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Abstract—This paper proposed an advanced method for ad-
justing grid impedance in grid-forming inverters, utilizing the
Soft Actor-Critic Deep Reinforcement Learning (SAC-DRL)
algorithm. The approach contains a flexible strategy for con-
trolling virtual impedance, supported by an equivalent grid
impedance estimator. This facilitates accurate modifications of
virtual impedance based on the grid’s X/R ratio and the
converter’s power capacity, aiming to optimize power flow and
maintain grid stability. A unique feature of this methodology is
the division of virtual reactance into two segments: one adhering
to standard control protocols and the other designated for
precision enhancement via the SAC-DRL method. This strategy
introduces a layer of intelligence to the system, strengthening its
resilience against fluctuations in grid impedance. Experimental
validations, executed on a laboratory setup, verify the robustness
of this approach, highlighting its potential to significantly improve
intelligent power grid management practices.

Index Terms—Virtual impedance, power decoupling, grid-
forming inverter, soft actor-critic deep reinforcement learning,
grid impedance estimation.

I. INTRODUCTION

Integrating distributed generators (DGs) into microgrids
marks a paradigm shift in energy systems, emphasizing decen-
tralized control and enhanced resilience. Grid-forming (GFM)
inverters play a pivotal role in this integration, ensuring
stability and reliable power-sharing, especially in islanded
operational modes [1]. These inverters are crucial in transform-
ing the operational dynamics of microgrids, enabling them to
operate independently from the central grid and thus providing
a more flexible and resilient power supply [2].

The conventional approach to managing this integration em-
ploys droop control strategies that emulate the behavior of syn-
chronous generators. This method is essential for controlling
microgrids, offering a simple and effective way to maintain
system stability and distribute power evenly among various
distributed energy resources. By mimicking the characteristics
of traditional power systems, droop control provides a familiar
framework for grid management [3], [4].

However, these strategies encounter limitations, especially
in low-voltage microgrids with small X/R ratios, where an
undesirable coupling between active and reactive powers
emerges, compromising system stability [5]. This coupling

effect can lead to voltage fluctuations and power quality issues,
posing challenges to the stable operation of microgrids. These
challenges are exacerbated in systems with a high penetration
of renewable energy sources, such as solar PV and wind
turbines, where the variability in power output can further
destabilize the grid.

To overcome these challenges, various control and power
decoupling strategies have been proposed. Virtual Impedance
Decoupling Strategies (VI-DS) are designed to modify the
output impedance of DGs, enabling the independent control
of active and reactive powers [6]. By integrating a feed-
forward control scheme, VI-DS effectively introduces a virtual
impedance, creating either inductive or resistive characteris-
tics in the DG output. This adjustment is achieved through
the strategic implementation of a virtual impedance, which
involves a series connection of negative resistance and induc-
tance. Such a configuration alters the equivalent impedance
between a virtual power source and the point of common
coupling (PCC), rendering it inductive [7]. However, its perfor-
mance is contingent on precise knowledge of the microgrid’s
structure, making it vulnerable to uncertainties and variations
in grid impedance. The Q-V modified droop control method
[8] offers an alternative, illustrating effectiveness in inductive
conditions but struggling under complex feeder equivalent
impedance. Also, closed-loop power decoupling strategies in-
corporate techniques like impedance droop estimation, small-
signal injection, and virtual power source control [9]-[11]. The
majority of grid-shaping techniques discussed in the literature
rely on accurate knowledge of grid impedance parameters,
rendering them less effective in situations where uncertainties
arise from variations in grid impedance.

Recognizing these challenges, this paper introduces an
innovative control strategy using the Soft Actor-Critic Deep
Reinforcement Learning (SAC-DRL) algorithm to tune grid
impedance in GFM inverters properly. This method inte-
grates a dynamic virtual impedance control mechanism with
an equivalent grid impedance estimator, facilitating precise,
adaptive adjustments based on the grid’s X/R ratio and the
converter’s power capacity. This ensures optimal power flow
and grid stability, even in the face of impedance fluctuations. A



remarkable aspect of the proposed approach is the division of
virtual reactance into two segments, providing standard control
protocols with accuracy enhancement via SAC-DRLA, thus
adding an additional layer of intelligence and resilience to the
system.

