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ABSTRACT

The ability to decentralize knowledge graphs (KG) is important
to exploit the full potential of the Semantic Web and realize the
Web 3.0 vision. However, decentralization also renders KGs more
prone to attacks with adverse effects on data integrity and query

verifiability. While existing studies focus on ensuring data integrity,
how to ensure query verifiability - thus guarding against incorrect,
incomplete, or outdated query results - remains unsolved. We pro-
pose VeriDKG, the first SPARQL query engine for decentralized
knowledge graphs (DKG) that offers both data integrity and query
verifiability guarantees. The core of VeriDKG is the RGB-Trie, a
new blockchain-maintained authenticated data structure (ADS) fa-
cilitating correctness proofs for SPARQL query results. VeriDKG
enables verifiability of subqueries by gathering global index infor-
mation on subgraphs using the RGB-Trie, which is implemented as
a new variant of the Merkle prefix tree with an RGB color model.
To enable verifiability of the final query result, the RGB-Trie is
integrated with a cryptographic accumulator to support verifiable
aggregation operations. A rigorous analysis of query verifiability
in VeriDKG is presented, along with evidence from an extensive
experimental study demonstrating its state-of-the-art query perfor-
mance on the largeRDFbench benchmark.
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Figure 1: Illustration of a DKG system.

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/garlicZhou/veriDKG-RGB-Trie.

1 INTRODUCTION

The Web 3.0 [23, 31, 40] envisions a future Web where the Se-
mantic Web and the Web of Data play increasingly important
roles [38, 54, 60, 67]. For the SemanticWeb to meet the expectations,
it is desirable, or necessary, to be able to support a decentralized
knowledge graph (DKG) [1, 3, 8, 69]. For example, DBpedia1 and
Wikidata2 provide free knowledge base with 9500 and 100 million
linked data items contributed by communities of volunteers, em-
powering diverse applications from research to recommendation
systems. As illustrated in Figure 1, a DKG is stored, managed, and
queried using a decentralized infrastructure that facilitates the stor-
age of subgraphs at multiple storage nodes. This infrastructure
enables data owners to share their linked data as subgraphs of the
global KG stored by the infrastructure through the public SPARQL
endpoints [15, 30] or dereferenceable URIs it provides.

However, decentralized systems are more vulnerable to attacks
and faults (e.g., Byzantine fault [21]) and therefore need means of
ensuring data integrity and query verifiability in order to facilitate
trustworthiness. In the context of a commercial peer-to-peer data-
base, compromised nodes can manipulate transactions and forge

1https://www.dbpedia.org/
2https://www.wikidata.org/
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data, posing risks to financial transactions and compromising busi-
ness data. Data integrity ensures the storage nodes cannot tamper
with their data [6, 13, 37], while query verifiability ensures that
query results are complete, sound, and fresh [65, 72–74]. Without
anymeasures taken, a malicious storage node in DKG canmodify its
data or return incorrect, incomplete, or outdated results that do not
match user requests, violating data integrity and query verifiability.
Taking Figure 1 as an example, a malicious storage node (compa-
rable to a travel agency) can intentionally conceal relationships
within the KG (suitable or low-cost options) and selectively provide
incomplete results to clients (to prioritize its travel packages).

Unfortunately, most of the existing DKG infrastructures tend
to prioritize query efficiency over trustworthiness [2, 3, 8, 17], al-
though recent studies exist that focus on data integrity in DKGs [4,
47, 55]. For example, ColChain [4] enables data integrity in Byzan-
tine environments by establishing storage nodes that maintain
duplicate, immutable copies of subgraphs through blockchain con-
sensus. However, these studies still assume that the subquery and
communication in DKGs are trustworthy, which may not hold in
real-world settings. Therefore, it is highly relevant to provide mech-
anisms that make it possible to verify that the subquery and the
aggregation result are correct.

The standard approach to enable the verification of query re-
sults is to maintain an authenticated data structure (ADS) [57] that
enables the detection of incorrect query results computed by an
untrusted party on an outsourced database. While ADSs can be
extended to decentralized infrastructures, existing ADSs are not
designed for the querying of DKGs and cannot be applied readily
to this setting, for two main reasons.

