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Abstract
Parikh automata extend finite automata by counters that can be tested for membership in a
semilinear set, but only at the end of a run. Thereby, they preserve many of the desirable properties
of finite automata. Deterministic Parikh automata are strictly weaker than nondeterministic ones,
but enjoy better closure and algorithmic properties.

This state of affairs motivates the study of intermediate forms of nondeterminism. Here, we
investigate history-deterministic Parikh automata, i.e., automata whose nondeterminism can be
resolved on the fly. This restricted form of nondeterminism is well-suited for applications which
classically call for determinism, e.g., solving games and composition.

We show that history-deterministic Parikh automata are strictly more expressive than determ-
inistic ones, incomparable to unambiguous ones, and enjoy almost all of the closure properties of
deterministic automata.
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1 Introduction

Some of the most profound (and challenging) questions of theoretical computer science are
concerned with the different properties of deterministic and nondeterministic computation,
the P vs. NP problem being arguably the most important and surely the most well-known
one. However, even in the more modest setting of automata theory, there is a tradeoff
between deterministic and nondeterministic automata with far-reaching consequences for,
e.g., the automated verification of finite-state systems. In the automata-based approach
to model checking, for example, one captures a finite-state system S and a specification φ

by automata AS and Aφ and then checks whether L(AS) ⊆ L(Aφ) holds, i.e., whether
every execution of S satisfies the specification φ. To do so, one tests L(AS) ∩ L(Aφ) for
emptiness. Hence, one is interested in expressive automata models that have good closure
and algorithmic properties. Nondeterminism yields conciseness (think DFA’s vs. NFA’s) or
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31:2 History-Deterministic Parikh Automata

even more expressiveness (think pushdown automata) while deterministic automata often
have better algorithmic properties and better closure properties (again, think, e.g., pushdown
automata).

Limited forms of nondeterminism constitute an appealing middle ground as they often
combine the best of both worlds, e.g., increased expressiveness in comparison to determin-
istic automata and better algorithmic and closure properties than nondeterministic ones.
A classical, and well-studied, example are unambiguous automata, i.e., nondeterministic
automata that have at most one accepting run for every input. For example, unambiguous
finite automata can be exponentially smaller than deterministic ones while unambiguous
pushdown automata are more expressive than deterministic ones [25].

Another restricted class of nondeterministic automata is that of residual automata [12],
automata where every state accepts a residual language of the automaton’s language. For
every regular language there exists a residual automaton. While there exist residual automata
that can be exponentially smaller than DFA, there also exist languages for which NFA can
be exponentially smaller than residual automata [12].

More recently, another notion of limited nondeterminism has received considerable
attention: history-deterministic automata [9, 24]1 are nondeterministic automata whose
nondeterminism can be resolved based on the run constructed thus far, but independently of
the remainder of the input. This property makes history-deterministic automata suitable
for the composition with games, trees, and other automata, applications which classically
require deterministic automata. History-determinism has been studied in the context of
regular [1, 24, 28], pushdown [22, 29], quantitative [3, 9], and timed automata [23]. For
automata that can be determinized, history-determinism offers the potential for succinctness
(e.g., co-Büchi automata [28]) while for automata that cannot be determinized, it even
offers the potential for increased expressiveness (e.g., pushdown automata [22, 29]). In the
quantitative setting, the exact power of history-determinism depends largely on the type
of quantitative automata under consideration. So far, it has been studied for quantitative
automata in which runs accumulate weights into a value using a value function such as
Sum, LimInf, Average, and that assign to a word the supremum among the values of its
runs. For these automata, history-determinism turns out to have interesting applications
for quantitative synthesis [2]. Here, we continue this line of work by investigating history-
deterministic Parikh automata, a mildly quantitative form of automata.

Parikh automata, introduced by Klaedtke and Rueß [27], consist of finite automata,
augmented with counters that can only be incremented. A Parikh automaton only accepts a
word if the final counter-configuration is within a semilinear set specified in the automaton.
As the counters do not interfere with the control flow of the automaton, that is, counter values
do not affect whether transitions are enabled, they allow for mildly quantitative computations
without the full power of vector addition systems or other more powerful models.

For example the language of words over the alphabet {0, 1} having a prefix with strictly
more 1’s than 0’s is accepted by a Parikh automaton that starts by counting the number of
0’s and 1’s and after some prefix nondeterministically stops counting during the processing
of the input. It accepts if the counter counting the 1’s is, at the end of the run, indeed
larger than the counter counting the 0’s. Note that the nondeterministic choice can be
made based on the word processed so far, i.e., as soon as a prefix with more 1’s than 0’s
is encountered, the counting is stopped. Hence, the automaton described above is in fact
history-deterministic.

1 There is a closely related notion, good-for-gameness, which is often, but not always equivalent [2]
(despite frequently being used interchangeably in the past).
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Klaedtke and Rueß [27] showed Parikh automata to be expressively equivalent to a
quantitative version of existential weak MSO that allows for reasoning about set cardinalities.
Their expressiveness also coincides with that of reversal-bounded counter machines [27],
in which counters can go from decrementing to incrementing only a bounded number of
times, but in which counters affect control flow [26]. The weakly unambiguous restriction
of Parikh automata, that is, those that have at most one accepting run, on the other hand,
coincide with unambiguous reversal-bounded counter machines [4]. Parikh automata are also
expressively equivalent to weighted finite automata over the groups (Zk, +, 0) [11, 31] for
k ⩾ 1. This shows that Parikh automata accept a natural class of quantitative specifications.