II. CONFIGURATION OF PROPOSED GFM INVERTER SETUP

In Fig. 1, the configuration of the test system is shown,
showcasing a GFM inverter integrated into the grid at the
PCC via a three-phase LC filter. The LC filter consists
of capacitance Cf and inductance Lf . A three-phase RL
branch (Zg = rg + jωlg) emulates the grid’s impedance.
The architecture of the GFM inverter includes a voltage
source inverter equipped with PI controllers for inner current
and voltage regulation in the dq reference frame. The active
power control loop utilizes the synchronous power controller
approach, simulating virtual inertia and providing damping to
the system [12], [13]. The voltage of the GFM inverter is
regulated through the inclusion of a PI controller within the
reactive power control loop. The suggested impedance shaping
method incorporates a block for estimating equivalent grid
impedance, a block for defining the Virtual Impedance (VI)
profile, and a block for the VI system based on SAC-DRL
method.

A. Equivalent Grid Impedance Estimation

Traditional power flow models can predict the equivalent
impedance of a feeder when the voltage and power metrics
at the PCC are available. However, DG control mechanisms
rely solely on information about output voltage and power
for managing power flows, which restricts the ability to
accurately determine the equivalent impedance at the PCC.
Adding current sensors at the PCC can provide the neces-
sary data for power analysis, thus facilitating the estimation
of the PCC’s equivalent impedance [1], [14]. This method,
though, does not account for the effects of virtual impedance.
Therefore, in this study, the reference voltages from the DG
control system (v∗oαβ) are included to accurately estimate the
equivalent impedance that consists of the impact of virtual
impedance. Active and reactive power values corresponding
to the equivalent impedance can be determined through the
following calculations:{

Pc = δvbαioα + δvbβioβ
Qc = δvbαioβ − δvbβioα

(1)

In this context, Pc and Qc represent the total power output
of the DG system, while δvbαβ = v∗oαβ − voαβ denotes the
discrepancy in voltage between the designated reference and
the actual output from the DG. ioαβ refers to the current
observed at the PCC. To minimize the impact of the switching
frequency on the calculations of Pc and Qc, low-pass filters
are utilized.

Given the system’s symmetry and balance, the magnitude
of its equivalent impedance can be determined through the
following estimation:

Ze =
V ∗
oα

Ioα
=

V ∗
oβ

Ioβ
(2)

The components of resistance and reactance in Ze, represent-
ing its real and imaginary parts, are calculated as follows:

Re =
ZePc

Sc
(3)

Xe =
ZeQc

Sc
(4)

where Sc =
√
P 2
c +Q2

c represents the apparent power asso-
ciated with the system’s equivalent impedance.

This proposed method calculates the system’s equivalent
impedance, Ze, breaking it down into its resistive (Re) and
inductive (Xe) components. This breakdown facilitates the
assessment of the feeder’s X/R ratio.

B. Definition of VI profile

The VI profile block specifies the VI profile and the values
of its components to achieve the targeted X/R ratio. This
is done by considering the estimated grid impedance (Ze =
Re + jXe) and the power availability from the converter.

The calculation of virtual resistance and reactance (rvi and
xvi) is determined as follows:

rvi = γRe (5)

xvi = λXe (6)

where γ and λ represent the reduction factors, which are estab-
lished based on the desired X/R ratio and power availability
of GFM inverter.

C. SAC-DRL based VI control

The calculation of xvi splits it into two components us-
ing a distribution factor µ, leading to xvi2 = µxvi and
xvi1 = (1 − µ)xvi. The approach for virtual reactance xvi

adopts a variable structure strategy, where xvi1 adheres to
the conventional method, and xvi2 employs a SAC-DRL-
based method to compensate for unmodeled disturbances and
accommodate potential variations in grid impedance. In Fig. 1,
Ze = Re+jXe represents the estimated equivalent impedance,
while rvi and xvi stand for the components of the VI. The term
xvi2, derived via the SAC-DRL algorithm, is combined with
xvi1 to fulfill the X/R control objectives.

The SAC method is a sophisticated reinforcement learning
strategy employing deep neural networks to overcome the
constraints of limited dimensionality in states and actions.
Compared to the deep deterministic policy gradient technique,
capable of managing continuous state-action spaces, SAC
achieves faster convergence [15]. Distinct from traditional RL
algorithms, where the action-value function focuses on max-
imizing cumulative reinforcement signals, the SAC method
optimizes the entropy of data concerning the state indepen-
dently. To do this, a soft Bellman function is adopted for the



Fig. 1. Block diagram of the proposed GFM inverter setup.

action-value function [16]. The actor-network is designed to
generate the best possible actions given the current state of
the system. More information on this method is available in
[15].

xvi2 is the control design parameter adjustable through the
SAC-DRL method. Consequently, the action within SAC-DRL
is characterized as ac = xvi2. To assess the performance of
the SAC’s agent, the reward signal is established to reduce the
deviation between the reactive power, Qe, and its set-point
value, Qr. Fig. 2 shows the proposed SAC-DRL-based grid
impedance shape implementation.

r =
1

|Qr −Qe|
(7)

The system state, Sc, receives Qe as the input for the deep
neural networks.

