I|∃𝑠∈I s.t. ⟨𝑠, a, 𝑐⟩∈G}.

Given a KG G, a set of validating shapes represents integrity
constraints in the form of a shape schema S over G. Since the
shape schema describes shapes associated with node types and
their connections to other attributes and node types, we can also
visualize the shape schema S as a particular type of graph (see
Figures 1a and 1b). Therefore, in the following, we refer to two
concepts: the data graph G and the shape graph derived fromS. The
data graph is the RDF graphG to be validated, while the shape graph
consists of constraints in the form of the shape schema S against
which entities of the data graph are validated. These constraints are
defined using node and property shapes. In the following, we adopt
the previously defined syntax [42] to refer to the set S according to
the SHACL core constraint components [50]. Finally, while validating
shapes can also be expressed in ShEx [34], our approach can be
trivially extended to output ShEx directly, or it can exploit existing
SHACL to ShEx converters [53]. Thus, without loss of generality, we
focus on the current standard for SHACL shapes in the following.

Definition 2.2 (Shape Schema). A SHACL shape schema consists
of a set of node shapes S, with ⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S, where 𝑠 is the shape
name, 𝜏𝑠∈C is the target class, and Φ𝑠 is a set of property shapes of
the form 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩, where 𝜏p∈P is called the target property,
Tp⊂I contains either an IRI defining a literal type, e.g., xsd:string,
or a set of IRIs – called class type constraint, andCp is a pair (𝑛,𝑚) ∈
N × (N∪{∞}). 𝑛≤𝑚 – called min and max cardinality constraints.

Therefore, given a node shape 𝑠∈S for the target class 𝜏𝑠∈C, Φ𝑠
defines which properties each instance of 𝜏𝑠 can or should be associ-
ated with. For instance, the shape ⟨sh:Student, :Student, {𝜙𝑠1 , 𝜙𝑠2 }⟩
from Figure 1b, contains a node shape for target class :Student and
enforces two property shapes 𝜙1 and 𝜙2. The property shape 𝜙1 has
a target property 𝜏p= :name, a literal type constraint Tp= xsd:string,
and the cardinality constraints Cp=(1, 1). Similarly, the property
shape 𝜙2 has a target property 𝜏p=:takesCourse, a class type con-
straint Tp= :Course, and the cardinality constraint Cp = (1,∞).

When validating a graph G against a shape schema S having a
node shape ⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S, we verify that each entity 𝑒∈G that is an
instance of 𝜏𝑠 satisfies all the constraints Φ𝑠 . Note that we use the
term entity and node interchangeably throughout the paper. Thus,
we define the semantics of S as follows:

Definition 2.3 (Validating Shape Semantics). Given a node shape
⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S, a graph G, and an entity 𝑒 s.t. ⟨𝑒, a, 𝜏𝑠 ⟩∈G, we have
that 𝑠 validates 𝑒 , and we write 𝑒 |=G𝜙 , if for every property shape
𝜙𝑠 :⟨𝜏p, Tp,Cp⟩∈Φ𝑠 the following conditions hold:
• If Tp is a literal type constraint, then for every triple (𝑒, 𝜏𝑝 , 𝑙) ∈ G,
𝑙 is a literal of type Tp.
• If Tp is a set of class type constraints Tp={𝑡1, 𝑡2, ...𝑡𝑛}, then for
every triple (𝑒, 𝜏𝑝 , 𝑜)∈G, it holds that ∀𝑡∈Tp, 𝑜 is an instance of 𝑡
(or of a subclass of 𝑡 ) and if ∃𝑆𝑡∈S, 𝑜 |=G𝑆𝑡 .
• 𝑛 ≤ |{(𝑠, 𝑝, 𝑜) ∈ G : 𝑠 = 𝑒 ∧ 𝑝 = 𝜏𝑝 }| ≤ 𝑚, where Cp=(𝑛,𝑚).

Here we study the case where G is given, and we want to extract
the set of validating shapes S that validates every class in C from G.
This is the shapes extraction problem. In this case, existing automatic
approaches [38] assume the graph to be correct, then iterate over
all entities in it, and extract for each entity 𝑒 all necessary shapes
that validate 𝑒 . The union of all such shapes is assumed to be the
final schema S. This is useful when we want to validate new data
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that will be added in the future to the KG so that it will conform
to the data already in the graph. Unfortunately, this approach will
produce spurious shapes. For instance, in Figure 1, since :alice has
both type Full Professor and Chair, when parsing the triple (:alice,
:headOf, :CS_Faculty), the property shape headOf (the red dotted
arrow in Figure 1b) is assigned to both node shapes, instead of
assigning it to the Chair node shape only.

2.2 Shapes Support and Confidence

To contrast the effect of spuriousness, we want to exploit statistics
on how often properties are applied to entities of a given type.
Therefore, we introduce the notion of support and confidence for
shape constraints to study the reliability of extracted shapes. These
concepts are inspired by the well-known theory developed for
the task of frequent patterns mining [19] and the concept of MNI
support for graph patterns [7]. The MNI support of a graph pattern
is the minimum cardinality of the set of all nodes of G that are

mapped to a specific pattern node by some isomorphism across all the
nodes of the pattern. In our approach, a property shape corresponds
to a node- and edge-labeled graph pattern. Thus, given the shape
𝑠:⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S its support is the number of entities that are of type
𝜏𝑠 , while the support of a property shape 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩∈Φ𝑠 is the
cardinality of entities conforming to it.

Definition 2.4 (Support of 𝜙𝑠 ). Given a shape ⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S with
shape constraint 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩∈Φ𝑠 , the support of 𝜙𝑠 is defined as
the number of entities 𝑒 satisfying 𝜙𝑠 , denoted as 𝑒 |=𝜙𝑠 , hence:

supp(𝜙𝑠 )=|{𝑒∈I | 𝑒 |=𝜙𝑠 }| (1)

Finally, the confidence of a constraint𝜙𝑠 measures the ratio between
how many entities conform to 𝜙𝑠 and the total number of entities
that are instances of the target class of the shape 𝑠 .