Despite their expressiveness, Parikh automata retain some decidability: nonemptiness, in
particular, is NP-complete [14]. For weakly unambiguous Parikh automata, inclusion [7] and
regular separability [8] are decidable as well. Figueira and Libkin [14] also argued that this
model is well-suited for querying graph databases, while mitigating some of the complexity
issues related with more expressive query languages. Further, they have been used in the
model checking of transducer properties [16].

As Parikh automata have been established as a robust and useful model, many variants
thereof exist: pushdown (visibly [10] and otherwise [32]), two-way with [10] and without
stack [15], unambiguous [6], and weakly unambiguous [4] Parikh automata, to name a few.

Our contribution. We introduce history-deterministic Parikh automata (HDPA) and study
their expressiveness, their closure properties, and their algorithmic properties.

Our main result shows that history-deterministic Parikh automata are more expressive
than deterministic ones (DPA), but less expressive than nondeterministic ones (PA). Further-
more, we show that they are of incomparable expressiveness to both classes of unambiguous
Parikh automata found in the literature, but equivalent to history-deterministic reversal-
bounded counter machines, another class of history-deterministic automata that is studied
here for the first time. These results show that history-deterministic Parikh automata indeed
constitute a novel class of languages capturing quantitative features.

Secondly, we show that history-deterministic Parikh automata satisfy almost the same
closure properties as deterministic ones, the only difference being non-closure under comple-
mentation. This result has to be contrasted with unambiguous Parikh automata being closed
under complement [6]. Thus, history-determinism is a too strong form of nondeterminism to
preserve closure under complementation, a phenomenon that has already been observed in
the case of pushdown automata [22, 29].

Finally, we study the algorithmic properties of history-deterministic Parikh automata.
Most importantly, safety model checking for HDPA is decidable, as it is for PA. The problem
asks, given a system and a set of bad prefixes specified by an automaton, whether the system
has an execution that has a bad prefix. This allows, for example, to check properties of an
arbiter of some shared resource like “the accumulated waiting time between requests and
responses of client 1 is always at most twice the accumulated waiting time for client 2 and
vice versa”. Note that this property is not ω-regular.

Non-emptiness and finiteness are also both decidable for HDPA (as they are for non-
deterministic automata), but universality, inclusion, equivalence, and regularity are not.
This is in stark contrast to unambiguous Parikh automata (and therefore also deterministic
ones), for which all of these problems are decidable. Finally, we show that it is undecid-
able whether a Parikh automaton is history-deterministic and whether it is equivalent to a
history-deterministic one.

CONCUR 2023



31:4 History-Deterministic Parikh Automata

Note that we consider only automata over finite words here, but many of our results
can straightforwardly be transferred to Parikh automata over infinite words, introduced
independently by Guha et al. [21] and Grobler et al. [18, 19].

All proofs omitted due to space restrictions can be found in [13].

2 Definitions

An alphabet is a finite nonempty set Σ of letters. As usual, ε denotes the empty word, Σ∗

denotes the set of finite words over Σ, Σ+ denotes the set of finite nonempty words over Σ,
and Σω denotes the set of infinite words over Σ. The length of a finite word w is denoted by
|w| and, for notational convenience, we define |w| = ∞ for all infinite words w. Finally, |w|a
denotes the number of occurrences of the letter a in a finite word w.

Semilinear Sets. We denote the set of nonnegative integers by N. Given vectors v⃗ =
(v0, . . . , vd−1) ∈ Nd and v⃗ ′ = (v′

0, . . . , v′
d′−1) ∈ Nd′ , we define their concatenation v⃗ · v⃗ ′ =

(v0, . . . , vd−1, v′
0, . . . , v′

d′−1) ∈ Nd+d′ . We lift the concatenation of vectors to sets D ⊆ Nd and
D′ ⊆ Nd′via D · D′ = {v⃗ · v⃗ ′ | v⃗ ∈ D and v⃗ ′ ∈ D′}.

Let d ⩾ 1. A set C ⊆ Nd is linear if there are vectors v⃗0, . . . , v⃗k ∈ Nd such that

C =
{

v⃗0 +
∑k

i=1
civ⃗i

∣∣∣∣ ci ∈ N for i = 1, . . . , k

}
.

Furthermore, a subset of Nd is semilinear if it is a finite union of linear sets.

▶ Example 1. The sets {(n, n) | n ∈ N} = {(0, 0) + c(1, 1) | c ∈ N} and {(n, 2n) |
n ∈ N} = {(0, 0) + c(1, 2) | c ∈ N} are linear, so their union is semilinear. Further, the
set {(n, n′) | n < n′} = {(0, 1) + c1(1, 1) + c2(0, 1) | c1, c2 ∈ N} is linear and thus also
semilinear.

▶ Proposition 2 ([17]). If C, C ′ ⊆ Nd are semilinear, then so are C ∪ C ′, C ∩ C ′, Nd \ C,
as well as Nd′ · C and C · Nd′ for every d′ ⩾ 1.

Finite Automata. A (nondeterministic) finite automaton (NFA) A = (Q, Σ, qI , ∆, F ) over
Σ consists of the finite set Q of states containing the initial state qI , the alphabet Σ, the
transition relation ∆ ⊆ Q × Σ × Q, and the set F ⊆ Q of accepting states. The NFA is
deterministic (i.e., a DFA) if for every state q ∈ Q and every letter a ∈ Σ, there is at most
one q′ ∈ Q such that (q, a, q′) is a transition of A.

