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Abstract
Objective. Closed-loop myoelectric prostheses, which combine supplementary sensory feedback
and electromyography (EMG) based control, hold the potential to narrow the divide between
natural and bionic hands. The use of these devices, however, requires dedicated training.
Therefore, it is crucial to develop methods that quantify how users acquire skilled control over
their prostheses to effectively monitor skill progression and inform the development of interfaces
that optimize this process. Approach. Building on theories of skill learning in human motor
control, we measured speed-accuracy tradeoff functions (SAFs) to comprehensively characterize
learning-induced changes in skill—as opposed to merely tracking changes in task success across
training—facilitated by a closed-loop interface that combined proportional control and EMG
feedback. Sixteen healthy participants and one individual with a transradial limb loss participated
in a three-day experiment where they were instructed to perform the box-and-blocks task using a
timed force-matching paradigm at four specified speeds to reach two target force levels, such that
the SAF could be determined.Main results.We found that the participants’ accuracy increased in a
similar way across all speeds we tested. Consequently, the shape of the SAF remained similar across
days, at both force levels. Further, we observed that EMG feedback enabled participants to improve
their motor execution in terms of reduced trial-by-trial variability, a hallmark of skilled behavior.
We then fit a power law model of the SAF, and demonstrated how the model parameters could be
used to identify and monitor changes in skill. Significance.We comprehensively characterized how
an EMG feedback interface enabled skill acquisition, both at the level of task performance and
movement execution. More generally, we believe that the proposed methods are effective for
measuring and monitoring user skill progression in closed-loop prosthesis control.

1. Introduction

Myoelectric hand prostheses seek to restore the lost
manipulation capabilities of individuals with a limb
difference by using electromyographic (EMG) signals
to estimate the user’s motion intent to drive powered
prosthetic devices. Closed-loop user-prosthesis inter-
faces, which combine EMG-based control and arti-
ficial sensory feedback to provide users with a sense
of prosthesis state and improve the intuitiveness of

control, hold the promise of bridging the gap between
natural and bionic hands [1–3].

To use these sophisticated devices and interfaces,
the prospective user needs to train to perform spe-
cific, often unintuitive, contractions of their residual
muscles. Attaining expert-level skill in user-prosthesis
interaction may require guided training over weeks
and months [4–6]. This relatively long learning pro-
cess is due to the inherent variability of EMG-based
control and non-linear properties of the prosthesis,
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such as non-back-drivability. Quality training is cru-
cial for successful control and poor training has been
linked to device rejection [7]. Training is also needed
for the feedback side of the interface since the user
needs to learn to perceive the sensations artificially
elicited [2] and to use this sensation to gain inform-
ation on the prosthesis state. Quantifying the way
and time course of the acquisition of skilled pros-
thesis control is a fundamental step to developing
evidence-based training and rehabilitation protocols
[8, 9], designing interfaces that are easier to learn and
retain, and understanding the motor learning pro-
cesses underlying complex human behaviors [10].

Previous studies that investigated prosthesis skill
learning, have defined it in terms of improved accur-
acy, faster movement speed, reduced end-point vari-
ability or a combination thereof [8, 9, 11–13]. These
studies mainly evaluated skill by asking participants
to be as accurate as possible in the given task at
a self-chosen comfortable pace, or as fast as pos-
sible. However, this approach neglects the effect of
the self-chosen speed on the resulting movements
and performance. Movement speed and accuracy
are fundamentally coupled, and skill can only be
inferred when both change in the expected direction
[14–18]. Figure 1(A) illustrates this concept with
a simple example. If the speed-accuracy measure-
ments over two days for a participant are given by
the filled circles as shown in the figure, it would
be impossible to dissociate if the improved accuracy
(blue circle) is due to better skill or merely due to
performing the task at a slower speed (as compared
to the gray circle). Consequently, determining speed-
accuracy trade-off functions (SAFs, figure 1(A)) has
been proposed as a solution to rigorously study skill
learning [14, 16, 19].

This approach evaluates task performance sys-
tematically and comprehensively by asking the parti-
cipants to repeat the same task at different speeds. A
SAF so measured, characterized by its shape (mono-
tonically increasing), rate, and intercept, succinctly
captures skill [20, 21]. Previouswork in humanmotor
control demonstrated that SAF changes across days in
a way that is consistent across speeds [14, 19], which
is mainly driven by better motor execution, reflected
by decreased movement variability. However, such a
detailed analysis is lacking for prosthesis control—it
is unknown if SAF changes such that improvements
are similar across speeds, or if some speeds experience
larger gains than others (e.g. faster speeds might have
larger gains as opposed to slower speeds, simply by
havingmore scope for such gains (figure 1(A), dashed
arrows)).

Apart from quantifying skill, SAFs have been used
in a recent study to understand and compare how
different feedback interfaces afford different speed-
accuracy tradeoffs in prosthesis force control [22].
The study demonstrated the relevance of SAFs and

showed how comparing the interfaces at a single
speed (corresponding to a single point on the SAF
profile), as commonly done in the literature, could
generate misleading conclusions. However, it is still
unknown how the tradeoff evolves across days during
learning, or in other words, how skill develops over
time. Quantifying learning-induced changes in the
SAF enables us to thoroughly investigate how users
acquire skills, and accordingly develop tools to mon-
itor and track skill acquisition and retention.