Definition 2.5 (Confidence of 𝜙𝑠 ). Given a shape ⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S
having shape constraint 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩∈Φ𝑠 , the confidence of 𝜙𝑠
is defined as the proportion of entities for which 𝑒 |=𝜙𝑠 among the
entities that are instances of the target class 𝜏𝑠 of 𝑠∈S, hence:

conf (𝜙𝑠 ) =
supp(𝜙𝑠 )

|{𝑒 | (𝑒, 𝑡𝑦𝑝𝑒, 𝜏𝑠 ) ∈ G}|
(2)

As it happens in the case of frequent pattern mining [19], when
extracting validating shapes, the support provides insights on how
frequently a constraint is matched in the graph, i.e., the number
of entities 𝑒 satisfying a constraint 𝜙𝑠 . While similar to the task
of itemset mining [6], the confidence can tell us how strong is the
association between a node type and a specific constraint, i.e., the
proportion of entities 𝑒 satisfying a constraint 𝜙𝑠 among all the
entities that are instances of the node type 𝜏𝑠 of 𝑠∈S. For instance,
the confidence for property shape headOf (Figure 1b) in our snap-
shot of LUBM is 10% for the Full Professor node shape and 100% for
Chair, which indicates a strong association of the headOf property
shape to latter and a weak association to the former.

2.3 The Quality Shapes Extraction Problem

Given the need to extract shapes from a large existing graph G
while limiting the effect of spuriousness, we formally define the
problem of extracting high-quality shapes from KGs as follows:

Problem 1 (Quality Shapes Extraction). Given an RDF graph

G, a threshold 𝜔 for support, and 𝜀 for confidence, the problem of

quality shapes extraction over G is to find the set of shapesS such that

for all node shapes ⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩∈S it holds that supp(𝑠)>𝜔 and for all

property shapes 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩∈Φ𝑠 , supp(𝜙𝑠 )>𝜔 and conf (𝜙𝑠 )>𝜀.

In the following, we provide both, an exact and an approximate
solution to the problem of quality shape extraction.

3 QSE-EXACT

Extracting shapes S from an RDF graph G requires processing its
triples and analyzing the types of nodes involved both as subjects
and objects in those triples. At a high level, we need to know for
each entity all its types, these will become node shapes, and then for
each entity type, identify property shapes, which requires, in turn,
knowing the types of the objects as well. Furthermore, we need
to keep frequency counts to know how often a specific property
connects nodes of two given types compared to how many entities
exist of those types. In our solution, this is done in four steps: (1)
entity extraction, (2) entity constraints extraction, (3) support and
Confidence computation, and (4) shapes extraction. Here we first
consider the case where the graph is stored as a complete dump
on a single file. Later, we also consider the case for a graph stored
within a triplestore [41] for which the KG is not available as a file.

QSE-Exact (file-based).One of the most commonways to store
an RDF graph G on a file F is to represent it as a sequence of triples.
Therefore, QSE reads F line by line and processes it as a stream
of ⟨𝑠, 𝑝, 𝑜⟩ triples. Algorithm 1 and Figure 2 present the four main
steps of QSE to extract shapes for graph G stored in F. In the
entity extraction phase, the algorithm parses each ⟨𝑠, 𝑝, 𝑜⟩ triple
containing a type declaration (e.g., rdf:type or wdt:P31 – this can be
configured) and for each entity, it stores the set of its entity types
and the global count of their frequencies, i.e., the number of in-
stances for each class (Lines 4-8) in maps Ψetd (Entity-to-Data) and
Ψcec (Class-to-Entity-Count), respectively. For example, Figure 2
(phase 1) presents two example entities :bob and :alice (from the
example graph of Figure 1a) having entity types :Student, :FullPro-
fessor, and :Chair, respectively. Figure 2 also presents the structure
of the Entity-to-Data Ψetd dictionary map to help understand the
captured entities and their information. In the second phase, i.e.,
entity constraints extraction, the algorithm performs a second pass
over F (Lines 9-19) to collect the constraints and the meta-data
required to compute support and confidence of each candidate
property shape. Specifically, it parses all triples except triples con-
taining type declarations (which can be skipped now) to obtain for
each predicate the subject and object types from the map Ψetd that
was populated in the previous step. The type of a literal object is
inferred from the value, and for a non-literal object is obtained from
Ψetd (Lines 11-16). For example, Ψetd records that the types of :al-
ice are :FullProfessor and :Chair. Then, the Entity-to-Property-Data
map Ψetpd is updated to add the candidate property constraints
associated with each subject entity (Line 17). Figure 2 (phase 2)
shows the meta-data captured for the properties of :bob and :alice.

In the third phase, i.e., for support and confidence computation,
the constraints’ information stored in maps (Ψetd, Ψcec) is used
to compute support and confidence for specific constraints. The
algorithm iterates over the map Ψetd to get the inner map Ψetpd
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Figure 2: Overview of the four phases of QSE: 1○ entity ex-

traction, 2○ entity constraints extraction, 3○ support and

confidence computation, and 4○ shapes extraction. QSE-

Approximate uses Dynamic Reservoir Sampling (DRS) in 1○.

mapping entities to candidate property shapes 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩∈Φ𝑠 ,
and retrieves the type of each entity using types information stored
in Ψetd to build triplets of the form ⟨𝜏𝑒 , 𝜏𝑝 , 𝜏𝑝𝑜 ⟩ and compute their
support and confidence (Line 25). Figure 2 (phase 3) highlights some
of these triplets for 𝜏𝑒 =:Student. The value of support and confi-
dence for each distinct triplet is incremented in each iteration and
stored in ΨSupp and ΨConf maps. Additionally, a map ΨPTT (Prop-
erty to Types) is populated with distinct properties’ frequencies and
their object types in order to, later on, establish the corresponding
min/max cardinality constraints (Line 26).

