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Abstract—The purpose of this study was to develop a novel
objective measurement of nociception using brain signals. Using
deep learning, pain markers can possibly be extracted from
event-related potentials (ERP). Therefore, this study aimed to
develop a convolutional neural network (CNN) to classify be-
tween noxious and non-noxious stimuli based on ERPs from
micro-electrocorticography (4ECoG) recordings in pigs. tECoG
recordings were acquired from 13 experiments on 5 pigs. Subjects
received electrical stimulation to the ulnar nerve, while tECoG
recordings were acquired using a 32-channel microelectrode
array placed on the dura above the primary somatosensory
cortex. Each pig received three sets of both noxious and non-
noxious stimulations. The tECoG recordings were transformed
into short-time Fourier transforms, which were used as input
to the CNN. ERPs were classified with an accuracy of 73.5%
and AUC of the receiver operating characteristic curve at 0.72.
Additionally, the model was better at predicting non-noxious
responses (85%) compared to noxious stimuli (62%). In a further
development process, the performance of the CNN model needs to
be optimised and further research has to be conducted regarding
the translation of the results from animal to human pain research.

Index Terms—CNN, Pain detection, EEG, Pigs, ECoG

I. INTRODUCTION

The subjective nature of pain is reflected in its assessment,
where it is not possible to directly measure pain by a bio-
logical parameter since there are currently no known reliable
biomarkers for pain. Therefore, the golden standard for pain
assessment is a self-report, typically a numerical rating scale
(NRS) or visual analogue scale (VAS). The NRS score requires
the patient to make a self-report of their perception of pain
between 0-10, while the VAS score requires the patient to
point at a line between two points and measure the length
of the line. Using a subjective measure leads to significant
limiting factors, such as reliability and observer bias. [1], [2].
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Pain measurement has become even more complex when
conducting experiments on animals, since the subjective mea-
surements used in humans cannot be transferred to animals,
as animals cannot describe their pain experience. Therefore,
scientists currently rely on evoked and spontaneous analysis to
determine the effectiveness of an analgesic. This is suboptimal
since there are two prominent issues; susceptibility to bias
and validity of the biomarker. An objective biomarker of pain
could be used as a complementary measure to the behavioural
analysis and, therefore, possibly lead to improvements in the
assessment and understanding of pain mechanisms in animals.
[3]-[5]. Since pain perception takes place in the brain, it is
only natural to try to obtain objective measures of pain through
electrophysiological recordings of cortical activity.

Novel methods such as deep learning are increasingly being
used to obtain objective biomarkers in electrophysiological
signals. Deep learning has made a significant impact on
neuroscience and neural engineering in recent years. It is
widely used in brain-computer interfaces (BCI), where its
classifying ability is used to interpret and classify brain signals
based on event-related potentials (ERPs) from a variety of
external stimuli. [6]-[8]. These signals share the complexity
of those seen when inducing noxious stimuli and recording
EEG in the brain [9]; however, deep learning has rarely been
used as a classifier for pain-induced potentials in the brain
[10].

Therefore, the purpose of this study was to investigate
whether a convolutional neural network (CNN) architecture
can be developed to classify noxious and non-noxious stimuli
from electrocorticography (ECoG) signals in pigs.



II. METHODS
A. Experiment

13 experiments in 5 pigs were used for this study, with
the average weight of 30 £ 4.6 kg. This experiment was
approved by the Danish Veterinary and Food Administration
under the Ministry of Environment and Food of Denmark
(protocol number: 2020-15-0201-00514).

The pigs were anesthetised, after which an electrical stim-
ulation was applied through two cooner wires implanted
subcutaneously under the right ulnar nerve, approximately 3
cm above the carpus. A craniotomy was performed frontal to
the coronal and lateral to the sagittal suture line, and a 32-
channel ¢ECoG (E32-1000-30-200, Neuronexus, Ann Arbor,
USA) was implanted on top of the dura over the primary
somatosensory cortex (S1) region. The ERPs were recorded
using a TDT system (Pre-amplifier SI-8, Processor RZ2, Data
streamer RS4, Workstation WS8 Tucker-Davis Technologies,
Alachua, FL, USA). Finally, data were sampled at 6 kHz.