In relation to the latter, Reis et al [14], proposed
a model-based method to monitor skill progression.
Given that the SAF reflects skill, it follows that if
a parametric model of SAF can be obtained, then
changes in the parameter values of such a model
could be used to monitor skill over time, in a subject-
specificmanner (figure 1(B)). Notably, they proposed
a simple 1-parameter model of SAF such that the
single parameter reflected changes in skill. Similarly,
Guiard et al [23], observed that the SAF in a cursor-
pointing task could be captured using a 1-parameter
power law model. However, it remains to be seen if
such methods generalize to skill monitoring in pros-
thesis control.

In this study we therefore characterize the SAF
resulting from the use of a closed-loop user-prosthesis
interface for grip force control, to investigate skill
learning and the behavioral changes subserving
it. Participants used a closed-loop interface that
included a dual-site direct proportional control of
prosthesis closing speed and EMG-feedback [24,
25]. In this approach, an array of vibrotactors was
employed to deliver the level of the myoelectric signal
(prosthesis command input) as the feedback to the
participants, thereby facilitating predictive control of
grasping force by augmenting a sense of contrac-
tion strength. Over the course of 3 days, participants
practiced a modified version of the box-and-blocks
task where the blocks were required to be grasped
at specified forces and speeds (timed force-matching
paradigm). We hypothesized that the largest gains in
accuracy would be experienced at faster speeds, due
to a larger margin for improvement (as explained
above) as well as the predictive nature of the feed-
back. We then built a parametric power-law model
of the measured SAFs (figure 1(B)), following previ-
ous studies in motor skill learning [14] and human-
computer interaction [23, 26]. Using the model, we
characterized how the SAF changed across days for
this type of closed-loop control interface and com-
pared the results to those reported in the literature for
human motor control of natural movements. Finally,
we discuss if skill could be inferred from ‘obser-
vational’ data, where participants are simply asked
to perform the task at their self-chosen comfortable
pace to estimate the parameters of the SAF, such
that the process of measuring the true SAF could be
simplified.
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Figure 1.Monitoring skill by measuring and modelling learning-induced changes in SAF—concept and experimental setup. (A)
Blue and gray dots indicate plausible speed-accuracy measurements of a user recorded over two days. Such measurements,
however, cannot dissociate whether the improvement in performance from one day (gray) to the next (blue) is due to an
improvement in user skill or merely an artifact of slower execution speed (here, longer reach time). Measuring a speed-accuracy
tradeoff function (solid curves, SAF) across training sessions alleviates this issue. Plausible changes to the SAF across training
sessions are indicated by the dashed arrows. (B) Diagram showing the power law model of SAF and the effect of parameters a and
b on it. The model was used to capture the changes in SAF observed experimentally. Changes in model parameters can be used to
quantify the (subject-specific) differences in skill across time. (C) Experimental setup shows a healthy participant using a
closed-loop prosthesis interface, combining dual-site proportional control and vibrotactile EMG feedback, to control the
Michelangelo hand prosthesis. Salient experimental protocol details are also shown in the top right; EMG feedback spatial coding
scheme is displayed on the right. Adapted from [22]. © IOP Publishing Ltd. All rights reserved.

2. Methods

2.1. Participants
Sixteen healthy participants (nine males and seven
females with no limb loss, aged 23.5± 2.6 years) with
no prior experience of myoelectric prosthetic con-
trol were recruited. One individual with a transradial
limb loss (female, 50 years old, 11 years since trau-
matic amputation of the non-dominant hand, self-
reported to have limited daily use of a single degree
of freedom myoelectric prosthesis), who had prior
experience with similar experimental setups was also
recruited for the study. All participants signed an
informed consent form before the start of the exper-
iment. The experimental protocol was approved by
the Research Ethics Committee of the Nordjylland
Region (approval number N-20190036).

2.2. Experimental setup
The experimental paradigm follows from a pre-
vious experiment [22], which for the present
study was extended across days. The methods are
briefly described here. The experimental setup is
shown in figure 1(C). Healthy participants wore
an orthotic wrist immobilization splint to achieve
near-isometric wrist flexion and extension move-
ments. The Michelangelo prosthetic hand (OttoBock
GmBH, DE) was attached to the splint, with the arm
placed in the neutral position. Further, two dry EMG
electrodes with embedded amplifiers (13E200, Otto
Bock, DE) were placed over the wrist flexors and
extensors of the right forearm. The electrode place-
ment was determined by visually observing muscle
contractions and palpating the forearm. In the case

of the individual with limb loss, the prosthesis was
attached to a custom-made socket with integrated
EMG electrodes. For all participants, five vibrotact-
ors (C-2, Engineering Acoustics Inc.) were posi-
tioned evenly around a cross-section of the upper
arm and secured in place by an elastic band. A mod-
ified box-and-blocks setup was used for the exper-
imental task, where the participants were asked to
apply predefined forces when grasping the blocks
and to perform the task within a set time interval, as
explained in the section ‘Experimental Design’. The
prosthesis was connected to a standard laptop PC
via Bluetooth, while the vibrotactors were connec-
ted via USB. The task instructions were displayed on
a dedicated computer screen, positioned at a com-
fortable viewing angle and distance. The experiment
was developed in MATLAB Simulink using a tool-
box for testing human-in-the-loop control [27]. The
control loop operated in real-time on the host PC
at 100 Hz, through the Simulink Desktop Real-Time
toolbox.

2.2.1. EMG control
All participants used near-isometric wrist flexion
and proportional control to generate velocity com-
mands to close the prosthesis. However, since fine
control of prosthesis opening was not relevant to
the study, it was simply triggered by a strong con-
traction of the wrist extensors. For the individual
with limb loss, this meant that she was instructed
to activate her residual wrist flexor and extensor
muscles. The linear envelope of EMG was sampled
at 100 Hz from two electrode systems, placed on the
flexors and extensors, as explained above, through the

3
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Table 1. The myoelectric command, prosthesis input and force ‘level’ boundaries for the discretized interface.