Finally, in the shapes extraction phase, the algorithm iterates
over the values of the Ψctp map and defines the shape name of 𝑠 ,
the shape’s target definition 𝜏𝑠 , and the set of shape constraints 𝜙𝑠 for
each candidate class (Lines 27-29). The set of property shapes 𝑃 for a
given Node Shape are then extracted from the mapMap⟨Property,
Set⟩ (Lines 30-36). An example shapes graph for our running exam-
ple is shown in Figure 1. The Cp constraint can possibly have three
types of values: sh:Literal, sh:IRI, and sh:BlankNode. In the case of
literal types, the literal object types such as xsd:string, xsd:integer,
or xsd:date are used. However, in the case of non-literal object types,
the constraint sh:class is used to declare the type of object to define
the type of value for the candidate property. It is possible to have
more than one value for the sh:class and sh:datatype constraints
of a candidate property shape, e.g., to state that a property can
accept both integers and floats as values, in such cases, we use sh:or
constraint to encapsulate multiple values. A detailed explanation
of each phase is available in the extended version of the paper1.

QSE-Exact (query-based). To support shapes extraction from
a triplestore, we propose QSE-Exact query-based that uses a set
of SPARQL queries [40] to extract all the necessary information
that we collect across the four phases. In practice, we pose queries
to extract all the distinct classes C, then, for each class 𝑐∈C, its
properties 𝑝∈P along with object types are extracted as triplets,
and support is computed for each triplet by a count query. This
method is based on the standard procedure also implemented in
other existing, query-based tools [12, 20].

Cardinality Constraints. QSE supports assigning cardinality
constraints (sh:minCount and sh:maxCount) to Cp to each prop-
erty shape constraint 𝜙𝑠 :⟨𝜏p, Tp,Cp⟩. Following the open-world

1https://relweb.cs.aau.dk/qse/

assumption, all shape constraints are initially assigned a minimum
cardinality of 0, making them optional. However, there are cases
where we can infer that some properties are mandatory (i.e., should
be assigned a min count of 1), and some other properties should ap-
pear exactly once for each entity (i.e., should be assigned both a min
and a max count equal to 1). Trivially one can assign minimum car-
dinality 1 to property shapes having confidence 100%, i.e., for those
cases in which all entities have that property. In case of incomplete
KGs, QSE allows users to provide a different confidence threshold
value for adding the min cardinality constraints. To achieve this,
we extend the fourth phase and add a min cardinality constraint in
property shapes on line 35 based on the min-confidence provided
by the user. QSE also keeps track of properties having maximum
cardinality equal to 1 in a second phase and assigns sh:maxCount=1

to those property shapes in the fourth phase of shapes extraction.
Complexity Analysis. The time complexity of QSE-Exact (Al-

gorithm 1) is O(2·|𝐹 | + |𝐸 |·|Φ𝑠 | + |𝑆 |·|Φ𝑠 |). Where 2∗ |𝐹 | refers to the
first and second phases having to parse all the triples twice, 𝐸 is the
set of entities (i.e., the set of distinct IRIs that appear as a subject for
some triple), 𝑆 is the set of Node Shapes, and lastly, Φ𝑠 represents
a set of all property shape constraints, i.e., Φ𝑠 = {𝜙1, 𝜙2, ...., 𝜙𝑛}.
Therefore, our algorithm scales linearly in the number of edges and
nodes in the graph and in the size of the final set of shapes.

Algorithm 1 Shapes Extraction
Input: Graph G from File F, 𝜔 : min-support, 𝜀: min-confidence
Output: Output: S⟨𝑠, 𝜏𝑠 ,Φ𝑠 ⟩

1: 𝐸𝑑𝑎𝑡𝑎 ← {T: SetTypes , ΨETPD =Map⟨Iri, 𝑃𝑑𝑎𝑡𝑎 ⟩ }
2: 𝑃𝑑𝑎𝑡𝑎 ← {T′ : SetObjTypes ,Count :Int}
3: Ψetd =Map⟨Iri, 𝐸𝑑𝑎𝑡𝑎 ⟩ , Ψcec =Map⟨Iri, Int⟩ , Ψctp =Map⟨Iri,Map⟨Iri, Set⟩⟩
4: for 𝑡 ∈ G ∧ t.p = Type Predicate do ⊲ 1○ Entity extraction

5: entity 𝑒 : t.s ; entityType 𝑒𝑡 = t.o ⊲ s: subject, o: object
6: if 𝑒 ∉ Ψetd then Ψetd .insert(𝑒 , ... ))
7: Ψetd .insert(𝑒 , Ψetd .get(𝑒).T.add(𝑒𝑡 )) ⊲ T : entity types
8: increment entity count for current 𝑒𝑡 in Ψcec
9: for 𝑡 ∈ G ∧ t.p != Type Predicate do ⊲ 2○ Entity constraints extraction

10: SetObjTypes ← ∅ , SetTuple ← ∅ ⊲ init a type and property to type tuple set
11: if object 𝑡 .𝑜 is Literal then
12: SetObjTypes .add(getLiteralType(t.o))
13: SetTuple .add(new Tuple⟨ 𝑡 .𝑝, getLiteralType(𝑡 .𝑜) ⟩)
14: else ⊲ for non-literal objects
15: for obj

type
∈ Ψetd .get(𝑡 .𝑜).T do

16: SetObjTypes .add(objtype) ; SetTuple .add(new Tuple⟨𝑡 .𝑝, obj
type
⟩)

17: addPropertyConstraints(𝑡 .𝑠 , SetTuple,Ψetd)
18: for Iri ∈ Ψetd .get(𝑡 .𝑠 .T) do ⊲ if 𝑡 .𝑠 ∈ Ψetd
19: update Ψctp with class Iri, 𝑡 .𝑝 , and object types using SetObjTypes

⊲ 3○ Support and Confidence computation

20: ΨSupp =Map⟨Tuple3, Int⟩ , ΨConf =Map⟨Tuple3, Int⟩ , Ψptt
21: for (𝑒, 𝐸𝑑𝑎𝑡𝑎) ∈ Ψetd do