III. EXPERIMENTAL RESULTS

The proposed control strategy was validated using a GFM
inverter laboratory setup shown in Fig. 2, configured as per the
block diagram shown in Fig. 1. A Cinergia Grid Simulator is
used to mimic the power grid. The main parameters of the
system are detailed in Table 1. The control system execution
and implementation of the SAC-DRLA-based grid impedance

shaping algorithms were facilitated using a fast prototyping
system, dSPACE1202, operating at a sampling rate of Ts =
100 microseconds. The RL Agent block in MATLAB does not
support Code Generation. However, enhancements have been
made to the MATLAB Function Block to model SAC-DRL
within Simulink. This modification permits the use of pre-
trained networks, including reinforcement learning policies,
for inference within Simulink. Consequently, this advancement
enables the implementation of SAC-DRL in dSPACE1202
through code generation. For the initial synchronization of the
inverter with an established grid voltage, a PLL is required,
and then, after synchronization, a transition into GFM control
is executed. It should be noted that the transition process
is not mandatory because the synchronous power controller
embedded in the active power loop naturally possesses the
ability to synchronize. In this study, the transition approach
is employed as a procedural measure in experimental tests to
facilitate a soft start.

Fig. 3(a)–(c) shows the experimental comparisons (P , Q,
ioa) when Pr steps from 600 W to 1000 W at t = 2s and Qr

steps from 100 to 300 VAr at t = 7s in a stiff-grid connection
(SCR = 8.66, estimated by grid inductance Lg). The proposed
SAC-DRL-based grid impedance shaping method enhances



Fig. 2. Schematic of SCA-DRLA applied to GFM inverter.

TABLE I
MAIN PARAMETERS OF GFM INVERTER SETUP

lg , rg Lf , Cf Sr Vdc fSW vg ωo

5.4 mH and 0.2 Ω 2.4 mH and 15 µF 1 kW 200 V 20 kHz 70 RMS 100πrad/s

*
Fig. 3. Step responses with/without the proposed grid shaping system when SCR=8.6, Pr : 600 W to 1000 W, and Qr steps from 100 VAr to 300 VAr: (a)
active power; (b) active power; and (c) current.

oscillation damping and delivers faster and smoother dynam-
ics, while also effectively reducing overshoot instances caused
by power step insertions, compared to the virtual impedance

implementation with fixed values (rvi = 0.38, xvi = 1.4).
Fig. 4(a)–(c) compares the system’s performance with SCR
= 2.88 and an step change of 400 W in Pr at t = 5s. The



Fig. 4. Step responses with/without the proposed grid shaping system when SCR=2.88 and Pr : 600 W to 1000 W: (a) active power; (b) active power; and
(c) current.

findings also indicate that the power coupling is substantially
lower with the proposed strategy compared to stronger grids
such as Fig. 3(a)–(b).

IV. CONCLUSION

This paper proposed an intelligent method for adjusting
grid impedance in GFM inverters through the SAC-DRLA.
This advanced approach combines dynamic virtual impedance
control with an equivalent grid impedance estimator. It enables
precise and adaptive adjustments to virtual impedance based
on the grid’s X/R ratio and the converter’s power capacity,
ensuring optimal power flow and maintaining grid stability,
even amid impedance fluctuations. The introduced SAC-DRL-
based strategy significantly improves oscillation damping and
ensures more rapid and fluid dynamic responses. Furthermore,
it adeptly minimizes the occurrence of overshoots resulting
from sudden power changes, highlighting its efficacy in en-
hancing grid operation and stability.

V. ACKNOWLEDGMENT

This work was supported by the Reliable Power Electronic-
Based Power Systems (REPEPS) project and the “SMART
BATTERY” project (project number 222860), both hosted at
the AAU Energy Department, Aalborg University, and part
of the Villum Investigator Program funded by the Villum
Foundation.