Level 0 1 2 3 4 5 6

Myoelectric command 0.025 0.1 0.27 0.47 0.69 0.95 1
Prosthesis input 0 0.25 0.42 0.59 0.76 0.9 1
Force 0.05 0.31 0.45 0.58 0.73 0.9 1

embedded prosthesis controller and transmitted to
the host PC. The signals were subsequently filtered
using a 2nd-order Butterworth low-pass filter with a
0.5 Hz cutoff, and this ‘myoelectric command’ from
each of the electrodes was normalized to 50% of
that obtained during maximum voluntary contrac-
tion (MVC) (following the results of [28]). The nor-
malized myoelectric commands obtained from the
flexor EMGwere translated into the normalized input
command for the prosthesis using a piecewise linear
mapping defined by the breakpoints given in table 1
(see [22]). Note that the EMG intervals were wider
for higher amplitudes to compensate for the higher
variability of the EMG at stronger contractions. The
prosthesis input command determined closing velo-
city (1—maximum velocity) and generated grasp-
ing force, i.e. the stronger the command input, the
faster the prosthesis closes and the higher the force
generated after contact. The aforementioned map-
ping effectively translated the EMG ‘levels’ into the
corresponding force levels (see the next section for
a more detailed explanation of closed-loop control).
Note that for EMG amplitude lower than 0.025 on the
normalized scale, no input command was sent to the
prosthesis (Level 0) to avoid unintentional prosthesis
closing. To trigger prosthetic hand opening, however,
participants simply needed to reach 0.4 on the nor-
malized range (i.e. 20% MVC) of extensor EMG.

2.2.2. Vibrotactile EMG feedback
All participants received feedback on self-generated
flexor EMG command through a vibrotactor array.
A spatial coding scheme consisting of six stimulation
patterns was used to convey the six discrete levels of
the myoelectric command. To represent the first five
levels, one of the tactors from the array was activated
individually in a specific order. However, the sixth
level was indicated by activating all the tactors sim-
ultaneously (see figure 1(C)). During setup, adjust-
ments were made to the position and/or intensity of
the vibrotactors if they caused unpleasant or poorly
localized sensations, to ensure that the participants
could easily differentiate all the stimulation patterns.
The vibration frequency for all tactors was set to
200 Hz, and the stimulation pattern was updated at
50 Hz.

The six discrete levels were defined using the same
piece-wise linear mapping reported in table 1. As
soon as the participants contracted their wrist flex-
ors (to generate a myoelectric command above level
0), they received feedback about the level (1–6) they

were generating, thereby enabling them to modu-
late the prosthesis command input to the desired
level using online feedback. The control and feedback
interfaces were designed in such a way that if the par-
ticipants generated a particular level of myoelectric
command, the prosthesis applied the same level of
force on the object. For instance, if a participant gen-
erated and maintained commands corresponding to
level 2, the prosthesis closed at level 2 velocity and
exerted level 2 force onto the grasped object. Note
that while the feedback provided discrete information
(a level of EMG), the command signal generated by
the participant and transmitted to the prosthesis was
still continuous and proportional (as in the commer-
cial approach to prosthesis control). Therefore, if the
EMG signal was in the higher range of level 2 (e.g.
close to the threshold between levels 2 and 3), the gen-
erated grasping force would be in the higher range of
level 2 of prosthesis forces, as defined by table 1.

2.3. Experimental design
The experiment was designed as a longitudinal trial
over three sessions with a maximum of two days
between the sessions. Here we describe the exper-
imental design and protocol for the healthy parti-
cipants first and point out the slight differences in the
case study involving the individual with limb loss. In
each session, the participants trained to perform the
box-and-blocks task with the timed force-matching
requirements. In each trial, they were required to (1)
apply a specified level of force on the object (either
level 3 or 5, see table 1), and (2) reach the target level
within the specified time. Participants were required
to perform the task in four speed conditions—Slow,
Medium, Fast and Very Fast—which corresponded to
time of execution in the range 4–8 s, 3–5 s, 2–4 s,
and 1–3 s, respectively. The times of execution were
defined to capture the relevant domains of the SAF
curve and expand upon previous investigations [22].
Thereby, we used a time-band methodology to meas-
ure the SAF [20, 22] (i.e., to sample the shape of the
SAF profile.

2.4. Experimental protocol
Initially, all equipment (the wrist immobilization
splint (socket in the case of the individual with limb
loss), prosthesis, EMG electrodes and vibrotactors)
were placed on the participant. Then, a brief calib-
ration and familiarization followed in all sessions.
During EMG calibration, 3 repetitions of 5 s long
MVC contractions were recorded independently for

4



J. Neural Eng. 21 (2024) 026008 P Mamidanna et al

both the flexors and extensors. The MVC measure-
ments were recorded in the same posture that the par-
ticipants would use to perform the box-and-blocks
task, to account for the effect of armposture and pros-
thesis weight on the recorded EMG. Next, the parti-
cipants were guided to explore the control interface,
i.e. the relation between muscle contraction intensity
and velocity in hand opening/closing. Subsequently,
they were familiarized with the vibrotactile feedback
interface. This involved a spatial discrimination task
where they were presented with two sets of 18 stimu-
lation patterns (3 repetitions × 6 levels, figure 1(C))
and asked to identify the patterns. The experiment
proceeded once the participants achieved at least
95% success in the discrimination task, which usually
required less than 5 min since the vibration patterns
were designed to be easy to discriminate.