22: for (𝑇,ΨETPD) ∈ 𝐸𝑑𝑎𝑡𝑎 do

23: for 𝑒𝑡 ∈ 𝑇 ∧ (𝑝, 𝑝𝑜 , 𝑐) ∈ 𝑃𝑑𝑎𝑡𝑎 do

24: 𝜒 ← createTriplets(⟨𝜏𝑒 , 𝜏𝑝 , 𝜏𝑝𝑜 ⟩)
25: computeSupportAndConfidence ( ΨSupp , 𝜒 , Ψcec)
26: computeMaxCardinality (ΨPTT , 𝑝 , 𝑐)
27: for (class,Map⟨Property, SetObjTypes ⟩) ∈ Ψctp do ⊲ 4○ Shapes extraction

28: Φ𝑠 ← ∅ ⊲ Property shapes Φ𝑠 = {𝜙𝑠1 , 𝜙𝑠2 , ..., 𝜙𝑠𝑛 } where 𝜙𝑠 :⟨𝜏p, Tp,Cp ⟩
29: 𝑠 = class.buildShapeName() , 𝜏𝑠 = class

30: for (𝑝, SetObjTypes) ∈ Map⟨Property, Set⟩ do 𝜙𝑠 .𝜏p = 𝑝

31: 𝑝.𝜔 = ΨSupp .get(𝑝, SetObjTypes) , 𝑝.𝜀 = ΨConf .get(𝑝, SetObjTypes)
32: if 𝑝.𝜔 > 𝜔 ∧ 𝑝.𝜀 > 𝜀 then

33: build(sh:nodeKind, sh:maxCount, Ψptt)
34: 𝜙𝑠 .Cp .𝑎𝑑𝑑 (sh:minCount : 1) ⊲ 𝑖 𝑓 𝑝.𝜀 > 𝜀′

35: Φ𝑠 .𝑎𝑑𝑑 (𝜙𝑠 )
36: S.𝑎𝑑𝑑 (𝑠, 𝜏𝑠 ,Φ𝑠 ) ⊲ if s.𝜔 > 𝜔 ∧ 𝜙𝑠 !∅
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4 QSE-APPROXIMATE

QSE-Exact keeps type and property information for each entity
in memory while extracting shapes. As a result, its memory re-
quirements are prohibitively large when dealing with large KGs.
Therefore, we propose QSE-Approximate to enable shape extrac-
tion from very large KGs with reduced memory requirements. Our
goal is to solve the scalability issue in shapes extraction approaches

by using only the resources available to a commodity machine. QSE-
Approximate is based on a multi-tiered dynamic reservoir-sampling
(DRS) algorithm that we introduce. We maintain as many reservoirs
as types in the graph, and we dynamically resize each reservoir as
new triples are parsed. Moreover, the replacement of nodes in the
reservoir is performed based on the number of node types across
reservoirs. The resulting algorithm replaces the first phase of QSE.
After sampling, the information about the sampled entities is used
in the same way as before in the remaining phases of Algorithm 1.
Hence, we maintain information only for a small representative
sample of entities in memory but enough to detect all shapes.

Algorithm 2 receives as input a graph file F, sampling percentage
(Sampling%), and maximum size of the reservoir per class (𝜏𝑚𝑎𝑥 ).
After initialization, triples 𝑡 of F are parsed (Line 3) and filtered
based on whether they contain a type declaration. From these, we
extract the entities to populate the Entity-to-Data map Ψetd (Lines
4-24), while non-type triples are parsed on Line 24 to keep count
of distinct properties in the Property-Count map Ψpc. For instance,
:alice is an entity of type :FullProfessor and :Chair in Ψetd shown in
Figure 2. QSE-Approximate maintains a reservoir for each distinct
entity type 𝑒𝑡 , e.g., maintaining a distinct reservoir of entities of
type :Student (𝑅1), :FullProfessor (𝑅2), and :Chair (𝑅3) shown in
Figure 2, using a map of sampled entities per class (Ψsepc). The
reservoir capacity map (Ψrcpc) stores the current max capacities
for the reservoir for each 𝑒𝑡 . If 𝑒𝑡 does not exist in Ψsepc and Ψrcpc,
i.e., if it has not a reservoir, one is created (lines 6-7). Then, 𝑒 is
inserted in the reservoir for 𝑒𝑡 (Lines 8-11), e.g., :alice is inserted
into both reservoirs 𝑅2 and 𝑅3 shown in Figure 2. If the reservoir
has reached its current capacity limit, we may have to replace an
entity in the reservoir with the current one. Hence, neighbor-based
dynamic reservoir sampling is performed (Lines 13-18), i.e., a ran-
dom number 𝑟 is generated between zero and the current number
of type declarations read from F. If 𝑟 falls within the reservoir size,
then a node in the reservoir is replaced with 𝑒 . To select which
node to replace, we identify as ˆ︁𝑛 the target node at index 𝑟 , and
with 𝑛 a⃗nd 𝑛 its neighbors at indexes 𝑟−1 and 𝑟+1, respectively.
Among these, the node having minimum scope (i.e., the minimum
number of types that are known at this point in time) is selected to
be replaced by the current 𝑒 (Line 17). Additionally, the algorithm
keeps track of actual Class-to-Entity-Count in Ψcec (Line 19), i.e.,
the exact count of how many entities of each type we have seen.
Once the reservoir for 𝑒𝑡 is updated, the sampling ratio for this type
is computed, i.e., the proportion of entities kept so far with type
𝑒𝑡 over the total number of entities of that type seen up to now.
Given the current and target sampling ratio (Sampling%) provided
as input, the algorithm evaluates whether to resize the reservoir
for 𝑒𝑡 , if it has not already reached the limit 𝜏𝑚𝑎𝑥 (Lines 21-23).