• Decentralized data storage.Due to the decentralized stor-
age of DKG data, DKG query processing is done in two steps:
executing subqueries to obtain intermediate results from
individual storage nodes and aggregating the intermediate
results to get final query results [4]. In contrast, existing
ADS schemes assume that all data is stored in a single node
when building and maintaining an ADS.
• Semantic richness. Because of its semantic richness, KG

data that is both diverse and exhibits complex relationships
is challenging for existing ADSs to capture. Therefore, exist-
ing ADSs can support neither verification of local query pro-
cessing nor verification of global query processing where
local results are aggregated.

Therefore, in this paper, we design a new ADS-based SPARQL [9,
50] query verification scheme and enable the use of blockchain
for its generation and management to ensure data integrity and
query verifiability. To contend with the decentralized data storage,
our main idea is to design an ADS that can accommodate essential
metadata of subgraphs stored on different nodes to achieve a global
index, thus relaxing the requirement for a node to hold all data to
build an ADS. To contend with the semantic richness, we ensure
that it is possible to embed the semantic information required for
KG query into the ADS. Specifically, we use keyword prefixes and
an RGB color model to represent all semantic information with
minimal cost. With the resulting ADS, DKG can be verified in
a divide-and-conquer manner and the data integrity can also be
ensured by blockchain. Specifically, for the step of finding local

subgraphs, we implement the global index as a new variant of the
Merkle tree that can provide the location of any subgraph and
give verification proof. For the step of aggregation, we provide a
cryptographic accumulator [18, 46] and combine it with the ADS,
thus allowing nodes to perform verifiable aggregation operations
on intermediate results from different nodes.

Our contributions can be summarized as follows.
• We propose VeriDKG, a novel DKG system that enables

SPARQL query verifiability. To the best of our knowledge,
this is the first of its kind.

• We propose a verification framework for DKGs that relies
on a novel ADS, the RGB-Trie, to process SPARQL queries
in a divide-and-conquer manner with correctness proofs.

• We implement the RGB-Trie as a Merkle prefix tree with
an RGB color model to enable the capture of the necessary
semantic information and combine it with a cryptographic
accumulator technique to support verifiable aggregation
on intermediate results from multiple storage nodes.

• We provide a rigorous security analysis and report on exper-
iments with a prototype of VeriDKG. The results demon-
strate that the system can achieve state-of-the-art query
performance on the largeRDFbench benchmark while sup-
porting data integrity and query verifiability.

2 RELATEDWORKS

2.1 Decentralized Knowledge Graphs

Decentralized data management involves distributing data across
multiple nodes, enabling collaborative storage, retrieval, and pro-
cessing [20, 22, 28]. Knowledge graphs, key components of the
Semantic Web, organize information into nodes (entities) and edges
(relationships). By decentralizing knowledge graph management,
diverse stakeholders can contribute and access information, foster-
ing a more open and inclusive web ecosystem. Unlike traditional
centralized KGs [7, 11, 56], some DKG studies eliminate the central
server and allow data owners to share their data in a logically global
KG. For instance, RDFPeers [17] places a KG in a peer-to-peer net-
work and uses a Dynamic Hash Table (DHT) technique to build
an index. PIQNIC [2] splits a KG into fragments based on predi-
cates and uses a flooding mechanism to find nodes storing relevant
fragments. However, the query processing capability of PIQNIC is
less efficient than that of a centralized server. Aebeloe et al. [3] add
two indexing schemes in a peer-to-peer storage architecture to find
nodes that store relevant data.

In summary, the above studies are committed to improving data
availability and query efficiency, without paying attention to the
security of DKG. However, a decentralized network is vulnerable
to Byzantine faults in practice, which means that malicious storage
nodes can tamper with KG data, providing wrong or no query
results. Unlike previous works, our work focuses on trustworthiness
of DKG in the Byzantine environment.

2.2 Blockchain for Knowledge Graphs

Blockchain is a tamper-proof and decentralized ledger for reliable
and auditable data storage [43, 63] and has been used widely to
enable trustworthy database management [25, 32, 44, 49, 51, 68, 75].
Several works have explored using blockchain to store linked data
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in KGs, which allows untrusted nodes to collaborate on data updates
and to keep a trusted historical record of it [19, 55, 62]. However,
a major challenge of using blockchain in KGs is that it requires
every node to maintain a full copy of all data, which results in poor
scalability and high hardware requirements.