After familiarization with the control and feed-
back interfaces, participants performed 6 blocks of
32 trials (8 trials × 4 speed conditions) of the timed
force-matching task. On the first day, an extra (famil-
iarization) block of 32 trials was performed where
the participant was guided through the task. In each
trial, the force and speed targets were first displayed.
Then, the participants used the proportional control
interface and the provided EMG feedback to suc-
cessfully complete the trial, as explained in section
‘Vibrotactile EMG feedback’. Once the participant
felt they successfully reached (or overshot) the tar-
get, they were instructed to trigger prosthesis open-
ing. As the prosthesis was non-backdrivable, likemost
commercial devices, it was not possible to decrease
the grasping force in a controlled manner (the pros-
thesis would open and release the object completely).
Therefore, as explained before, the overshoot was also
considered as a reason to open the hand and end the
trial. Immediately after the trial ended, they received
feedback on their performance, in terms of whether
they acquired the target force and target speed. Such
‘knowledge of results’ has been shown to improve
participants’ motivation during the experiment and
the rate of learning the task [29]. To some extent,
this also reflects information that would be avail-
able in the daily use of a prosthesis (e.g. inappro-
priate force would lead to damaging or dropping of
objects). However, the effect of this feedback is not
explicitly addressed in this paper. During the famil-
iarization trials, the participants were instructed on
how to modulate their muscle contraction to control
the closing velocity of the prosthesis. In each block
of 32 trials, the target speed (Slow, Medium, Fast or
Very Fast) was presented in a blocked fashion, i.e. it
remained unchanged for 8 trials within which the tar-
get forces (3, 5) were presented 4 times each in ran-
dom order. The target speeds were presented in a bal-
anced random order, across blocks.

2.4.1. Experimental protocol for the individual with
limb loss
The experimental protocol for the individual with a
limb loss was slightly modified, where she performed
5 blocks (instead of 6) of trials with both force and
speed targets on all three days. In addition, she per-
formed 2 additional blocks of the same task but with
no speed target (referred to as ‘observational trials’)
on Day 2 and Day 3, to pilot test our model-based
skill monitoring method. Given the additional blocks
of observational trials on Days 2 and 3, we reduced
the number of experimental blocks from 6 to 5 on
all days, in the interest of not straining the parti-
cipant. Apart from these modifications, the rest of
the experiment proceeded identically to the healthy
participants.

2.5. Outcomemeasures
During each trial, the recorded myoelectric com-
mands and force measurements were processed to
obtain the primary outcome measures—reach time
and trial success, respectively. Reach time was calcu-
lated as the duration between the time when parti-
cipant started generating the EMG input (above Level
0) and when the maximum force was reached during
the trial. Therefore, a successful trial was defined as
one where the reach time satisfied the speed require-
ment, and the maximum reached force was within
the corresponding target force level. The trials were
aggregated per speed condition to obtain percent suc-
cess rates.

Further, to understand how the participants
planned and executed the task across the sessions,
we computed three behavioral metrics [22, 30]. We
computed (1) the number of force corrections per
trial that the participants made, by counting the
number of distinct plateaus (longer than 250 ms) in
the force trajectory [22], to gain insights into their
control policies—specifically corresponding to how
they included the supplementary feedback in their
commands. Since EMG feedback promotes predictive
modulation of commands, by allowing participants
to adjust their muscle contraction during prosthesis
closing so that the target force is generated at once,
upon contact, without requiring further modulations
[11, 25], the more successful the participants are in
using this strategy, the lower the number of correc-
tions. Further, we analyzed the quality of generated
EMG commands, to understand if participants gen-
erated (2) smoother and (3) more repeatable EMG
commands across days and speed targets. To evalu-
ate smoothness, we calculated the spectral arc length
(SPARC) of the EMG commands [31]. SPARC meas-
ures the negative arc length of the Fourier mag-
nitude spectrum of the speed profile of a movement.
Thereby, signals with a wider spectrum (and hence a
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greater absolute SPARC value) are less smooth. We
chose SPARC as an alternative to jerk-based meas-
ures, because it is a more general measurement of the
smoothness of any movement-related variable and is
robust to high-frequency changes in the recorded sig-
nal. To measure the repeatability of commands, we
computed the trial-by-trial variability as follows: we
first normalized all commands to 200 time points
between the start of the trial and reach time, and then
measured the standard deviation at each of the 200
time points. As the final measure of variability, we
computed the median of the obtained standard devi-
ations across the time points.

2.6. Parametric models of SAF
To capture the changes in the shape of the SAF curve
across training (see figure 1(B)), we built a paramet-
ric model of SAF as y= f(x;a, b), where y is suc-
cess rate, x is reach time (duration of trial), and f
is a function of x and two parameters a, b bearing
functional forms already investigated in the literature.
Specifically, we considered the power law equation
described in [23, 26], relating the success rates and
reach time developed in the context of 1-D cursor
movements. While different in the functional form,
the power law model is similar to (and simpler than)
another model developed in the motor learning lit-
erature for a task that involved the production of
a sequence of isometric finger forces [14]. Here we
modified the equation to reflect the x–intercept (or
asymptote) at 0.8 s, as it is impossible to get a suc-
cessful trial below 0.8 s, due to limitations in the
speed of the prosthesis response and EMG command
generation:

y= 1− a(x− 0.8)b. (1)

Note that parameter b in equation (1) is restricted
to be negative.