While performing shapes pruning using counts over sampled
entities, QSE-Approximate requires to estimate actual support 𝜔𝜙

Algorithm 2 QSE-Approximate Reservoir Sampling
Input: Graph G from File F, maximum entity threshold 𝜏max , Sampling%
Output: Ψetd , Ψcec

1: init maps Ψetd , Ψsepc , Ψrcpc , Ψcec , Ψpc
2: 𝜏min = 1 (minimum entity threshold) ; lineCounter = 0
3: for t ∈ G do ⊲ parse s,p,o of the triple 𝑡
4: if t.p = Type Predicate then

5: entity 𝑒 : t.s ; entityType 𝑒𝑡 = t.o ⊲ s: subject, o: object
6: Ψsepc .putIfAbsent(𝑒𝑡 , [ ] ) ⊲ if 𝑒𝑡 ∉ Ψsepc
7: Ψrcpc .putIfAbsent(𝑒𝑡 , 𝜏min) ⊲ if 𝑒𝑡 ∉ Ψrcpc
8: if | Ψsepc .get (𝑒𝑡 ) | < Ψrcpc .get (𝑒𝑡 ) then ⊲ Add entity 𝑒 in reservoir
9: if Ψetd .get(𝑒).T is ∅ then Ψetd .insert(𝑒 , ... )) ⊲ T : entity types
10: Ψetd .insert(𝑒 , Ψetd .get(𝑒).T.add(t.𝑜))
11: Ψsepc .get(𝑒𝑡 ).insert(𝑒)
12: else ⊲ Replace random entity in reservoir with current entity 𝑒
13: 𝑟 = generateRandomNumber(0, lineCounter)
14: if 𝑟 < |Ψsepc .get(𝑒𝑡 ) | then
15: 𝑛,⃗ˆ︁𝑛, �⃗� = Ψsepc .get(𝑒𝑡 ).nodeAtIndex(𝑟 − 1, 𝑟 , 𝑟 + 1))
16: n = getNodeWithMinimumScope(𝑛,⃗ˆ︁𝑛, �⃗�)
17: replace node at index 𝑛 with current 𝑒 & 𝑒𝑡 in Ψetd
18: Ψsepc .get(𝑒𝑡 ).add (𝑒)
19: increment entity count for current 𝑒𝑡 in Ψcec
20: ⊲ Resize reservoir
21: ratio = (Ψsepc .𝑔𝑒𝑡 (𝑒𝑡 ) .𝑠𝑖𝑧𝑒 ()/Ψcec .𝑔𝑒𝑡 (𝑒𝑡 )) × 100
22: capacity = Sampling% × Ψsepc .get(𝑒𝑡 ).size()
23: if capacity < 𝜏𝑚𝑎𝑥 ∧ ratio ≤ Sampling% then Ψrcpc .insert(𝑒𝑡 , capacity)
24: else→ increment property count for current 𝑡 .𝑝 in Ψpc
25: lineCounter + +

and confidence 𝜀𝜙 of a property shape 𝜙 from the current values
𝜔 and 𝜀 computed from the sampled data. Thus, it estimates with
𝜔𝜙=𝜔𝜙/𝑚𝑖𝑛( |𝑃∗𝑟 |/|𝑃 |, |𝑇𝑟 |/|𝑇 |) the effective support for a property
shape 𝜙 , where 𝜔𝜙 is the support computed for 𝜙 in the current
sample, 𝑃 represents all triples in G having property 𝜏𝑝 , 𝑃∗𝑟 repre-
sents triples having property 𝜏𝑝 across all entities in all reservoirs,
𝑇 represents all entities of type 𝑒𝑡 in G, and𝑇𝑟 represents all entities
of type 𝑒𝑡 in the reservoir. Similarly, the confidence 𝜀𝜙 of a property
shape is estimated by replacing denominator in eq. (2) with |𝑇𝑟 |.

QSE-Approximate (query-based). We apply the same sam-
pling technique in the query-based shapes extraction approach
where in Algorithm 2 entities and their meta-data are retrieved via
SPARQL queries, resulting in query-based QSE-Approximate.

Space Analysis. The space requirement of QSE-Approximate
depends on the values of target Sampling%, the maximum reservoir
size 𝜏𝑚𝑎𝑥 , and the number of entity types |T| in G. In the worst case,
it requires 𝑂 (2·|𝑇 |·𝜏𝑚𝑎𝑥 ), therefore while G can contain hundreds
of millions of entities, we can still easily estimate howmany distinct
types are in the graph and select 𝜏𝑚𝑎𝑥 to fit the available memory.

5 EVALUATION

In the following, we evaluate our QSE solutions and their effective-
ness in tackling the problem of spuriousness along with a compari-
son to existing state-of-the-art approaches.

Datasets.We selected a synthetic dataset, LUBM-500 [18], and
three real-world datasets: DBpedia [4] downloaded on 01.10.2020;
YAGO-4 [46], for which we use the subset containing instances
from the English Wikipedia, downloaded on 01.12.2020; and Wiki-
Data [49], in two variants, i.e., a dump from 2015 [54] (Wdt15), used
in the original evaluation of SheXer [12], and the truthy dump from
September 2021 (Wdt21) filtered by removing non-English strings.
Table 1 provides a comparison of their contents.

Experimental Setup. We have implemented QSE algorithms
in JAVA-11. All experiments are performed on a single machine
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with Ubuntu 18.04, having 16 cores and 256 GB RAM. We have used
GraphDB [16] 9.9.0 to experiment with query-based variants of QSE
with a maximum memory usage limit of 16 GB. The source code
of QSE is available as open-source [37] along with experimental
settings and datasets. We have also published the extracted SHACL
shapes of all our datasets on Zenodo [39]. For SheXer, we cloned its
original code fromGitHub and used the same settings as the original
paper, i.e., default tuned parameters for the sheXing process and
customized tuned parameters to output shapes equivalent to QSE.

Metrics. We measure the running time, and maximum mem-

ory usage (defined using Java -Xmx) during QSE shapes extraction
process, and Shape Statistics of the output shapes.