A run of A is a (possibly empty) sequence (q0, a0, q1)(q1, a1, q2) · · · (qn−1, an−1, qn) of
transitions with q0 = qI . It processes the word a0a1 · · · an−1 ∈ Σ∗. The run is accepting if
it is either empty and the initial state is accepting or if it is nonempty and qn is accepting.
The language L(A) of A contains all finite words w ∈ Σ∗ such that A has an accepting run
processing w.

Parikh Automata. Let Σ be an alphabet, d ⩾ 1, and D a finite subset of Nd. Further-
more, let w = (a0, v⃗0) · · · (an−1, v⃗n−1) be a word over Σ × D. The Σ-projection of w is
pΣ(w) = a0 · · · an−1 ∈ Σ∗ and its extended Parikh image is Φe(w) =

∑n−1
j=0 v⃗j ∈ Nd with the

convention Φe(ε) = 0⃗, where 0⃗ is the d-dimensional zero vector.
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a, (1, 0)
b, (0, 1)

b, (0, 1)

Figure 1 The automaton for Example 3.

A Parikh automaton (PA) is a pair (A, C) such that A is an NFA over Σ × D for some
input alphabet Σ and some finite D ⊆ Nd for some d ⩾ 1, and C ⊆ Nd is semilinear. The
language of (A, C) consists of the Σ-projections of words w ∈ L(A) whose extended Parikh
image is in C, i.e.,

L(A, C) = {pΣ(w) | w ∈ L(A) with Φe(w) ∈ C}.

The Parikh automaton (A, C) is deterministic if for every state q of A and every a ∈ Σ, there
is at most one pair (q′, v⃗) ∈ Q × D such that (q, (a, v⃗), q′) is a transition of A. Note that this
definition does not coincide with A being a DFA: As mentioned above, A accepts words over
Σ × D while (A, C) accepts words over Σ. Therefore, determinism is defined with respect to
Σ only.

Note that the above definition of L(A, C) coincides with the following alternative definition
via accepting runs: A run ρ of (A, C) is a run

ρ = (q0, (a0, v⃗0), q1)(q1, (a1, v⃗1), q2) · · · (qn−1, (an−1, v⃗n−1), qn)

of A. We say that ρ processes the word a0a1 · · · an−1 ∈ Σ∗, i.e., the v⃗j are ignored, and that
ρ’s extended Parikh image is

∑n−1
j=0 v⃗j . The run is accepting if it is either empty and both

the initial state of A is accepting and the zero vector (the extended Parikh image of the
empty run) is in C, or if it is nonempty, qn is accepting, and ρ’s extended Parikh image is in
C. Finally, (A, C) accepts w ∈ Σ∗ if it has an accepting run processing w.

▶ Example 3. Consider the deterministic PA (A, C) with A in Figure 1 and C = {(n, n) |
n ∈ N}∪{(n, 2n) | n ∈ N} (cf. Example 1). It accepts the language {anbn | n ∈ N}∪{anb2n |
n ∈ N}.

3 History-deterministic Parikh Automata

In this section, we introduce history-deterministic Parikh automata and give examples.
Let (A, C) be a PA with A = (Q, Σ × D, qI , ∆, F ). For a function r : Σ+ → ∆ we define

its iteration r∗ : Σ∗ → ∆∗ via r∗(ε) = ε and r∗(a0 · · · an) = r∗(a0 · · · an−1) · r(a0 · · · an). We
say that r is a resolver for (A, C) if, for every w ∈ L(A, C), r∗(w) is an accepting run of
(A, C) processing w. Further, we say that (A, C) is history-deterministic (i.e., an HDPA) if
it has a resolver.

▶ Example 4. Fix Σ = {0, 1} and say that a word w ∈ Σ∗ is non-Dyck if |w|0 < |w|1. We
consider the language N ⊆ Σ+ of words that have a non-Dyck prefix. It is accepted by
the PA (A, C) where A is depicted in Figure 2 and C = {(n, n′) | n < n′} (cf. Example 1).
Intuitively, in the initial state qc, the automaton counts the number of 0’s and 1’s occurring
in some prefix, nondeterministically decides to stop counting by moving to qn (this is the
only nondeterminism in A), and accepts if there are more 1’s than 0’s in the prefix.

CONCUR 2023



31:6 History-Deterministic Parikh Automata

The nondeterministic choice can be made only based on the prefix processed so far, i.e.,
as soon as the first non-Dyck prefix is encountered, the resolver proceeds to state qn, thereby
ending the prefix. Formally, the function

wb 7→


(qc, (b, (1 − b, b)), qc) if wb has no non-Dyck prefix,
(qc, (b, (1 − b, b)), qn) if wb is non-Dyck, but w has no non-Dyck prefix,
(qn, (b, (0, 0)), qn) if w has a non-Dyck prefix,

is a resolver for (A, C).

▶ Remark 5. As a resolver resolves nondeterminism and a DPA has no nondeterminism to
resolve, every DPA is history-deterministic.

4 Expressiveness

In this section, we study the expressiveness of HDPA by comparing them to related automata
models, e.g., deterministic and nondeterministic Parikh automata, unambiguous Parikh
automata (capturing another restricted notion of nondeterminism), and reversal-bounded
counter machines (which are known to be related to Parikh automata). Overall, we obtain
the relations shown in Figure 3, where the additional classes of languages and the separating
languages will be introduced throughout this section.

We begin by stating and proving a pumping lemma for HDPA. The basic property used
here, just as for the pumping lemmata for PA and DPA [5], is that shuffling around cycles of
a run does not change whether it is accepting or not, as acceptance only depends on the last
state of the run being accepting and the vectors (and their multiplicity) that appear on the
run, but not the order of their appearance.