2.6.1. Model fitting
The models were fit for day-wise pooled healthy par-
ticipants’ data (success rate and reach time) for each
of the 3 days, using ordinary least squares-based fit-
ting. Success rates and reach times from 2 consecut-
ive blocks were averaged so that the mean success rate
and its variance are well represented duringmodel fit-
ting. This way, the power-law model was fitted using
12 points (4 speeds × 3 points per speed). The para-
meters obtained through this fitting procedure are
denoted by asterisks, such as (a∗,b∗). The goodness
of fit was measured using the R2 metric.

All models were log-transformed before fitting
so that the parameters obtained would be easy to
interpret. This way, parameter ‘loga’ denotes the y-
intercept of the SAF in the log-log plane, while ‘b’
denotes the slope at which the success rate increases
with reach time. A change (exclusively) in the inter-
cept therefore indicates that the log-success rates at

all movement speeds are affected similarly (e.g. con-
sistent increase at all speeds), while a change in slope
indicates that different speeds may affect success rate
differently (e.g. increase at low speeds and decrease
for high speeds).

2.6.2. Reducing model complexity: from 2-parameter
to 1-parameter models
Earlier studies have observed that the SAF models
described above can be further simplified such that
only a single parameter reflects skill-related changes
[14, 23], but as explained before, this has been
established for motor control tasks involving natural
movements. Here, in a similar vein, we investigated
if one parameter reflected skill improvements while
the other parameter could be fixed in the context of
closed-loop prosthesis control. In other words, we
were interested in finding if f(x;a, b)≈ f(x;a, b−) or

f(x;a, b)≈ f(x; a−, b), where the underscore denotes

the parameter being held constant. To start, let us
denote the R2 obtained by fitting a particular set
of data {y,x}i to the 2-parameter model such that
R2
i (a

∗,b∗) := R2(yi, f(xi;a∗,b∗)), where i= {1,2,3}
denotes the pooled success rate (yi) and reach time
(xi) dataset of a particular day and a∗,b∗, denote the
best-fit parameters.

Then, ∆R2 represents the change in the good-
ness of fit (R2) when using the 1-parameter model,
e.g. obtained by fixing a constant at a∗ and setting b
to bk in the vicinity of b∗. A significant decrease in
R2 due to such a perturbation in one of the paramet-
ers (a or b) indicates that perturbing that parameter
leads to worse fits with respect to the full 2-parameter
model. By quantifying the sensitivity of the model fits
to both parameters, we can rigorously quantify how
they affect the goodness of fit and choose which para-
meter to set as a constant. Accordingly, we selected
1000 values of a and b in the range of the parameters
in the vicinity of those observed by fitting the exper-
imental data, (amin,amax) and (bmin,bmax) and com-
puted the following set of R2 values:

∆R2
(
aj
)
: =

{
R2
i

(
aj,b

∗)−R2
i (a

∗,b∗) , ∀i
}
,

aj ∈ (amin,amax) ,

∆R2 (bk) : =
{
R2
i (a

∗,bk)−R2
i (a

∗,b∗) , ∀i
}
,

bk ∈ (bmin,bmax) ,

where index i= {1,2,3} denotes the day. We then
obtain the simplified 1-parameter model by finding
the parameter that changed mean R2 the least,

ā= arg mina⟨∆R2
(
aj
)
⟩, or b̄= arg minb⟨∆R2 (bk)⟩

where ⟨·⟩ denotes the mean of the set of values∆R2.
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2.7. Statistical analysis
3-factor repeated measures ANOVAs for success rate
and behavioral measures were fit with 3 within-
subjects factors—day, target speed and target force.
To analyze the total improvement between Day 1 and
3, we fit 2-factor ANOVAs with target force and tar-
get speed as the factors. The assumptions of nor-
mality, homogeneity of variance and sphericity were
verified using Shapiro-Wilk’s, Levene’s andMauchly’s
tests, respectively. Post-hoc analyses for all quantit-
ies of interest were performed by using pairwise t-
tests, adjusted using the Holm–Bonferroni method.
The threshold for statistical significance was set at
p < 0.05. The mean ± standard deviation of out-
comes per group of interest are reported throughout
the paper.

3. Results

3.1. Learning induced changes in the SAF
We analyzed how participants’ SAFs (see figure 2(A))
changed across the experiment by fitting a 3-way
ANOVA with day, target speed and target force as
factors. We found that all three factors significantly
influenced the success rate (day: F(2, 30) = 14.05,
p = 5 × 10−5, target speed: F(3, 45) = 35.47,
p = 6 × 10−12, and target force: F(1, 15) = 9.46,
p = 7 × 10−3), but none of the factor interactions
was significant. Participants exhibited a wide range
of success rates across days and speeds, ranging from
66.3 ± 15.2% in the Very Fast speed on Day 1, to
90.2 ± 10% in the Slow speed on Day 3. Post-hoc
analyses revealed that success rates improved signi-
ficantly from Day 1–2 (p-adj = 0.01), and Day 1–3
(p-adj = 0.0008) while the difference from Day 2–
3 was not significant (Day 1: 75.4 ± 14.6%, Day 2:
81.7± 13.3%, and Day 3: 85.3± 10.8%; average suc-
cess rates across speeds). In a similar way, the par-
ticipants’ success rates significantly increased from
Very Fast to Fast (p-adj= 0.005) and Fast to Medium
(p-adj = 7 × 10−4) but not from Medium to Slow
speed. A significant effect of target force meant that
participants were more successful in target Level 5
than Level 3 throughout (Level 3: 77.8± 14.4%, Level
5: 83.8 ± 12.1%; averaged across speeds and days,
figure 2(A), right).