The stimulation amplitudes were separated into non-noxious
and noxious stimulation, inducing stimulations at two times the
motor threshold and ten times the motor threshold, respec-
tively. Each measurement set consisted of 100 non-noxious
and 100 noxious stimuli at a frequency of 1Hz. Three sets were
recorded at an interval of 10 minutes. The motor threshold was
found by increasing the stimulation amplitude from 50 pA
in steps of 200 pA. Once a motor response was observed,
the amplitude was decreased in steps of 50 pA until no
movement was observed. Then it was again increased by 50
1A until the threshold was found. The stimulation waveform
was an asymmetric rectangular charge-balanced biphasic pulse
with the secondary phase having an amplitude of 10% of
the primary phase and an inter-pulse interval of 10 ms. A
programmable stimulator (STG4008, Multichannel Systems,
Reutlingen, Germany) was used.

B. Pre-processing

The data was filtered using a high-pass filter at 1 Hz (10th-
order Butterworth) and a low-pass filter at 250 Hz (4th-order,
Butterworth). Line noise (50 Hz) was removed with a 16th
order Butterworth with cut-off frequencies of 48 Hz and 52 Hz.
Line noise was filtered up to the fourth harmonic. Every filter
was applied using forwards and backwards filtering, where the
mentioned filter orders are the effective orders. Lastly, noisy
channels were removed based on visual inspection applied to
pre-processed data.

After filtering the data, a short-time Fourier transform
(STFT) was performed, resulting in an image-like output,
which is a favourable input format for a CNN architecture.
The parameters for the STFT were: Hanning window with
50% overlap, a window size of 350 data points per window.
The resulting image had a pixel length of 26.19 ms (x-
axis) and 17.24 Hz (y-axis) (see Fig. 1). Subsequently, the
amplitudes were normalised in the range of 0 — 1 by dividing
all amplitudes by the maximum amplitude independently for
each STFT. Normalisation was performed to obtain a faster

convergence of the CNN. The images were then interpolated
(spline, zoom factor of two) to obtain a higher temporal
and spatial resolution. Lastly, the average was computed for
every 25 STFTs to remove some of the neural variability
from the recordings and enhance the similarities based on the
additive theory [11] (See Fig. 1). The pre-processing steps
were performed in Python (version 3.9.7, 2022).
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Fig. 1. Example of the final STFT with a mean of 25 epochs and a cut-off
frequency of 250 Hz.

C. CNN architecture

The architecture used in this study consisted of two convo-
lutional layers, two pooling layers, a flattening layer, two fully-
connected and an output layer (Fig. 2). The two convolutional
layers had zero padding and ReLU as activation functions.
Additionally, the first convolutional layer had four feature
maps and a kernel size of 5 x 5 pixels, and the second
convolutional layer had eight feature maps and a kernel size of
3 x 3 pixels. After each convolutional layer, max pooling was
applied. The first max pooling had a kernel size of 3 x 3 with
a stride of 3, and the second max pooling had a kernel size
of 2 x 2 with a stride of 2. After the second max pooling, the
neurons were flattened in the flattening layer, which consisted
of 120 neurons. The flattening layer was connected to the
first fully connected layer, which consisted of 30 neurons.
Furthermore, the first fully connected layer was connected
to the second fully connected layer, which consisted of two
neurons. Both fully connected layers applied sigmoid as an
activation function. The output layer of the neural network
had two neurons in accordance with the binary classification of
noxious or non-noxious stimulation. Additionally, the output
layer consisted of a softmax activation function in order to
normalise the output and to obtain posterior probabilities.
Through the training part of the neural network, dropout was
applied. For the convolutional layers, a dropout rate of 50%
was used and for the first fully connected layer, the dropout
rate was 70%.

D. Training and optimisation

The chosen optimiser was a NAdam optimiser with a
learning rate of 0.0002 and used binary cross-entropy as the
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Fig. 2. CNN architecture developed for this study. The input layer consists of an STFT image, two convolutional layers, two max poolings, a flattening layer,
two fully connected layers, and lastly an output layer. The input and output dimensions of the different layers through the network are indicated in parentheses
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loss function. To reduce training time and avoid overfitting, a
model checkpoint was used to save the best results, and early
stopping was used if there was no decrease in validation loss
for 100 epochs. The batch size was set to 50. The training,
test, and validation data were divided into 60%, 20% and
20% of the data, ensuring that there was no overlap between
experiments. The algorithm was created using the open-source
PyTorch v1.11.0 framework. The hardware used to train was
a NVIDIA GeForce RTX 3080 with CUDA 11.6.

E. Evaluation of CNN performance

CNN performance was evaluated using accuracy, F1-score,
and receiver operating characteristic (ROC) area under the
curve (AUC). Accuracy provides an overall performance mea-
sure, which is unweighted by the type of classification error.