The work most relevant to us is ColChain [4], a community-
based DKG that splits and stores KG data into multiple blockchain
shards [24, 35] for different KG communities. ColChain allows
nodes to trace the update record of each KG triple item by requesting
related KG fragments from different shards, and performing the
data aggregation operation locally to obtain the final query results.
However, ColChain cannot guarantee the verifiability of queries
because it uses untrusted indexes to locate KG data and doesn’t
provide any verification proof. In comparison, our work adopts
the similar community-based DKG architecture and considers the
challenges of query verifiability.

2.3 Verifiable Query Processing

Verifiable query processing ensures query verifiability in outsourced
databases, typically employing cryptographic algorithms to gener-
ate proofs in untrusted environments. Many cryptography-based
solutions, such as those in [73, 74], rely on ADSs maintained on
untrusted servers. These structures often involve fundamental com-
ponents like Cryptographic Hash Functions and Merkle Trees, with
variants supporting complex queries in blockchain databases, like
GEM

2-tree [71], vChain [66], and vChain+[61]. Zhang et al.[70]
propose a hybrid-storage architecture for blockchains, enhancing
scalability via a Chameleon index-based ADS. However, prior work
lacks consideration for KG verifiable query requirements and can-
not support verifiable SPARQL queries in DKG.

VeriDKG draws inspiration from verifiable query processing in
outsourced databases. It centers on achieving verifiable KG queries
via a novel ADS-based verification framework. This pioneering
work introduces ADS-based schemes into DKG scenarios, facilitat-
ing extensive entity and relationship querying on the web.

3 PRELIMINARIES

3.1 Knowledge Graph

Resource Description Framework (RDF) is the standard format for
encoding KGs3. A KG G includes a set of RDF triples [39], each
consisting of a subject, a predicate, and an object, as defined below.

Definition 1 (RDF Triple). An RDF triple is in the form of ⟨𝑠, 𝑝, 𝑜⟩
representing a directed labelled edge 𝑠

𝑝
−→ 𝑜 , where 𝑠 , 𝑝 , and 𝑜

denote subject, predicate, and object, respectively. Given infinite
and disjoint sets U represents all URIs/IRIs, L represents all literals
(text or string, etc.), and B represents all blank nodes, an RDF triple
⟨𝑠, 𝑝, 𝑜⟩ ∈ (𝑈 ∪ 𝐵) ×𝑈 × (𝑈 ∪ 𝐵 ∪ 𝐿).

For example, ⟨𝐷𝑟 . 𝑆𝑚𝑖𝑡ℎ, 𝑤𝑜𝑟𝑘 𝑖𝑛, 𝑀𝑜𝑢𝑛𝑡 𝐸𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙⟩
and ⟨𝐷𝑟 . 𝑆𝑚𝑖𝑡ℎ, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 𝑤𝑖𝑡ℎ, 𝑀𝑟 . 𝐽𝑎𝑠𝑜𝑛⟩ are two RDF triples.

Definition 2 (Triple Fragment). A triple fragment 𝑓 ⊆ G is a finite
set of RDF triples in a KG G.

3https://www.w3.org/RDF/

Table 1: KG

Knowledge graph G
⟨a, 𝑝1, b⟩ ⟨a, 𝑝3, d⟩ ⟨b, 𝑝2, a⟩
⟨e, 𝑝2, f⟩ ⟨b, 𝑝1, d⟩ ⟨b, 𝑝3, c⟩
⟨d, 𝑝3, f⟩ ⟨c, 𝑝1, e⟩ ⟨c, 𝑝2, d⟩

Table 2: TPF

𝑓1
⟨a, 𝑝1, b⟩
⟨b, 𝑝1, d⟩
⟨c, 𝑝1, e⟩

SPARQL4 is the de facto query language for KGs. It comprises a
set of triple patterns, as defined below.

Definition 3 (Triple Pattern). Given the sets U, L, and B in Defi-

nition 1 and a set of all variables V, a triple pattern is a triple of
the form ⟨𝑠, 𝑝, 𝑜⟩ ∈ (𝑈 ∪ 𝐵 ∪𝑉 ) × (𝑈 ∪𝑉 ) × (𝑈 ∪ 𝐵 ∪ 𝐿 ∪𝑉 ).