Next, we analyzed how SAF changed between Day
1 and Day 3. Interestingly, while participants’ suc-
cess rates improved across days, as explained above,
there was no significant effect of target speed or
target force on the observed improvement. That is,
the increase in the success rate was similar across
speeds though with large variability (Very Fast:
12.7± 15.6%, Fast: 7.6± 12.9%,Medium9.8± 7.7%,
and Slow 7.1 ± 9.7%, averaged across force levels,
see figure 2(B)), and across force levels (Level 3:
9.8 ± 8.8%, Level 5: 8.8 ± 8.7%, averaged across
speeds). Therefore, the SAF curve effectively ‘shifted
upwards’ across days consistently for all speeds, at
both force levels.

Results of the individual with a limb loss largely
followed the trends of the healthy participants, how-
ever, her success rate improved only slightly from
84.8% on Day 1 to 86.3% on Day 3 (stars in
figures 2(A) and (B)).

3.2. Behavioral analyses
We then analyzed how participants’ behavior (plan-
ning and execution of EMG commands) changed
across days. First, we investigated how participants’
control policies changed with training, by look-
ing at the number of force corrections generated
(figure 2(C), the number of corrections are aver-
aged over the two target forces to emphasize the
effect of training (changes across days)). We found
that the control policies were affected by the target
speed (F(3, 45) = 634.0, p < 1 × 10−10), and target
force (F(1, 15) = 843.7, p < 1 × 10−10). However,
there was no significant effect of day, indicating that
the overall strategy of how participants used the
feedback remained consistent throughout the exper-
iment. There was an interaction effect between target
force and speed (F(3, 45) = 115.8, p < 1 × 10−10),
whereby the number of corrections for target level 3
decreased more gradually with speed, compared to
level 5. The number of corrections decreased stead-
ily with the target speed (post-hoc tests were signi-
ficant for all pairs, with each p-adj < 1 × 10−7),
suggesting that at faster speeds, participants adjus-
ted their muscle contractions prior to contacting the
object, rather than using feedback post-contact to
reach the required force. Finally, participants made
fewer corrections to reach force level 3 than level 5
(p< 1× 10−10).

Next, we analyzed how the smoothness and trial-
by-trial variability of their movements were influ-
enced by learning (figures 2(D) and (E)), both meas-
ures are shown by averaging across target force levels,
similar to figure 2(C)). We found that there was a
significant effect of all three independent variables—
target speed, target force and day on bothmetrics (see
table 2). Additionally, there was a significant interac-
tion effect of target speed and target force on move-
ment smoothness (F(3, 45) = 69.8, p < 1 × 10−10),
such that the smoothness of commands to reach tar-
get level 3 decreased more rapidly with speed, com-
pared to level 5. Surprisingly, smoothness decreased
from Day 1–3 (p-adj = 6 × 10−4), without any
significant changes on consecutive days, while the
smoothest trajectories were observed at the fastest
speeds (post-hoc tests were significant for all pairs,
with each p-adj < 1 × 10−8). On the other hand,
variability decreased from Day 1–2 (p-adj = 0.002)
and then stagnated. Moreover, it was significantly
different between the faster and slower speeds, with
a significant difference between Fast and Medium
(p-adj = 0.046), but not between Fast and Very
Fast or Medium and Slow. Finally, while parti-
cipants produced smoother commands to reach force
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Figure 2. Learning induced changes in the speed-accuracy trade-off. (A) (left) Average SAF across healthy participants and the
individual with a limb loss is shown, on Day 1 and Day 3. Vertical dashed line indicates the x–intercept of SAF (success rate is
necessarily 0% when reach time< 0.8 s). (right) Average success rates across speeds are higher for target force level 5. (B) Total
improvement in performance (from Day 1 to Day 3) is plotted per target speed (V.F: Very Fast, F: Fast, M: Medium, S: Slow).
Notably, the improvement was similar across speeds. (C) Average number of corrections of force (p/trial) is plotted against target
speeds. (D) Smoothness of generated EMG commands, measured by SPARC, decreased across days (greater values of SPARC
imply smoother kinematics). (E) Trial-by-trial variability of EMG commands decreased across days for all speeds. Across all
boxplots, the median and interquartile range are indicated by the central line and the boundaries of the box, while the whiskers
extend to include all datapoints within 1.5× IQR (inter-quartile range), black diamonds indicate outliers (> 3 standard
deviations from the mean) outside the whiskers’ range. Stars indicate the results of the individual with a limb loss.

Table 2.Main effects of target speed, target force and day on the behavioral metrics considered in the study, obtained using a 3-way
ANOVA (see Methods).

Target speed Target force Day

Number of
corrections

F(3, 45)= 634.0, p< 1× 10−10 F(1, 15)= 843.7, p< 1× 10−10 F(2, 30)= 0.08, p= 0.92

Smoothness F(3, 45)= 373.8, p< 1× 10−10 F(1, 15)= 79.8, p= 2× 10−7 F(2, 30)= 7.7, p= 0.002
Trial-by-trial
variability

F(3, 45)= 10.1, p= 3× 10−5 F(1, 15)= 128.9, p= 9× 10−9 F(2, 30)= 19.2, p= 4× 10−6

level 5 (compared to level 3 p = 2 × 10−6), the
variability of those commands was significantly lar-
ger than while reaching level 3 (p = 9 × 10−9).
Behavioral results of the participant with limb loss
also largely mirrored her healthy counterparts, except
for movement smoothness which improved across
days (figures 2(C)–(E)).