▶ Lemma 6. Let (A, C) be an HDPA with L(A, C) ⊆ Σ∗. Then, there exist p, ℓ ∈ N such
that every w ∈ Σ∗ with |w| > ℓ can be written as w = uvxvz such that

0 < |v| ⩽ p, |x| > p, and |uvxv| ⩽ ℓ, and
for all z′ ∈ Σ∗: if uvxvz′ ∈ L(A, C), then also uv2xz′ ∈ L(A, C) and uxv2z′ ∈ L(A, C).

Proof. Fix some resolver r for (A, C). Note that the definition of a resolver only requires
r∗(w) to be a run processing w for those w ∈ L(A, C). Here, we assume without loss
of generality that r∗(w) is a run processing w for each w ∈ Σ∗. This can be achieved
by completing A (by adding a nonaccepting sink state and transitions to the sink where
necessary) and redefining r where necessary (which is only the case for inputs that cannot
be extended to a word in L(A, C)).

A cycle is a nonempty finite run infix

(q0, a0, q1)(q1, a1, q2) · · · (qn−1, an−1, qn)(qn, an, q0)

starting and ending in the same state and such that the qj are pairwise different. Now, let p

be the number of states of A and let m be the number of cycles of A. Note that every run
infix containing at least p transitions contains a cycle.

qc qn
0, (1, 0)
1, (0, 1)

0, (1, 0)
1, (0, 1) 0, (0, 0)

1, (0, 0)

Figure 2 The automaton for Example 4.
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PA/RBCM/HDRBCM

WUPA
UCA

DPA

HDPA/1-HDRBCM

E N ′ ∪ E

E′

N ′

T

T ∪ E

Figure 3 The classes of languages accepted by different models of Parikh automata.

We define ℓ = (p + 1)(2m + 1), consider a word w ∈ Σ∗ with |w| > ℓ, and let ρ = r∗(w)
be the run of A induced by r which processes w. We split ρ into ρ0ρ1 · · · ρ2mρ′ such that
each ρj contains p + 1 transitions. Then, each ρj contains a cycle and there are j0, j1 with
j1 > j0 + 1 such that ρj0 and ρj1 contain the same cycle. Now, let

ρv be the cycle in ρj0 and ρj1 ,
ρu be the prefix of ρ before the first occurrence of ρv in ρj0 , and
ρx be the infix of ρ between the first occurrences of ρv in ρj0 and ρj1 .

Furthermore, let u, v, x ∈ Σ∗ be the inputs processed by ρu, ρv, and ρx respectively. Then,
we indeed have 0 < |v| ⩽ p (as we consider simple cycles), |x| > p (as j1 > j0 + 1), and
|uvxv| ⩽ ℓ.

Note that ρuρvρxρv, ρuρ2
vρx, and ρuρxρ2

v are all runs of A which process uvxv, uv2x,
and uxv2 respectively. Furthermore, all three runs end in the same state and their extended
Parikh images are equal, as we only shuffled pieces around.

Now, consider some z′ such that uvxvz′ ∈ L(A, C). Then r∗(uvxvz′) is an accepting
run, and of the form ρuρvρxρvρz′ for some ρz′ processing z′. Now, ρuρ2

vρxρz′ , and ρuρxρ2
vρz′

are accepting runs of (A, C) (although not necessarily induced by r) processing uv2xz′ and
uxv2z′, respectively. Thus, uv2xz′ ∈ L(A, C) and uxv2z′ ∈ L(A, C). ◀

It is instructive to compare our pumping lemma for HDPA to those for PA and DPA [5]:
The pumping lemma for PA states that every long word accepted by a PA can be
decomposed into uvxvz as above such that both uv2xz and uxv2z are accepted as well.
This statement is weaker than ours, as it only applies to the two words obtained by
moving a v while our pumping lemma applies to any suffix z′. This is possible, as the
runs of an HDPA on words of the form uvxvz′ (for fixed uvxv), induced by a resolver,
all coincide on their prefixes processing uvxv. This is not necessarily the case in PA.
The pumping lemma for DPA states that every long word (not necessarily accepted
by the automaton) can be decomposed into uvxvz as above such that uvxv, uv2x, and
uxv2 are all equivalent with respect to the Myhill-Nerode equivalence. This statement is
stronger than ours, as Myhill-Nerode equivalence is concerned both with the language of
the automaton and its complement. But similarly to our pumping lemma, the one for
DPA applies to all possible suffixes z′.

Now, we apply the pumping lemma to compare the expressiveness of HDPA, DPA, and
PA.

▶ Theorem 7. HDPA are more expressive than DPA, but less expressive than PA.

CONCUR 2023



31:8 History-Deterministic Parikh Automata

Proof. First, we consider the separation between DPA and HDPA. The language N from
Example 4, which is accepted by an HDPA, is known to be not accepted by any DPA: DPA
are closed under complementation [27] while the complement of N is not even accepted by
any PA [6].

To show that PA are more expressive than HDPA, consider the language E = {a, b}∗ ·
{anbn | n > 0}, which can easily be seen to be accepted by a PA. We show that E is not
accepted by any HDPA2 via an application of the pumping lemma.

To this end, assume there is some HDPA (A, C) accepting E, and let p, ℓ as in the
pumping lemma. We pick w = (ap+1bp+1)ℓ, which we decompose as uvxvz with the
properties guaranteed by the pumping lemma. In particular, we have |v| ⩽ p, therefore
v ∈ a∗b∗ + b∗a∗. We consider two cases depending on the last letter of v. In each one, we
show the existence of a word z′ such that the word uvxvz′ is in the language E, yet either
uv2xz′ or uxv2z′ is not. This yields the desired contradiction to the pumping lemma.