QSE-Exact.We use QSE-Exact to extract shapes from LUBM (L),
DBpedia (D), YAGO-4 (Y), and WikiData (W). The statistics of the
shapes extracted from these datasets using QSE-Exact (file-based)
are shown in Table 2. It shows the count of Node Shapes (NS), Prop-
erty Shapes (PS), and Property Shape Constraints (PSc), i.e., literal
and non-literal node types constraints. We refer to these statis-
tics as default shape statistics. We initially considered SheXer [12],
ShapeDesigner [5], and SHACLGEN [20] as state-of-the-art ap-
proaches [38] to compare against QSE. Among these, both Sha-
peDesigner and SHACLGEN load the whole graph into a triplestore
similar to our QSE-Exact (query-based). Yet, their current imple-
mentations cannot handle large KGs with more than a few million
triples and do not manage to extract shapes of KGs having more
than some hundreds of classes. In our experiments, either they
crashed because they tried to load the graph into an in-memory
triplestore or required multiple hours to generate shapes for large
KGs such as YAGO-4 (with 8,897 classes). Therefore, in the follow-
ing, we focus our comparison on SheXer, which supports both the
file-based and the query-based methods. Table 3 shows the running
time and memory consumption to extract shapes for all datasets us-
ing File (F) and Query-based (Q) variants of SheXer, QSE-Exact, and
QSE-Approximate. Among the file-based approaches, QSE-Exact is
1 order of magnitude faster than SheXer for all datasets. It consumes
up to 50% less memory than SheXer to extract shapes from D, L, Y,

Table 1: Size and characteristics of the datasets

DBpedia LUBM YAGO-4 Wdt15 Wdt21

# of triples 52 M 91 M 210 M 290 M 1.926 B
# of objects 19 M 12 M 126 M 64 M 617 M
# of subjects 15 M 10 M 5 M 40 M 196 M
# of literals 15 M 5.5 M 111 M 40 M 904 M
# of instances 5 M 1 M 17 M 3 M 91 M
# of classes 427 22 8,902 13,227 82,693
# of properties 1,323 20 153 4,906 9,017

Size in GBs 6.6 15.66 28.59 42 234

Table 2: Shapes Statistics using QSE-Exact.

NS PS Non-Literal PSc Literal PSc

COUNT COUNT/AVG COUNT/AVG COUNT/AVG

LUBM 23 164 / 7.1 323 / 3.0 57 /1.0
DBpedia 426 11,916 / 27.9 38,454 / 6.9 5,335 /1.0
YAGO-4 8,897 76,765 / 8.6 315,413 / 14.5 50,708 / 1.0
Wdt15 13,227 202,085 / 15.2 114,890 / 3.0 106,599 / 1.0
Wdt21 82,651 2,051,538 / 24.8 3,765,953 / 5.6 1,113,856 / 1.0

Table 3: Running Time (T) in minutes (m) and hours (h)

along with Memory (M) consumption in GB.

DBpedia LUBM YAGO-4 Wdt15 Wdt21

T M T M T M T M T M

F

SheXer 26 m 18 58 m 33 1.9 h 24 3.2 h 59 - OutM

QSE-Exact 3 m 16 8 m 16 23 m 16 16 m 50 2.5 h 235
QSE-Approx 1 m 10 2 m 10 13 m 10 13 m 16 1.3 h 32

Q

SheXer 9 h 65 15 h 140 OutT - 13 h 180 OutT -
QSE-Exact 34 m 16 47 m 16 2.4 h 16 1.2 h 16 OutT -
QSE-Approx 16 m 6 3 m 7 39 m 16 49 m 16 5.7 h 64

and Wdt15, whereas SheXer goes out of memory (OutM) for Wdt21.
Similarly, among the query-based approaches, QSE-Exact is 1 order
of magnitude faster and consumes less than 50% memory to extract
shapes from D, Y, L, and Wdt15. SheXer timed out (OutT – 24 hours)
for Y and Wdt21, while QSE-Exact timed out for Wdt21 only.

Taming spuriousness. To deal with the issue of spuriousness,
we analyze the shapes extracted and kept after pruning. QSE per-
forms support-based shapes extraction by producing only the shapes
with support and confidence greater than or equal to a threshold
specified by the user. For instance, given a minimum support thresh-
old of 100 and minimum confidence value 25%, for every PS, QSE
prunes all the PSc that do not appear with at least 100 entities or
if not at least for 25% of entities for that type. We remind that the
pruning of PSc has a cascading effect that also affects the pruning
of PS, and the pruning of PS can, in turn, cause the pruning of NS.
To study the impact of various confidence and support thresholds
on the number of PSc, PS, and NS, we analyze the effect of pruning
by specifying various values for confidence and support. Figure 3
shows the result of pruning PSc (3a,b), PS and NS (3c,d) for con-
fidence >(25, 50, 75,90)% and support (≥1, >100) on DBpedia and
Wdt21. Experimental results on LUBM, YAGO-4, and Wdt15 are
comparable to the results presented for DBpedia and Wdt21, and
are reported in the extended version of the paper1. In general, as
expected, the results show that the higher we set the threshold
for support and confidence, the higher the percentage of PSc and
PS to be pruned. Precisely, DBpedia contains 11𝐾 PS, 38𝐾 non-
literal, and 5𝐾 literal PSc (Table 2), when QSE performs pruning
with confidence >25% and support ≥ 1, it prunes out 99% PSc and
PS (Figure 3a,b). Similarly for Wdt21, QSE prunes 85% non-literal
and 97% literal constraints, and 66% PS for confidence >25% and
support ≥1 (Figure 3b). In comparison to the default shape statistics
(Table 2), increasing confidence to >50%, 75%, and 90%, pruning

Table 4: QSE-Approximate: Effect of Sampling% (S%) and

reservoir size (𝜏𝑚𝑎𝑥 ) on Precision (P), Recall (R), andRelative

Error (Δ) with min. support 1 and confidence 25% on Wdt21

S% 𝜏𝑚𝑎𝑥
Property Shapes (PS) Time

(Min)

Mem

(GB)
Real Sample P / R Δ

10% 20 698,825 470,562 1.00 / 0.61 228,263 81 16
200 698,825 497,035 0.92 / 0.65 201,790 81 16

50% 500 698,825 548,381 0.96 / 0.79 150,444 82 24
5000 698,825 605,785 0.96 / 0.83 93,040 95 24

100% 500 698,825 617,349 1.00 / 0.88 81,476 87 32
5000 698,825 645,810 1.00 / 0.92 53,015 98 32
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resulted in a drastic decrease in the number of PSc and PS. In DB-
pedia, the majority of non-literal PSc are pruned out, and in Wdt21,
the majority of literal constraints are pruned out. Pruning of NS is
lower compared to PS and PSc for all combinations of support and
confidence, showing that almost all types are associated at least
with some very common PSc, e.g., the fact to have a :name.