Accuracy = TP+TN (1)
Y“TPY{FN{TN+FP

F1-score is another way to measure a test’s accuracy, which
is calculated from the precision and true positive rate.
This can be calculated with the following

B 2TP
" TP+ FP+FN

F1 2)

The ROC is a method to evaluate a binary classification
algorithm in terms of the measures; true positive rate (TPR)
and false positive rate (FPR). These measures can be used to
plot the ROC curve that shows the performance of the binary
classifier by plotting the TPR versus the FPR. [12].

An AUC can be computed to obtain a single performance
metric of the system. According to [12]: "An AUC of 0.5
suggests no discrimination (i.e., ability to distinguish positive
and negative samples), 0.7 to 0.8 is considered acceptable, 0.8
to 0.9 is considered excellent, and more than 0.9 is considered
outstanding.”

III. RESULTS

The algorithm was better at predicting the non-noxious
stimuli, with 85% correct predictions. It had a lower perfor-
mance predicting noxious stimuli, where the network had 62%
correct predictions. The accuracy and F1 score of the classifier
was 73.5% and 70.1%, respectively. Using the CNN model
to perform binary classification between noxious and non-
noxious stimulations on the test data, an AUC of the ROC
curve at 0.722 was achieved (see Fig. 3).
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Fig. 3. The ROC curve showing the performance of the classifier. The orange
lines represents the unique TPR and FPR, while the blue dashed line represents
the line of no-discrimination. The AUC of the ROC curve was 0.722.

As seen in Fig. 3, the ROC is mostly above the line of no-
discrimination. Above a FPR of 0.9 the ROC curve regresses
below the line of no-discrimination. The optimal threshold is
the point of the curve closest to (0,1), which in those results
are placed at a TPR around 0.6.

IV. DISCUSSION

In this study, a CNN architecture was developed to classify
noxious and non-noxious stimulations given to the ulnar nerve
in pigs. As input, a STFT was calculated from the pECoG



signals. An accuracy of 73.5% was achieved when using the
test data to predict between noxious and non-noxious stimuli.
This was compared to the Fl-score of 70.1%, which had a
minimal difference, because the training data was balanced.
However, the slight difference in accuracy can be explained
by the balance of positive and negative predictions. This is also
seen in the confusion matrix when comparing the prediction
rates of TP and TN, where TP is 0.62, while the TN is 0.8. This
explains the difference seen between Fl-score and accuracy.

The lower accuracy of the noxious compared to non-noxious
stimuli predictions can be explained by nerve fiber recruitment.
Non-noxious stimuli are assumed to activate predominantly
AQ fibers, while noxious stimulis activate both A5 and Ad
fibers. The brain signatures of noxious and non-noxious stimuli
have therefore substantial overlap, making them difficult to
distinguish from each other. Therefore, a method to stimu-
late only nociceptive fibres could help improve the classifier
performance. [13].

Similar studies have been conducted using ERPs of different
types of stimuli. One study used several different architectures
to compare with their network. They used the Hilbert spectrum
as input to a general CNN and received an accuracy of 73.02%
which is similar to our study [14]. However, the authors
found that using a CNN combined with a Bi-Long short-term
memory (LSTM) could further improve the results, resulting
in an accuracy of 91.3%. This was a general pattern in
other studies, finding that a combination of general CNN and
other neural networks architectures increased the classification
accuracy. Another example is by [15], who have obtained an
accuracy of 91.86% when using a CNN-LSTM algorithm.
Another study combined different architectures in a Multi-
Attention Convolutionl Recurrent mOdel (MACRO) using SE,
SKNet, LSTM and SA to achieve better performance when
classifying from a spatiotemporal input. Using MACRO, they
achieved an AUC of ROC at 0.93, which is notably higher
compared to our findings. [16]

Therefore a tendency is seen where CNN alone may not be
sufficient to improve the performance of this study. Instead a
combination of architectures, relevant to the given input, can
be implemented to achieve a better performance.

The results indicate that it is still difficult to predict nocicep-
tion in pigs. This speaks to the importance of an algorithm able
to extract nociception related biomarkers, since pigs are unable
to “confirm” when they are feeling pain. Such a biomarker
needs to be both sensitive (able to detect pain at its lowest
level) and specific (insensitive to other sensations). This will
improve the outcomes of pre-clinical trials. It may further
help humans who are unable to express themselves to receive
pain relieving medication when needed. To further improve
the algorithm, a look into what features are used to predict
the noxious and non-noxious stimuli is needed. This could
improve the understanding regarding which parts of the signals
that are indicators for a nociceptive response. Ultimately this
knowledge could further improve the algorithm and help in
decoding the physiological response.