A SPARQL query contains multiple basic graph patterns (BGPs),
each comprising a set of (conjunctive) triple patterns, which are
combined with some graph patterns and operators, such as JOIN,
FILTER, OPTIONAL, and UNION. For example, given two triple pat-
terns ⟨?𝑤ℎ𝑜, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 𝑤𝑖𝑡ℎ, 𝑀𝑟 . 𝐽𝑎𝑠𝑜𝑛⟩ and ⟨?𝑤ℎ𝑜, 𝑤𝑜𝑟𝑘 𝑖𝑛,

?𝑤ℎ𝑒𝑟𝑒⟩, a SPARQL query that searches for the workplace of Mr.
Jason’s wife (i.e., inner join the two triple patterns on their subjects
and select the results on the second triple pattern’s object) and the
person is younger than 30 (this condition is optional) can be

SELECT ?𝑎𝑑𝑑𝑟𝑒𝑠𝑠 WHERE {
⟨?𝑤ℎ𝑜, 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 𝑤𝑖𝑡ℎ, 𝑀𝑟 . 𝐽𝑎𝑠𝑜𝑛⟩,
⟨?𝑤ℎ𝑜, 𝑤𝑜𝑟𝑘 𝑖𝑛, ?𝑎𝑑𝑑𝑟𝑒𝑠𝑠⟩,
OPTIONAL ⟨?𝑤ℎ𝑜, 𝑎𝑔𝑒, ?𝑎𝑔𝑒 FILTER (?𝑎𝑔𝑒 < 30)⟩. }

Definition 4 (Tripple Pattern Fragment). Let 𝑓 is a triple fragment,
𝑡𝑝 is a triple pattern, 𝑓 is the triple pattern fragment of 𝑡𝑝 iff for
every RDF triple 𝑡1 ∈ 𝑓 , 𝑡1 matchs 𝑡𝑝 .

For example, given a KGG in Table 1, Table 2 shows the triple pat-
tern fragment (TPF) 𝑓1 which matches the triple pattern ⟨?𝑠, 𝑝1, ?𝑜⟩.

Decentralized Knowledge Graph. In a conventional KG, the
entire KG is stored on a centralized trusted server that can execute
SPAQRL queries on its local storage. However, in a DKG, the entire
KG is divided into multiple subgraphs and distributed to differ-
ent KG communities [4], each of which is a series of nodes that
store the same subgraph. Note that a node can belong to multiple
communities, but a community only stores a subgraph.

3.2 Verifiable Query Methods

Cryptographic Hash Function. A cryptographic hash function,
ℎ𝑎𝑠ℎ(·), convertsmessages of varying lengths into fixed-size digests,
ensuring that ℎ𝑎𝑠ℎ(𝑚) is computationally indistinguishable from
random data. In simpler terms, finding a message𝑚 that matches a
given hash ℎ = ℎ𝑎𝑠ℎ(𝑚) is highly challenging.

Merkle Tree. Merkle tree [41] is a binary tree that stores hash
values. It is a data structure used to quickly verify the integrity
of large-scale data. Its leaf nodes are composed of hash values of
records, and non-leaf nodes are generated upward through hash
operations until the root node named Merkle root is generated.
Therefore, a Merkle tree including 𝑛 records can be used to verify
the records in the leaf nodes in 𝑂 (𝑙𝑜𝑔(𝑛)) time complexity.

Verifiable Set Operation. Verifiable set operation (VSO) sup-
ports various verifiable set operations, such as intersection (denoted

4http://www. w3. org/TR/rdf-sparql-query/

914



as ∩), union (denoted as ∪), and difference (denoted as \) [18, 46].
A VSO includes four steps as follows.

• KeyGen (𝑠)→ (𝑠𝑘, 𝑝𝑘) : The input is a random value 𝑠 ∈ Z𝑝 ,
which is based on a bilinear-map accumulator primitive [45].
The outputs is a pair of a secret key 𝑠𝑘 = 𝑠 and a public
key 𝑝𝑘 = (𝑔𝑠 , · · · , 𝑔𝑠𝑞 ), where 𝑔 is the generator of a cyclic
multiplicative group G and 𝑞 is an upper-bound on the
cardinality of sets in the algorithm.