1. First, assume that the last letter of v is an a. Since |x| > p and x appears between
two copies of v in (ap+1bp+1)ℓ, the infix xv contains at least one full b-block: we have
xv = x′bp+1ak with x′ ∈ {a, b}∗ and 0 < k ⩽ p + 1. We set z′ = ap+1−kbp+1. Hence,
uvxvz′ = uvx′bp+1ap+1bp+1 ∈ E. We show that uv2xz′ ̸∈ E by differentiating two cases:
a. If v = ai for some i, which must satisfy 0 < i ⩽ k, then uv2xz′ is not in E as it ends

with bp+1ap+1−ibp+1.
b. Otherwise, we must have v = biak with 0 < i < p. Then, uv2xz′ is not in E as it ends

with bp+1−iap+1−kbp+1.
2. Otherwise, the last letter of v is a b. Since |x| > p and x appears between two copies of

v in (ap+1bp+1)ℓ, the infix xv contains at least one full a-block: we have xv = x′ap+1bk

with x′ ∈ {a, b}∗ and 0 < k ⩽ p + 1. This time we set z′ = bp+1−k. Thus, uvxvz′ =
uvx′ap+1bp+1 ∈ E, and we differentiate two cases to show that uxv2z′ /∈ E:
a. If v = bi for some i, which must satisfy 0 < i ⩽ p, then uxv2z′ ends with bp+i+1.

However, each of its a-blocks has length p + 1, as moving v = bi with i ⩽ p does not
merge any a-blocks. Hence, uxv2z′ is not in E.

b. Otherwise, we must have v = aibk with 0 < i < p. Then, uxv2z′ is not in E as it ends
with v2z′ = aibkaibp+1. ◀

4.1 History-determinism vs. Unambiguity
After having placed history-deterministic Parikh automata strictly between deterministic and
nondeterministic ones, we now compare them to unambiguous Parikh automata, another class
of automata whose expressiveness lies strictly between that of DPA and PA. In the literature,
there are two (nonequivalent) forms of unambiguous Parikh automata. We consider both of
them here.

Cadilhac et al. studied unambiguity in Parikh automata in the guise of unambiguous
constrained automata (UCA) [6]. Constrained automata are a related model and effectively
equivalent to PA. Intuitively, an UCA (A, C) over an alphabet Σ consists of an unambiguous
ε-NFA A over Σ, say with d transitions, and a semilinear set C ⊆ Nd, i.e., C has one
dimension for each transition in A. It accepts a word w ∈ Σ∗ if A has an accepting run
processing w (due to unambiguity this run must be unique) such that the Parikh image of
the run (recording the number of times each transition occurs in the run) is in C.

2 Note that the related language {a, b}∗ · {an#an | n ∈ N} is not accepted by any DPA [5].
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On the other hand, Bostan et al. introduced so-called weakly-unambiguous Parikh
automata (WUPA) [4]. Intuitively, a WUPA (A, C) over Σ is a classical PA as introduced
here where every input over Σ has at most one accepting run (in the sense of the definition
in Section 2). Bostan et al. discuss the different definitions of unambiguity and in particular
show that every UCA is a WUPA, but that WUPA are strictly more expressive [4]. Here, we
compare the expressiveness of HDPA to that of UCA and WUPA.

The language E from the proof of Theorem 7 is accepted by an UCA [6] and a WUPA [4],
but not by any HDPA (see Theorem 7). On the other hand, the language

T = {cn0dcn1d · · · cnk d | k ≥ 1, n0 = 1, and nj+1 ̸= 2nj for some 0 ≤ j < k}

is not accepted by any WUPA, and hence also not by any UCA [4], but there is an HDPA
accepting it. Hence, these two languages show that these three classes of automata have
incomparable expressiveness.

▶ Theorem 8. The expressiveness of HDPA is neither comparable with that of UCA nor
with that of WUPA.

Finally, we show that all intersections between the different classes introduced above are
nonempty.

▶ Theorem 9.
1. There is a language that is accepted by an HDPA and by an UCA, but not by any DPA.
2. There is a language that is accepted by an HDPA and by a WUPA, but not by any UCA.
3. There is a language that is accepted by a PA, but not by any HDPA nor by any WUPA.
4. There is a language that is accepted by a WUPA, but not by any HDPA nor by any UCA.

Here, we give proof sketches, full proofs can be found in [13].
Recall that the language E = {a, b}∗ · {anbn | n > 0} from Theorem 7 is accepted by an

UCA, but not by any HDPA. However, a slight modification allows it to be accepted by both
types of automata, but not by a deterministic automaton: We show that

E′ = {cm{a, b}m−1banbn | m, n > 0}

has the desired property. Intuitively, the prefix cm allows us to resolve the nondeterminism
on-the-fly, but nondeterminism is still required.

The second separation relies on a similar trick: The language

N ′ = {cnw | w = a0 · · · ak ∈ {0, 1}∗, |w| ≥ n > 0, and a0 · · · an−1 is non-Dyck},

which is a variation of the language N of words that have a non-Dyck prefix, was shown to
be accepted by a WUPA, but not by any UCA [4]. It is straightforward to show that it is
also accepted by an HDPA.