REFERENCES

[1] R. L. d. A. Ribeiro, A. Oshnoei, A. Anvari-Moghaddam and F. Blaabjerg,
“Adaptive Grid Impedance Shaping Approach Applied for Grid-Forming
Power Converters,” in IEEE Access, vol. 10, pp. 83096–83110, 2022.

[2] A. Oshnoei, S. Peyghami, H. Mokhtari, and F. Blaabjerg, “Grid syn-
chronization for distributed generations,” Encyclopedia of Sustainable
Technologies. Elsevier, pp. 1–21, 2023.

[3] Y. Han, H. Li, P. Shen, E. A. A. Coelho and J. M. Guerrero, “Review
of active and reactive power sharing strategies in hierarchical controlled
microgrids,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2427–2451,
Mar. 2017.

[4] L. Ding, Q.-L. Han and X.-M. Zhang, “Distributed secondary control
for active power sharing and frequency regulation in islanded microgrids
using an event-triggered communication mechanism,” IEEE Trans. Ind.
Informat., vol. 15, no. 7, pp. 3910–3922, Jul. 2019.

[5] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla,
“Hierarchical control of droop-controlled AC and DC microgrids—A
general approach toward standardization,” IEEE Trans. Ind. Electron.,
vol. 58, no. 1, pp. 158–172, Jan. 2011.

[6] J. He, Y. W. Li and F. Blaabjerg, “An enhanced islanding microgrid
reactive power, imbalance power, and harmonic power sharing scheme,”
IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3389–3401, Jun. 2015.

[7] C. Dou, Z. Zhang, D. Yue and M. Song, “Improved droop control based
on virtual impedance and virtual power source in low-voltage micro-
grid,” IET Gener. Transmiss. Distrib., vol. 11, no. 4, pp. 1046–1054,
Mar. 2017.

[8] H. Han, X. Hou, J. Yang, J. Wu, M. Su and J. M. Guerrero, “Review
of power sharing control strategies for islanding operation of AC
microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200–215, Jan.
2016.

[9] B. Liu, Z. Liu, J. Liu, R. An, H. Zheng and Y. Shi, “An adaptive
virtual impedance control scheme based on small-AC-signal injection
for unbalanced and harmonic power sharing in islanded microgrids,”
IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12333–12355, Dec.
2019.

[10] D. K. Alves, R. L. d. A. Ribeiro, F. B. Costa, T. d. O. A. Rocha and
J. M. Guerrero, “Wavelet-based monitor for grid impedance estimation
of three-phase networks,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp.
2564–2574, Mar. 2021.

[11] F. Zhao, X. Wang and T. Zhu, “Power Dynamic Decoupling Con-
trol of Grid-Forming Converter in Stiff Grid,” IEEE Transactions on
Power Electronics, vol. 37, no. 8, pp. 9073–9088, Aug. 2022, doi:
10.1109/TPEL.2022.3156991.

[12] A. Oshnoei, H. Sorouri, R. Teodorescu and F. Blaabjerg, “An Intelligent
Synchronous Power Control for Grid-Forming Inverters Based on Brain
Emotional Learning,” IEEE Transactions on Power Electronics, vol. 38,
no. 10, pp. 12401–12405, Oct. 2023.

[13] A. Oshnoei, S. Peyghami and F. Blaabjerg, “Intelligent Control
Approach Applied for Grid-Forming Power Converters,“ 2023
IEEE Applied Power Electronics Conference and Exposition
(APEC), Orlando, FL, USA, 2023, pp. 3013–3019, doi:
10.1109/APEC43580.2023.10131254.

[14] A. Oshnoei, R. L. A. Ribeiro, A. Anvari-Moghaddam and F. Blaabjerg,
“Learning-based Grid Impedance Shaping Method Applied for High-
Accuracy Power Hardware-in-the-Loop,“ 2023 11th International Con-
ference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE
Asia), Jeju Island, Korea, Republic of, 2023, pp. 2543–2548, doi:
10.23919/ICPE2023-ECCEAsia54778.2023.10213962.

[15] A. Fathollahi et al., “Robust Artificial Intelligence Controller for Sta-
bilization of Full-Bridge Converters Feeding Constant Power Loads,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70,
no. 9, pp. 3504–3508, Sept. 2023, doi: 10.1109/TCSII.2023.3270751.

[16] Y. Zheng et al., “Load frequency active disturbance rejection control for
multi-source power system based on soft actor-critic,” ” Energies, vol.
14, no. 16, p. 4804, 2021.