• Setup (𝑋, 𝑝𝑘)→ 𝑎𝑐𝑐 (𝑋 ): The input is a pair consisting of
a set 𝑋 ⊂ Z𝑝 and 𝑝𝑘 . The output is an accumulated value

𝑎𝑐𝑐 (𝑋 ) = 𝑔

∏︁
𝑥 ∈𝑋
(𝑥+𝑠 )

.
• Getproof (𝑋𝑖 , 𝑋 𝑗 , 𝑜𝑝𝑡 , 𝑝𝑘) → (𝑋 ∗, 𝜋 ): The inputs include

two sets 𝑋𝑖 and 𝑋 𝑗 , a set operation 𝑜𝑝𝑡 ∈ {∩,∪, \} and 𝑝𝑘 .
The function returns the set operation result of these two
sets 𝑋 ∗ with a proof 𝜋 .

• VerifyProof (𝑎𝑐𝑐 (𝑋 𝑖 ), 𝑎𝑐𝑐 (𝑋 𝑗 ), 𝜋 )→ {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒 𝑗𝑒𝑐𝑡}: The
inputs are two accumulated value 𝑎𝑐𝑐 (𝑋 𝑖 ) and 𝑎𝑐𝑐 (𝑋 𝑗 ) and
the proof 𝜋 . The function then returns the validation result.

The unforgeability for verifiable set operations has been proved
under the q-Strong Bilinear Diffie-Hellman assumption [12].

Blockchain. A blockchain is a public and tamper-proof ledger
composed of a sequence of blocks, each storing transactions, and is
maintained by multiple mutually distrusting nodes. To agree on the
order of valid transactions among nodes, the nodes run a consensus
(e.g., Proof of Work [43], Proof of Stake [63], and PBFT [5]) in
the blockchain. In each block, the transactions are organized as a
Merkle tree, and the Merkle tree root is stored in the block header.

4 VERIDKG: FRAMEWORK

4.1 System Model & Threat Model

Basic Model. In a DKG system, there are three types of participants.
Data owners generate raw RDF data as triple fragments and

share their data in the DKG. Due to limited resources, the data
owners outsource their data to storage nodes. Storage nodes offer
DKG storage and data management services, divided into KG com-
munities, each responsible for specific triple fragments. They can
collaborate across communities when executing SPARQL queries
and facilitate addressing relevant nodes for a requested RDF triple.
Clients query the global KG by issuing SPARQL requests to the
storage nodes.

As shown in Figure 2a, data owners outsource their data to the
storage nodes (❶), and a client can send its query request to any
storage node (❷) and get the query result (❸). Most DKG systems
have a data replication mechanism [2, 3] to ensure query services
normally run when some storage nodes encounter failure.

Threat Model. Different from existing DKGs [2, 3] that assume
that storage nodes are trustworthy, in VeriDKG, the storage nodes
are not trusted. Each storage node may forge or tamper with query
results or return outdated information for various reasons, such
as program glitches, security vulnerabilities, and commercial inter-
ests. We assume that the data owners and clients are trusted. (A
discussion for malicious data owners is provided in § 8.) A similar
threat model can be found in outsourced databases [42, 64, 74].

System Model. Our VeriDKG introduces a new role of partici-
pants to build a verifiable SPARQL query engine on DKG as follows.

Raw 
data

Query Response

❶

❷ ❸

Storage nodes

…

Data 
Owners

Client

Community 1 Community 2

(a) A typical DKG

Raw 
data

❶

Storage nodes

…

Data 
Owners

Community 1 Community 2

Query

Response, 
proof

Meta-data
Result

Blockchain

❷

❸

❹

Client

…

Auditors

(b) Our VeriDKG

Figure 2: Comparison between the existing DKG and our

VeriDKG.

Auditors compose a blockchain system as a trust anchor in the
DKG. The blockchain guarantees that the auditors can collectively
build a public and immutable ledger via consensus. We assume
that the proportion of malicious auditors will not exceed the fault
threshold of blockchains (e.g., 1/2 in PoW or 1/3 in PBFT).

4.2 SystemWorkflow

As illustrated in Figure 2b, the data owners, storage nodes, auditors
and clients interact in VeriDKG as follows.