The last two results follow easily from closure properties: The union T ∪ E is neither
accepted by any HDPA nor by any WUPA, as both models are closed under intersection3,
i.e., (T ∪ E) ∩ {a, b}∗ = E and (T ∪ E) ∩ {c, d}∗ = T yield the desired separation. A similar
argument works for N ′ ∪ E, which is accepted by some WUPA (as WUPA are closed under
disjoint unions) but not by any HDPA nor by any UCA, as both classes are closed under
intersection.

3 For WUPA, this was shown by Bostan et al. [4], for HDPA this is shown in the next section.
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4.2 History-deterministic Reversal-bounded Counter Machines
There is one more automaton model that is closely related to Parikh automata, i.e., reversal-
bounded counter machines, originally introduced by Ibarra [26]. These are, in their most
general form, two-way automata with multiple counters that can be incremented, decremented,
and tested for zero, but there is a constant bound on the number of reversals of the reading
head and on the number of switches between increments and decrements (on each counter).
It is known that Parikh automata and nondeterministic reversal-bounded counter machines
are equivalent [27], while deterministic reversal-bounded counter machines are strictly more
expressive than deterministic Parikh automata [5]. Here, we compare history-deterministic
reversal-bounded counter machines and history-deterministic Parikh automata (and, for
technical reasons, also history-deterministic Parikh automata with ε-transitions).

We begin by introducing counter machines and then their reversal-bounded variant.
A (two-way) counter machine is a tuple M = (k, Q, Σ,▷,◁, qI , ∆, F ) where k ∈ N is the

number of counters, Q is the finite set of states, Σ is the alphabet, ▷,◁ /∈ Σ are the left and
right endmarkers respectively, qI ∈ Q is the initial state,

∆ ⊆ (Q × Σ▷◁ × {0, 1}k) × (Q × {−1, 0, 1} × {−1, 0, 1}k)

is the transition relation, and F ⊆ Q is the set of accepting states. Here, we use the
shorthand Σ▷◁ = Σ ∪ {▷,◁}. Intuitively, a transition ((q, a, g⃗), (q′, m, v⃗)) is enabled if the
current state is q, the current letter on the tape is a, and for each 0 ≤ j ≤ k − 1, the j-th
entry in the guard g⃗ is nonzero if and only if the current value of counter j is nonzero. Taking
this transition updates the state to q′, moves the head in direction m, and adds the j-th
entry of v⃗ to counter j.

We require that all transitions ((q, a, g⃗), (q′, m, v⃗)) ∈ ∆ satisfy the following properties:
If a = ▷, then m ≥ 0: the head never leaves the tape to the left.
If a = ◁, then m ≤ 0: the head never leaves the tape to the right.
g⃗ and v⃗ are compatible, i.e. if the j-th entry of g⃗ is zero, then the j-th entry of v⃗ is
nonnegative: a zero counter is not decremented.

For the sake of brevity, we refer the formal definition of the semantics to the full
version [13].

In the following, we just need the definition of configurations: A configuration of M on
an input w ∈ Σ∗ is of the form (q,▷w◁, h, c⃗) where q ∈ Q is the current state, ▷w◁ is the
content of the tape (which does not change during a run), 0 ≤ h ≤ |w| + 1 is the current
position of the reading head, and c⃗ ∈ Nk is the vector of current counter values.

We say that a two-way counter machine is reversal-bounded, if there is a b ∈ N such
that on each run, the reading head reverses its direction at most b times and each counter
switches between incrementing and decrementing at most b times. We write RBCM for
reversal-bounded counter machines and 1-RBCM for RBCM that do not make a reversal
of the reading head (i.e., they are one-way). Their deterministic variants are denoted by
DRBCM and 1-DRBCM, respectively.

Ibarra [26] has shown that every RBCM can be effectively turned into an equivalent
1-RBCM and that every RBCM can be effectively turned into an equivalent one where the
number of reversals of each counter is bounded by 1. The latter construction preserves
determinism and one-wayness. Hence, in the following, we assume that during each run of
an RBCM, each counter reverses at most once.

In terms of expressiveness, Klaedtke and Rueß [27] showed that RBCM are equivalent to
Parikh automata while Cadilhac et al. [5] showed that 1-DRBCM are strictly more expressive
than DPA.
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In the following, we determine the relation between history-deterministic RBCM and
HDPA. To this end, we first have to define the notion of history-determinism for RBCM,
which is slightly technical due to the two-wayness of these machines.

Let M = (k, Q, Σ,▷,◁, qI , ∆, F ) be an RBCM. Given a sequence τ0 · · · τj of transitions
inducing a run ρ, let pos(τ0 · · · τj) be the position of the reading head at the end of ρ, so in
particular pos(ε) = 0. Hence, (▷w◁)pos(τ0τ1···τj) is the letter the reading head is currently
pointing to.

A resolver for M is a function r : ∆∗ × Σ▷◁ → ∆ such that if w is accepted by M, there
is a sequence of transitions τ0τ1 · · · τn−1 such that

τj+1 = r(τ0τ1 · · · τj , (▷w◁)pos(τ0τ1···τj)) for all 0 ≤ j < n − 1, and
the run of M on w induced by the sequence of transitions τ0τ1 · · · τn−1 is accepting.

An RBCM M is history-deterministic (an HDRBCM) if there exists a resolver for M.
One-way HDRBCM are denoted by 1-HDRBCM.

Now, we are able to state the main theorem of this subsection: History-deterministic
two-way RBCM are as expressive as RBCM and PA while history-deterministic one-way
RBCM are as expressive as history-deterministic PA.