3.3. Skill monitoring using ‘observational’ trials
and SAFmodels
A power-law model of SAF with 2 parameters was
fit to log-transformed performance data obtained by

pooling across participants (see section 2.6 ). Across
the three days, the average R2 was 0.76 ± 0.09.
Figure 3(A) displays the model fit in the log-log plane
(and figure 3(B) in true coordinates) where the data
was pooled across subjects and demonstrates that the
slope of the SAF remained similar across training
(Day 1–3: −0.49, −0.57, −0.58), while the intercept
decreased (Day 1–3: −1.18, −1.42, −1.63), which
is in line with the conclusions of previous studies
[14, 23]. Therefore, we proceeded to simplify the 2-
parameter model by fixing the slope. To determine
the parameter value of the slope that least affected the
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Figure 3. Power law models of SAF to infer skill. (A) Fitting the power-law model to (log-transformed) pooled participant data.
Filled circles indicate measured success rates, and solid lines indicate model fits. (B) Same data and models in (A), plotted in true
coordinates.

R2 of the model fits across the three days, we conduc-
ted a perturbation analysis where we fixed the inter-
cept to its true value and varied the slope in the vicin-
ity of the best-fit values obtained above. We found
that when the slope was fixed at −0.55, we observed
almost no loss in the goodness of fit across the three
days (a decrease of 0.009 in R2). In comparison, fix-
ing the intercept led to a decrease of at least 0.18 in
R2. Therefore, we fixed the slope to be −0.55 for our
1-parameter model.

Using this 1-parameter model, we proceeded to
infer skill changes in the case study involving an
individual with limb loss. During the SAF trials,
the participant’s success rate slightly improved (2.6%
increase, averaged across speeds) fromDay 1 toDay 3,
which together with the improved trial-by-trial vari-
ability indicates a slight improvement in skill. Apart
from the SAF experiment, where execution speed was
controlled, the participant also performed ‘observa-
tional’ trials where the speedwas unrestricted, onDay
2 and Day 3. During these trials, the average suc-
cess rate increased from 89.1± 9.2% to 96.8± 3.1%,
but with an accompanied increase in reach times
(decreased speed) from 1.95 ± 0.3 s to 2.96 ± 0.27 s,
thereby making skill inference infeasible using just
success rate and reach time data. We subsequently
fit the 1-parameter SAF model, to analyze if there is
a change in the intercept. We found that there is a
decrease in the intercept from−2.14 to−3.02, indic-
ating a trend towards improvement of skill. While
the intercept values obtained were larger than those
for the pooled healthy-participant data, this can be
explained by the difference in average performance
between the pooled participant (speed-restricted) tri-
als and the observational trials of the individual with
limb loss.

4. Discussion

SAFs provide a rigorous way to evaluate and under-
standmotor skill andmonitor its improvement across
days. Here, we empirically measured how the SAF
changed across three days for a prosthesis force con-
trol task where participants used a closed-loop inter-
face based on proportional myoelectric control and
EMG feedback. We found that the shape of the
SAF curve remained intact, as participants’ success
rate improved similarly across all speeds and forces.
We then built parametric models of the measured
SAFs to better characterize the changes in SAF and
discussed a method to monitor skill changes using
observational data from an individual with a limb
loss.

4.1. Learning induced changes in the SAF for an
EMG feedback-based interface
In this study, we focused on an EMG feedback-based
interface that has previously been shown to out-
perform other non-invasive feedback approaches to
prosthesis force control [25, 32]. We elicited a wide
range of success rates by enforcing task execution
at different speeds using a time-band methodology,
similar to previous studies that investigated motor
control of natural movements [16, 22]. We found a
significant improvement in performance with train-
ing across all speeds. We expected that the largest
gains in the SAF would occur toward faster speeds
(Fast and Very Fast), due to the nature of EMG
feedback which promotes predictive modulation of
muscle contractions [11, 24]. However, conversely,
we found that the SAF merely ‘shifted upwards’.
Nevertheless, the shape of the SAF curve flattened at
slower speeds (no difference between Medium and
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Slow), and it would be interesting to analyze whether
prolonged training would eventually change the pro-
file shape by flattening out the other side of the curve
(i.e. similar performance across all speeds).

We also noticed that the shape of the SAF was
similar across force targets. Interestingly, we found
that the participants had greater success reaching tar-
get level 5 compared to 3, even at faster speeds. This
could be attributed to the design of our piece-wise
linear control mapping, which ensures that the vari-
ability at stronger contractions is compensated for
by the width of the levels. In addition, most of the
improvement happened quickly, after a single day
of training (from Day 1 to Day 2). It remains to be
tested if the lack of significant improvement between
Days 2 and 3 means that this is the maximum per-
formance or, more likely, that prolonged training
would lead to further improvement but with more
gradual increments. Taken together, these outcomes
are encouraging for the application of EMG feed-
back, demonstrating that it affords a consistent and
steady improvement in skill over a range of speeds and
forces.

Underlying these changes in performance, we
observed that the behavioral outcome measures also
exhibited interesting trends during training. First,
there was no change, across days, in the strategy
adopted by participants in each of the speed condi-
tions, as shown by the number of corrections they
used to achieve the target force. This indicates that
training across days primarily affected participants’
motor execution. At the level of generated EMG com-
mands, we observed that the signals became less vari-
able (or more similar to each other from trial to
trial) across days, indicating that participants’ motor
execution became more stereotypical, a hallmark
of skilled behavior. However, counterintuitively, the
commands also became less smooth. This could be
due to the discretized nature of the task and feed-
back interface, which promotes participants to navig-
ate from one level to the next, by ‘pausing’ in between
to avoid overshooting, and thereby leading to less
smooth trajectories as participants pause for shorter
periods of time. In essence, this ability to exploit
a ‘pausing’-based strategy enabled by the interface
reflects an improved skill to fine-tune EMG com-
mands and thereby navigate the force levels more
reliably. It is important to note that this decrease
in smoothness, together with the number of force
corrections, is caused by the discretized interface at
hand and therefore these metrics might behave dif-
ferently, e.g. for an interface with continuous feed-
back such as through amplitude modulation of a
single vibrotactor. Overall, we demonstrated the util-
ity of measuring motor execution related metrics to
understand how kinematic and user-generated vari-
ables could be employed to understand how differ-
ent interfaces enable users to acquire skilled behavior.
Naturally, this can be extended to different tasks, for

instance, grasping of a compliant object that would
enable force adjustments in both directions as well as
strengthen the incidental feedback (e.g. force estim-
ated from object deformation). An interesting direc-
tion of future research could be to investigate how
motor execution changes in such a situation.