Phase 1: Data Outsourcing. Each data owner outsources its
RDF data to the storage nodes (❶). At the same time, the data owner
also calculates the hash of each RDF triple, and proposes a transac-
tion containing the metadata (i.e., the hash, index information, and
address of the triple in the storage network) for each triple.

Phase 2: ADS Generation. The data owner then submits the
proposed transaction with metadata to the blockchain (❷). To com-
mit the transaction, all the auditors run a consensus to build an ADS
with an index function for all RDF data stored on the storage node
network. The ADS maintained in the blockchain will be updated
based on each newly committed transaction. The details will be
described in § 5.

Phase 3: Query Processing. A client can issue a SPARQL query
to any auditor (❸). The auditor converts the query to a set of triple
patterns, uses the ADS to search for the triple pattern fragments of
each triple pattern (namely triple pattern queries), and gets the triple
pattern fragments from storage nodes (❹). All the triple pattern
fragments are aggregated on the auditor for the final results. The
auditor also generates proofs using the ADS, discussed in § 6.

Phase 4: Query Verification. The final query results and their
corresponding proofs are sent to the client from the auditor, and
the client verifies the query results (❺), which is discussed in § 6.

4.3 Goals

The query verification in Phase 4 should guarantee that the query
results returned from the storage nodes satisfy three security cri-
teria: 1) Soundness: None of the RDF triples returned as results
have been tampered with and all of them satisfy the SPARQL query
conditions; 2) Completeness: No valid result (e.g., RDF triples and
their members) is missing from the query results; 3) Freshness:
The query results are based on the latest version of the DKG.
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Figure 3: The process of verifiable SPARQL query execution

in VeriDKG.

4.4 Roadmap

As mentioned before, executing a SPARQL query in DKGs involves
three steps: 1) dividing the SPARQL query into multiple triple pat-
terns, 2) locating the relevant triple pattern fragments matching
each triple pattern, and 3) aggregating these fragments for final
results. To enable verifiable SPARQL queries in VeriDKG, we intro-
duce a novel ADS for verifiable triple pattern queries and utilize a
verifiable set operation-based approach for aggregation. In particu-
lar, as shown in Figure 3, in the locating process, VeriDKG employs
the RGB-Trie, a Merkle tree variant, to find relevant intermediate
results (triple pattern fragments) for all triple patterns alongside
their proofs. In the aggregating process, most aggregation opera-
tors are converted to some set operations, and a storage node in
VeriDKG can perform verifiable set operations on the intermediate
results, and returns the final query results with a verification proof
to clients. In the following, we will introduce the design of RGB-Trie
in Section § 5 and the entire query process in Section § 6.

5 RGB-TRIE: ADS FOR VERIDKG

In this Section, we first introduce a strawman scheme of the ADS
design inVeriDKG, which is aMerkle prefix tree for verifiable triple
pattern queries with some limitations. We then give the detailed
design of RGB-Trie, including its structure and management.

5.1 Strawman

To support verifiable triple pattern queries, we first describe a straw-
man ADS for Phase 2 only based on a Merkle prefix tree (MPT)
like Merkle Patricia Tree [63], an ADS for verifiable prefix-based
keyword queries adopted bymany blockchain systems. In the straw-
man, the auditors can build an MPT on the blockchain, which treats
the value given in the triple pattern as a keyword. The internal
nodes of the MPT stores the index information (i.e., keywords) of
RDF triples, and the MPT’s leaf nodes point triple fragments, each
containing some RDF triples with the same keyword. For exam-
ple, for KG G in Table 1, we let 𝑝1 = 𝑎𝑎, 𝑝2 = 𝑎𝑏, and 𝑝3 = 𝑏𝑎, the
MPT to query G can be shown in Figure 4. For three triple pat-
terns ⟨?𝑠, 𝑝1, ?𝑜⟩, ⟨?𝑠, 𝑝2, ?𝑜⟩, and ⟨?𝑠, 𝑝3, ?𝑜⟩, 𝑓1, 𝑓2 and 𝑓3 are their
corresponding triple pattern fragments through the MPT. Given a
triple pattern fragment 𝑓 ′1 from a storage node, to verify whether
it corresponds to triple pattern ⟨?𝑠, 𝑝1, ?𝑜⟩, a client can recover a
Merkle root (ℎ6′) based on the hash of 𝑓 ′1 (ℎ1′) and a Merkle proof
(ℎ2 and ℎ5), and then verify whether ℎ6 and ℎ6′ are the same.