▶ Theorem 10.
1. HDRBCM are as expressive as RBCM, and therefore as expressive as PA.
2. 1-HDRBCM are as expressive as HDPA.

The proof of the first equivalence is very general and not restricted to RBCM: A two-way
automaton over finite inputs can first read the whole input and then resolve nondeterministic
choices based on the whole word. Spelt out more concisely: two-wayness makes history-
determinism as powerful as general nondeterminism.

For the other equivalence, both directions are nontrivial: We show how to simulate a PA
using an RBCM while preserving history-determinism, and how to simulate a 1-RBCM by
a PA, again while preserving history-determinism. Due to the existence of transitions that
do not move the reading head in a 1-RBCM, this simulation takes a detour via PA with
ε-transitions.

Finally, let us remark that HDPA (or equivalently 1-HDRBCM) and deterministic RBCM
have incomparable expressiveness. Indeed, the language E, which is not accepted by any
HDPA (see Theorem 7), can easily be accepted by a deterministic RBCM while the language N

(see Example 4) is accepted by an HDPA, but not by any deterministic RBCM [6]. The
reason is that these machines are closed under complement, but the complement of N is not
accepted by any PA as shown in [6], and therefore also not by any RBCM.

5 Closure Properties

In this subsection, we study the closure properties of history-deterministic Parikh automata,
i.e., we consider Boolean operations, concatenation and Kleene star, (inverse) homomorphic
image, and commutative closure. Let us begin by recalling the last three notions.

Fix some ordered alphabet Σ = (a0 < a1 < · · · < ad−1). The Parikh image of a word w ∈
Σ∗ is the vector Φ(w) = (|w|a0 , |w|a1 , . . . , |w|ad−1) and the Parikh image of a language L ⊆ Σ∗

is Φ(L) = {Φ(w) | w ∈ L}. The commutative closure of L is {w ∈ Σ∗ | Φ(w) ∈ Φ(L)}.
Now, fix some alphabets Σ and Γ and a homomorphism h : Σ∗ → Γ∗. The homomorphic

image of a language L ⊆ Σ∗ is h(L) = {h(w) | w ∈ L} ⊆ Γ∗. Similarly, the inverse
homomorphic image of a language L ⊆ Γ∗ is h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.
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Table 1 Closure properties of history-deterministic Parikh automata (in grey) and comparison
to other types of Parikh automata (results for other types are from [5, 6, 27]).

∪ ∩ · ∗ h h−1 c

DPA Y Y Y N N N Y Y
HDPA Y Y N N N N Y Y
UCA Y Y Y N N N ? Y
PA Y Y N Y N Y Y Y

▶ Theorem 11. HDPA are closed under union, intersection, inverse homomorphic im-
ages, and commutative closure, but not under complement, concatenation, Kleene star, and
homomorphic image.

Proof Sketch. Closure under union and intersection is shown by a product construction,
while closure under inverse homomorphic images is shown by lifting the construction for
finite automata (just as for DPA and PA). Finally closure under commutative closure follows
from previous work: Cadilhac et al. proved that the commutative closure of any PA (and
therefore that of any HDPA) is accepted by some DPA, and therefore also by some HDPA.

The negative results follow from a combination of expressiveness results proven in Section 4
and nonexpressiveness results in the literature [5, 6]:

Complement: In the first part of the proof of Theorem 7, we show that the language N

is accepted by an HDPA, but its complement is known to not be accepted by any PA [6].
Concatenation: The language E is the concatenation of the languages {a, b}∗ and {anbn |
n ∈ N}, which are both accepted by a DPA, but itself is not accepted by any HDPA (see
the proof of Theorem 7).
Kleene star: There is a DPA (and therefore also an HDPA) such that the Kleene star of
its language is not accepted by any PA [5], and therefore also by no HDPA.
Homomorphic image: There is a DPA (and therefore also an HDPA) and a homomorphism
such that the homomorphic image of the DPA’s language is not accepted by any PA [5],
and therefore also by no HDPA. ◀

Table 1 compares the closure properties of HDPA with those of DPA, UCA, and PA.
We do not compare to RBCM, as only deterministic ones differ from Parikh automata and
results on these are incomplete: However, Ibarra proved closure under union, intersection,
and complement [26].

6 Decision Problems

Next, we study various decision problems for history-deterministic PA. First, let us mention
that nonemptiness and finiteness are decidable for HDPA, as these problems are decidable
for PA [27, 5]. In the following, we consider universality, inclusion, equivalence, regularity,
and model checking. We start with the universality problem.

▶ Theorem 12. The following problem is undecidable: Given an HDPA (A, C) over Σ, is
L(A, C) = Σ∗?

Proof Sketch. The result is shown by turning (deterministic) Minsky machines into HDPA
such that the machine does not terminate if and only if the automaton is universal. As
nontermination of Minsky machines is undecidable [30], the same is true for HDPA univer-
sality.
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Intuitively, the automaton processes sequences of instructions of the Minsky machine
and checks whether they are prefixes of the unique run of the machine or not, employing
the counters of the automaton to simulate the counter of the Minsky machine. Finally,
history-determinism can be employed to find a position in the sequence of instructions where
it differs from the unique run of the machine. ◀

The next results follow more or less immediately from the undecidability of universality.

▶ Theorem 13. The following problems are undecidable:
1. Given two HDPA (A0, C0) and (A1, C1), is L(A0, C0) ⊆ L(A1, C1)?
2. Given two HDPA (A0, C0) and (A1, C1), is L(A0, C0) = L(A1, C1)?
3. Given an HDPA (A, C), is L(A, C) regular?
4. Given an HDPA (A, C), is L(A, C) context-free?