QSE-Approximate. The QSE-Approximate approach reduces
the memory requirements of the exact approach by allowing users
to specify the sampling percentage ( Sampling%, S% for short) and
maximum limit of the reservoir size (𝜏𝑚𝑎𝑥 ), i.e., the maximum num-
ber of entities to be sampled per class, to reduce the number of
entities to keep in memory. Table 3 shows that among the file-

based approaches, QSE-Approximate is the most efficient approach
compared to QSE-Exact and SheXer. For example, to extract shapes
fromWdt21, QSE-Approximate (with 𝜏𝑚𝑎𝑥 = 1000 and S%=100%) re-
quired almost half the time with 1 order of magnitude less memory
than QSE-Exact, while SheXer could not complete the computa-
tion. Similarly, among query-based approaches, QSE-Approximate
proved to be the only approach to extract shapes from the Wdt21
endpoint in 5.7 hours with 64 GBmemory consumption. In contrast,
QSE-Exact and SheXer timed out (24 hours). Analogously to Wdt21,
QSE-Approximate remains 1 order of magnitude faster with 50%
less memory consumption than SheXer (for both query and file-
based variants) to extract shapes from D, L, Y, and Wdt15. Overall,
these results show that our proposals have solved scalability is-
sues in shape extraction approaches regardless of the type of input
data source (file or endpoint). The choice of using a query-based
or file-based version depends on the given setting. For instance,
querying an endpoint to extract shapes can impose excessive stress
on a production DBMS serving other applications. On the other
hand, the file-based approach is less resource-intensive and can be
used if the user can afford the cost of dumping the graph into a file.

QSE Sampling Parameters. We further evaluate the quality of
the output of QSE-Approximate using multiple combinations of val-
ues for S% and 𝜏𝑚𝑎𝑥 on Wdt21 with a fixed confidence and support
threshold. This analysis helps the user to choose the best values for
S% and 𝜏𝑚𝑎𝑥 parameters given some memory constraints. We show
the results in Table 4, where the values shown in columns Real and
Sampled are extracted by QSE-Exact and QSE-Approximate, respec-
tively. Here we skip listing values for NS as they are not affected
by the values of S%, 𝜏𝑚𝑎𝑥 , confidence, and support. The results
show that S%=10 and 𝜏𝑚𝑎𝑥 up to 200 provide a 92% precision for PS
extracted using QSE-Approximate and pruned with support ≥1 and
confidence >25%. This requires only 16 GB RAM and 81 minutes. If
a machine up to 24 GB RAM is available, then S%=50% and 𝜏𝑚𝑎𝑥=5K
provide 96% precision with Δ = 93K in 95 minutes. Similarly, on a
machine having 32 GB RAM, S%=100% and 𝜏𝑚𝑎𝑥=5K provide 100%
precision with Δ = 53K in 98 minutes. The non-perfect precision
translates into some shapes being produced despite their support
and confidence is slightly lower than required. We also see that, for
very small values of 𝜏𝑚𝑎𝑥 we achieve a lower recall, meaning that
some shapes that should have been produced are instead wrongly
pruned. We note though that min support 1 and confidence 25%
are still quite low values and the shapes produced are thus more
affected by spuriousness. Nonetheless, on a standard commodity
machine with 32GB we see we can easily achieve perfect precision
(100%) and very high recall (92%).

Figure 3: QSE-Exact on DBpedia and Wdt21

We further study the effect of pruning on shapes extracted from
Wdt21 using QSE-Approximate with confidence >25% and >75%
having support 1, 10, and 100 (shown in Table 5). We see that with
support ≥1 and confidence >25%, QSE-approximate is able to get
almost all the PS extracted by QSE-Exact for Wdt21 (Figure 3d) hav-
ing 89% recall and 100% precision. Additionally, upon increasing the
support to 10 and 100, we notice a constant recall of around 88-99%
and a slight reduction in precision, i.e., 98% and 96% with decreas-
ing relative error (i.e., Δ). Similarly, we notice the same trend with
confidence=75%. Therefore, while we very rarely overestimate the
support and confidence of the shapes produced, we underestimate
some of these values, although still in a few cases only.

Practical Implications of QSE.We show the practical utility
of QSE by evaluating the correctness of extracted shapes and their
effect when used to validate the KG. We extracted shapes from
DBpedia using QSE with confidence >25% and support >100. Then,
we randomly selected 10 shapes and manually inspected them to
evaluate their correctness, i.e., whether these shapes describe valid
constraints. This allows us to measure precision and recall based
on the pruning parameters. The results of this analysis showed that
QSE extracts shapes with 100% precision in terms of correct shapes
constraints that should be part of the final set of shapes (qualified
as quality shapes) by removing spurious shape constraints. Further,
we used these 10 shapes, extracted by QSE, to validate DBpedia
using a SHACL validator and found 20,916 missing triples and 155
erroneous triples. The detailed results of this analysis are contained
in the extended version1. Overall, this experiment shows that by
using our technique the user is provided with a refined set of valid
shapes that can effectively identify errors in the KG.

Table 5: Output quality of QSE-Approximate onWdt21 with

S% = 100% and 𝜏𝑚𝑎𝑥 = 500 as # of real and sampled NS, PS, and

corresponding Precision (P), Recall (R), andRelative ErrorΔ.