V. CONCLUSION

A CNN was developed to classify between noxious and
non-noxious stimuli based on ERPs from YWECoG recordings
in pigs. Classification between noxious and non-noxious ERPs
with an accuracy of 73.5% and an acceptable AUC of the ROC
curve at 0.72 was achieved. The model was better at predicting
non-noxious responses (85%) compared to noxious responses
(62%).The CNN model can be further improved by combining
CNN with one or more architectures.

VI. ACKNOWLEDGEMENT

This work was funded by the Center of Neuroplasticity and
Pain by the Danish National Research Foundation (DNRF121).
We thank the staff at Aalborg University Hospital for assis-
tance during the animal experiments.

REFERENCES

[1] K. D. Davis, H. Flor, H. T. Greely, G. D. Iannetti, S. Mackey, M. Ploner,
A. Pustilnik, I. Tracey, R.-D. Treede, and T. D. Wager, “Brain imaging
tests for chronic pain: medical, legal and ethical issues and recommen-
dations.” Nature reviews., vol. 13, no. 10, 2017.

[2] M. Elsayed, K. S. Sim, and S. C. Tan, “A novel approach to objectively
quantify the subjective perception of pain through electroencephalogram
signal analysis,” IEEE Access, vol. 8, pp. 199920-199 930, 2020.

[3] N. Percie du Sert and A. Rice, “Improving the translation of analgesic
drugs to the clinic: animal models of neuropathic pain,” British journal
of pharmacology, vol. 171, no. 12, pp. 2951-2963, 2014.

[4] N. E. Burma, H. Leduc-Pessah, C. Y. Fan, and T. Trang, “Animal
models of chronic pain: advances and challenges for clinical translation,”
Journal of neuroscience research, vol. 95, no. 6, pp. 1242-1256, 2017.

[5] D. Castel, I. Sabbag, O. Brenner, and S. Meilin, “Peripheral neuritis
trauma in pigs: a neuropathic pain model,” The Journal of Pain, vol. 17,
no. 1, pp. 36-49, 2016.

[6] A. Ikeda and Y. Washizawa, “Steady-state visual evoked potential
classification using complex valued convolutional neural networks,”
Sensors, vol. 21, no. 16, p. 5309, 2021.

[71 A. Ravi, N. H. Beni, J. Manuel, and N. Jiang, “Comparing user-
dependent and user-independent training of cnn for ssvep bci,” Journal
of neural engineering, vol. 17, no. 2, p. 026028, 2020.

[8] B.Zang, Y. Lin, Z. Liu, and X. Gao, “A deep learning method for single-
trial eeg classification in rsvp task based on spatiotemporal features of
erps,” Journal of Neural Engineering, vol. 18, no. 4, p. 0460c8, 2021.

[9] S.J. Luck, “Event-related potentials.” 2012.

[10] D. Chen, H. Zhang, P. T. Kavitha, F. L. Loy, S. H. Ng, C. Wang,
K. S. Phua, S. Y. Tjan, S.-Y. Yang, and C. Guan, “Scalp eeg-based pain
detection using convolutional neural network,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 30, pp. 274-285,
2022.

[11] M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice,
st ed., ser. Issues in Clinical and Cognitive Neuropsychology. The
MIT Press, 2014.

[12] J. N. Mandrekar, “Receiver operating characteristic curve in diagnostic
test assessment,” Journal of Thoracic Oncology, vol. 5, no. 9, pp. 1315-
1316, 2010.

[13] D. Lelic, C. D. Mgrch, K. Hennings, O. K. Andersen, and A. M. Drewes,
“Differences in perception and brain activation following stimulation by
large versus small area cutaneous surface electrodes,” European Journal
of Pain, vol. 16, no. 6, pp. 827-837, 2012.

[14] L. Ghosh, D. Dewan, A. Chowdhury, and A. Konar, “Exploration of face-
perceptual ability by eeg induced deep learning algorithm,” Biomedical
Signal Processing and Control, vol. 66, p. 102368, 2021.

[15] Z. Gao, T. Yuan, X. Zhou, C. Ma, K. Ma, and P. Hui, “A deep learning
method for improving the classification accuracy of ssmvep-based bci,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
no. 12, pp. 3447-3451, 2020.

[16] Z. Lan, C. Yan, Z. Li, D. Tang, and X. Xiang, “Macro: Multi-attention
convolutional recurrent model for subject-independent erp detection,”
IEEE Signal Processing Letters, vol. 28, pp. 1505-1509, 2021.