Proof Sketch. The first two items follow directly from the undecidability of universality (cf.
Theorem 12), so let us consider the latter two. They are both shown by a variation of the
construction proving Theorem 12: Given a Minsky machine we construct an HDPA such that
the machine terminates if and only if the automaton accepts a regular language (respectively,
a context-free language). ◀

Table 2 compares the decidability of standard problems for HDPA with those of DPA,
UCA, and PA.

Finally, we consider the problems of deciding whether a Parikh automaton is history-
deterministic and whether it is equivalent to some HDPA. Both of our proofs follow arguments
developed for similar results for history-deterministic pushdown automata [29].

▶ Theorem 14. The following problems are undecidable:
1. Given a PA (A, C), is it history-deterministic?
2. Given a PA (A, C), is it equivalent to some HDPA?

Finally, let us introduce the model-checking problem (for safety properties): A transition
system T = (V, vI , E, λ) consists of a finite set V of vertices containing the initial state vI ∈ V ,
a transition relation E ⊆ V × V , and a labeling function λ : V → Σ for some alphabet Σ.
A (finite and initial) path in T is a sequence v0v1 · · · vn ∈ V + such that v0 = vI and
(vi, vi+1) ∈ E for all 0 ≤ i < n. Infinite (initial) paths are defined analogously. The trace of
a path v0v1 · · · vn is λ(v0)λ(v1) · · · λ(vn) ∈ Σ+. We denote the set of traces of paths of T by
tr(T ).

The model-checking problem for HDPA asks, given an HDPA A and a transition system T ,
whether tr(T ) ∩ L(A) = ∅? Note that the automaton specifies the set of bad prefixes, i.e., T
satisfies the specification encoded by A if no trace of T is in L(A).

Table 2 Decision problems for history-deterministic Parikh automata (in grey) and comparison
to other types of Parikh automata (results are from [5, 6, 27]).

̸= ∅? finite? = Σ∗? ⊆? =? regular? MC

DPA Y Y Y Y Y Y Y
HDPA Y Y N N N N Y
UCA Y Y Y Y Y Y Y
PA Y Y N N N N Y
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As the model-checking problem for PA is decidable, so is the model-checking problem
for HDPA, which follows from the fact that a transition system T can be turned into an
NFA and hence into a PA AT with L(AT ) = tr(T ). Then, closure under intersection and
decidability of nonemptiness yields the desired result.

▶ Theorem 15. The model-checking problem for HDPA is decidable.

Let us conclude by mentioning that the dual problem, i.e., given a transition system T
and an HDPA A, does every infinite path of T have a prefix whose trace is in L(A), is
undecidable. This follows from recent results on Parikh automata over infinite words [21],
i.e., that model checking for Parikh automata with reachability conditions is undecidable.
Such automata are syntactically equal to Parikh automata over finite words and an (infinite)
run is accepting if it has a prefix ending in an accepting state whose extended Parikh image
is in the semilinear set of the automaton.

7 Conclusion

In this work, we have introduced and studied history-deterministic Parikh automata. We have
shown that their expressiveness is strictly between that of deterministic and nondeterministic
PA, incomparable to that of unambiguous PA, but equivalent to history-deterministic 1-
RBCM. Furthermore, we showed that they have almost the same closure properties as DPA
(complementation being the notable difference), and enjoy some of the desirable algorithmic
properties of DPA.

An interesting direction for further research concerns the complexity of resolving non-
determinism in history-deterministic Parikh automata. It is straightforward to show that
every HDPA has a positional resolver (i.e., one whose decision is only based on the last
state of the run constructed thus far and on the extended Parikh image induced by this
run) and that HDPA that have finite-state resolvers (say, implemented by a Mealy ma-
chine) can be determinized by taking the product of the HDPA and the Mealy machine. In
fact, both proofs are simple adaptions of the corresponding ones for history-deterministic
pushdown automata [22, 29]. A more interesting question is whether there is a notion of
Parikh transducer such that every HDPA has a resolver implemented by such a transducer.
Note that the analogous result for history-deterministic pushdown automata fails: not every
history-deterministic pushdown automaton has a pushdown resolver [22, 29].

Good-for-gameness is another notion of restricted nondeterminism that is very tightly
related to history-determinism. In fact, both terms were used interchangeably until very
recently, when it was shown that they do not always coincide [2]. Formally, an automaton A
is good-for-games if every two-player zero-sum game with winning condition L(A) has the
same winner as the game where the player who wins if the outcome is in L(A) additionally
has to construct a witnessing run of A during the play. This definition comes in two forms,
depending on whether one considers only finitely branching (weak compositionality) or all
games (compositionality).

Recently, the difference between being history-deterministic and both types of composi-
tionality has been studied in detail for pushdown automata [20]. These results are very general
and can easily be transferred to PA and 1-RBCM. They show that for PA, being history-
deterministic, compositionality, and weak compositionality all coincide, while for 1-RBCM,
being history-deterministic and compositionality coincide, but not weak compositionality.

The reason for this difference can be traced back to the fact that 1-RBCM may contain
transitions that do not move the reading head (which are essentially ε-transitions), but that
have side-effects beyond state changes, i.e., the counters are updated. This means that an
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unbounded number of configurations can be reached by processing a single letter, which
implies that the game composed of an arena and a 1-RBCM may have infinite branching. So,
while HDPA and 1-HDRBCM are expressively equivalent, they, perhaps surprisingly, behave
differently when it comes to compositionality. We plan to investigate these differences in
future work.
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