C
o
n
f

S
u
p
p

Node Shapes (NS) Property Shapes (PS)

Real Sample P / R Δ Real Sample P / R Δ

>
25

%

≥ 1 82,651 82,651 1.0 / 1.0 0 698,825 620,622 1.00 / 0.89 78,203
10 23,640 23,640 1.0 / 1.0 0 158,283 141,040 0.99 / 0.88 17,243
100 6,596 6,596 1.0 / 1.0 0 39,877 36,362 0.96 / 0.88 3,515

>
75

%

≥ 1 82,651 82,651 1.0 / 1.0 0 405,344 362,717 1.00 / 0.89 42,627
10 23,640 23,640 1.0 / 1.0 0 91,947 83,329 0.99 / 0.90 8,618
100 6,596 6,596 1.0 / 1.0 0 23,944 22,193 0.97 / 0.90 1,751
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Constraints Coverage. Comparing the constraints supported
by QSE and existing approaches (i.e., SheXer [12], SHACLGEN [20],
and ShapeDesigner [5]), we report that QSE is able to extract the
widest range of constraints (i.e., 15 out of 16 specific core con-
straints). Amongst those that are usually not supported, we support
sh:in, sh:Literal, sh:class, sh:not, and sh:node. We currently do not
support sh:inverse but we plan to support it in the future. More
details are available in the extended version of our paper1.

Optimal Pruning Thresholds. For each class in the KG, QSE
computes its frequency. Thus, this information can be used as a
reference for the support and confidence thresholds. Further, QSE
also supports the extraction of shapes for specific classes only.
Therefore, the user can make use of frequency information and set
class-specific pruning thresholds.

6 RELATED WORK

KG Data Validation. Integrity constraints for KGs were initially
defined with the RDF schema vocabulary [11] and then with the
OWL language [27, 28, 47]. Later, the SPARQL Inferencing Nota-
tion (SPIN) [22] was proposed. SHACL [23] (a W3C standard since
2017) is known as the next generation of SPIN. Similar to SHACL,
ShEX [35] is a constraint language that is built on regular bag ex-
pressions inspired by schema languages for XML. While ShEx is
not a standard, it is used within the WikiData project [48]. Even
though SHACL and ShEx are not completely equivalent [15], their
core mechanism revolves around the same concept of enforcing for
each node to satisfy specific constraints on the combination of its
types and predicates [12]. In this work, we support the extraction
of validating shapes that can be represented in both languages.

Shape Extraction. Given the abundance of large-scale KGs,
various applications have been created to assist the process of
extracting information about its implicit or explicit schema [21].
Among these, shapes construction or extraction approaches, i.e., to
generate a set of shapes given information from an existing KG, are
used in order to obtain validating schema to ensure the quality of
a KG’s content. We have classified existing approaches in Table 6
based on their features, i.e., support for shapes extraction from data
or ontologies, support for automatic extraction of shapes, support
for shapes extraction from a SPARQL triplestore, and whether they
extract SHACL, ShEx, or both types of validating shapes. In our
recent community survey [38] on extraction and adoption of validat-
ing shapes, we show that there is a growing need among practitioners

for techniques for efficient extraction of validating shapes from very

Table 6: State-of-the-art to extract validating shapes [38]

Approach Extracted from Auto-
matic

Triple-
store Typedata ontology

Shape Induction [26] ✔ ✗ ✔ ✔ SHACL,ShEx
SheXer [12] ✔ ✗ ✔ ✔ SHACL,ShEx
Spahiu et al. [45] ✔ ✗ ✔ ✔ SHACL
ShapeDesigner. [5] ✔ ✗ ✔ ✔ SHACL,ShEx
SHACLGEN [20] ✔ ✔ ✔ ✔ SHACL
TopBraid [36] ✔ ✔ ✔ ✔ SHACL
Pandit et al. [32] ✗ ✔ ✗ ✔ SHACL
Astrea [9] ✗ ✔ ✔ ✗ SHACL
SHACLearner [30] ✔ ✗ ✔ ✗ SHACL
Groz et al. [17] ✔ ✗ ✔ ✗ ShEx

large existing KGs. Note that there exist approaches for schema ex-
traction from property graphs as well [24]. Such approaches are not
directly applicable to RDF KGs since their schema is more complex,
moreover they focus on identifying sub-types based on node labels
(which do not exist in RDF data, since types are nodes in the graph),
and finally are not designed to handle the issue of spuriousness.
Once shapes are extracted, they can be used to validate KGs using
validation approaches like MagicShapes [2] and Trav-SHACL [13].

Rules, Patterns, and Summaries. There exist various ap-
proaches for rule discovery in graphs [25]. These systems [1, 14, 31]
derive rules from large KGs using structural information by explor-
ing the frequently occurring graph patterns. In contrast to vali-
dating shapes, rules are mainly used to derive new facts from an
incomplete KG or identify specific sets of wrong connections. Fre-
quent subgraph mining (FPM) approaches, instead, are designed to
find frequently recurring structures in a large graph. In FPM, the
occurrence of subgraphs (the number of times a subgraph appears)
cannot be taken as the support of subgraphs since it does not satisfy
the non-monotonic property [7]. The most practical measurement
for measuring this support is, instead, the minimum image-based
support (MNI [7]). Our proposed definition of support for shape
constraints is inspired by the concept of MNI support and its use in
FPM [19]. Yet, different than FPM, we do not extract patterns of arbi-
trary shape and size, thus we are able to provide better performance
guarantees as we solve a simpler problem. Finally, our approach
is also related to the techniques of graph summarization [8] and
can be seen as a special form of structural summarization [33].
Additionally, QSE provides a scalable solution for understanding
the content of large KGs (by extracting their shapes) like ABSTAT-
HD [3], which is based on exploring semantic profiles of large KGs.

7 CONCLUSION

In this paper, we propose an automatic shape extraction approach
that addresses the two common limitations in other existing tech-
niques, i.e., scalability and spuriousness. We addressed these lim-
itations by introducing the Quality Shapes Extraction (QSE)
problem. We devised an exact and approximate solution for QSE to
enable the efficient extraction of shapes on commodity machines.
Our method is based on the well-understood concepts of support
and confidence, hence it allows a data scientist to focus on the
shapes providing the highest reliability first when addressing is-
sues of data quality. By setting even low pruning thresholds, QSE
can prune up to 93% of the shapes that a trivial extraction would
produce (i.e., a reduction of 2 orders of magnitude), shapes that
hence have little support from the data and are thus likely spurious.
Furthermore, we show that our approximate technique introduces
only negligible loss in the quality and completeness of the pro-
duced shapes. In the future, we will extend the scope of constraints
covered by QSE and a solution to automatically learn the optimal
configurations for pruning thresholds for QSE.
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