Notably, the performance and behavioral out-
comes of the participant with limb loss largely
mirrored that of her healthy counterparts. However,
the amount of improvement she showcasedwasmuch
less compared to the healthy participants, partly
explained by her previous experience with myoelec-
tric control and EMG feedback as well as pros-
thesis use in daily life. Despite the lack of a sig-
nificant improvement in success rate, both move-
ment smoothness and variability improved at three
out of four speeds. This underscores the relevance of
measuring movement characteristics to better mon-
itor user skill progression, as has also been highlighted
in earlier studies [8, 9]. Moreover, it substantiates the
utility of analyzing trial-by-trial variability of myo-
electric commands as a marker of skill, analogous to
reduced variability of end-point kinematics in natural
movements [17, 18].

4.2. Measuring andmonitoring skill through SAF
models
Speed and accuracy of movements are inextricably
linked, and skill can be best understood as a com-
bination of the two. SAFs therefore provide a quant-
itative framework through which to measure skill.
In combination with previous results where SAF was
introduced as a means of comparing and evaluat-
ing different closed-loop prosthesis interfaces (Force
vs. EMG feedback) [22], here we observed that the
SAFs so measured do not change shape across days,
at least for the EMG feedback interface. The con-
stancy of tradeoff (here observed with respect to
both force levels and speeds) might be a more gen-
eral phenomenon [16], as also reflected in studies
of the intact motor system. This raises an interest-
ing possibility—given that participants improve sim-
ilarly across speeds, the tradeoff enabled by one inter-
face may be different than another no matter the
level of training of the user. For example, in [27], the
benefits of EMG feedback with respect to force feed-
backweremost expressed formedium speeds, and the
present study implies that thismight persist regardless
of training. However, this still needs to be confirmed
experimentally.

Additionally, here we encapsulated the SAFs using
a power law model, whereby the parameters of the
model completely determined the SAF. Accordingly,
empirically estimating the model parameters and
investigating how they change over time gives us a
powerful methodology to measure and monitor user
skill progression. In line with previous efforts [14,
23], we observed that the exponent of the power
law model (slope in log-transformed coordinates)
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remained relatively constant.We leveraged this know-
ledge to overcome one potential limitation of the SAF
methodology—that participants need to repeat the
same task at multiple speeds, requiring more exper-
imental time than the common practice of perform-
ing the task at a single self-chosen speed. However,
given the narrow variability in the observational data,
it remains to be seen if a single execution speed suffi-
ciently estimates the parameter of interest or if exper-
imentally sampling more speeds might lead to better
estimates. Due to this and other limitations outlined
in the next section, the presented analysis and applica-
tion of a single-parameter model shall be regarded as
a proof-of-concept. Furthermore, while such a sim-
plified SAF model perhaps enables skill inference and
provides a good approximation of the SAF, we believe
that measuring the SAF and the underlying motor
execution, is substantially more informative.

4.3. Limitations and future work
One limitation of the current study is the inclusion
of only a single individual with limb loss. However,
considering the alignment of performance and beha-
vioral metrics of the individual with limb loss and
the healthy cohort in this study, coupled with the
simplicity of the interface and task used, we expect
that the results are likely to translate to individu-
als with limb loss, even more so to those with less
experience in prosthesis control. Nevertheless, tests
in a larger pool of amputees are the necessary next
step in this research. Another important limitation
is that we only conducted the observational exper-
iment on the individual with limb loss. Moreover,
we observed that she had very high levels of skill,
already to begin with, having participated in sim-
ilar experimental setups before, and therefore did not
improve by much. Therefore, future studies need to
verify the validity of the proposed model-based skill
inference framework with a larger cohort of parti-
cipants with measured SAF profiles in combination
with observational data. However, we believe that the
approach of modelling SAFs and incorporating that
knowledge to infer skill represents a promising dir-
ection to promote rigorous skill inference, and for
benchmarking efforts that characterize the perform-
ance afforded by different interfaces. The latter can
also include the baseline condition, with no artificial
sensory feedback, where prosthesis users can only rely
on incidental sources of information (visual and aud-
itory cues). This would allow quantifying the state of
the art in ‘open-loop’ user-prosthesis interfaces aswell
as reveal the benefits of added feedback.

5. Conclusion

In this study, we empirically derived the changes in
SAFs during a three day experiment, as participants
performed a functional prosthesis force-matching
task. We found that success rates increased from Day

1 to Day 3, and that the improvement was similar
across the target forces and target speeds. The train-
ing therefore improved performance without altering
the initial shape of the SAF profile. We then modeled
the empirically observed profiles to thoroughly char-
acterize learning induced changes in SAF with EMG
feedback.More generally, the study demonstrates that
the SAFmethodology can be successfully translated to
prosthesis control for systematic and comprehensive
monitoring of user skill.
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