Unfortunately, the strawman falls short of enabling verifiable
triple pattern queries due to two limitations as follows.

Root 

a b

a b a

⟨a, 𝑝1, b⟩
⟨b, 𝑝1, d⟩
⟨c, 𝑝1, e⟩

𝑓1 𝑓2
⟨b, 𝑝2, a⟩
⟨e, 𝑝2, f⟩
⟨c, 𝑝2, d⟩

⟨a, 𝑝3, d⟩
⟨b, 𝑝3, c⟩
⟨d, 𝑝3, f⟩

𝑓3

h1 h2 h3

h4=hash(h1||h2) h5=hash(h3)

h6=hash(h4||h5)

Figure 4: An example of an MPT in the strawman system.

First, it only supports verifiable queries for limited triple patterns,
i.e., those where only one of the three features in triples is given.
For example, the MPT in Figure 4 supports verifiable queries for
triple patterns with a given predicate. It cannot support verifiable
queries for triple patterns with a given subject or object.

Second, it cannot support verifiable aggregation of intermediate
results, but a SPARQL query requires performing aggregation oper-
ations (e.g., UNION or JOIN) on triplet pattern fragments according
to § 3.1. For example, if a SPARQL query requires the join of 𝑓1 and
𝑓3 on the subject, the MPT in Figure 4 cannot provide any proof.

Therefore, we propose a new ADS called RGB-Trie, a variant
of MPT with two new characteristics. 1) It includes an RGB color
model on MPT nodes for verifiable queries for any triple patterns,
and 2) it integrates an accumulated value design with the MPT for
verifiable set operations for aggregation on triple patterns.

5.2 Trie Structure

As shown in Figure 5a, RGB-Trie comprises four types of nodes,
i.e., a root node, branch nodes, extension nodes, and leaf nodes,
which are described as follows. In the figure, an RDF dataset with
three RDF triples is inserted into an RGB-Trie, and the features
in the triples may have all or part of the same prefix. It’s worth
noting that the prefix for each entity in an RDF triple can encompass
various elements such as property paths5, named graphs6, and other
components found within the KG.

Root node. The top layer of RGB-Trie is a root node, which is a
Merkle root maintaining a consistent snapshot of global KG. Based
on the characteristics of MPT, the hash value inside a root node
changes when any node in RGB-Trie is modified.

Branch/Extensionnode. Themiddle layer of RGB-Trie includes
branch nodes and extension nodes. Each branch node connects its
predecessor (parent node) and successors (child node) through its
own value properties. It stores the common prefix of its child nodes
and has at least two children. An extension node is a special branch
node and can represent the termination of a query path. It has
some pointers to point to triple pattern fragments. A branch node
can be transformed into an extension node by inserting some RDF
triples with a keyword whose matching path ends at this node to
RGB-Trie. We illustrate the process of converting a branch node to
an extension node in Figure 5b. When an RDF triple with a subject
𝑎 is inserted into the RGB-Trie, a branch node with the common
prefix 𝑎 is transformed to an extension node that has a pointer to
point the inserted RDF triple.

5https://www.w3.org/TR/sparql11-property-paths/
6https://www.w3.org/2009/07/NamedGraph.html
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Figure 5: The structure of RGB-Trie and two cases of RGB-Trie node operation (Frag. means triple fragment.)

Leaf node. RGB-Trie’s bottom layer comprises leaf nodes, each
with pointers to address sets for triplet pattern fragments and their
accumulated values. Additionally, each leaf node holds hash values
for the referenced fragments. These attributes are pivotal in en-
abling RGB-Trie to furnish verification proofs for SPARQL queries
(refer to § 6).

The design above creates an index for triple fragments linked
to an input word. However, in KG, each triple has three features
(subject, predicate, object), and each index fragment corresponds
to just one feature. This necessitates three separate tries, tripling
the storage and computation overhead as all three must update
simultaneously with each transaction. To address this, we merge
these tries into one using an RGB color model as follows.

Definition 5 (RGB Color Model). Given a node 𝑛 in RGB-Trie, its
color field is defined as red, green or blue if its search target feature
is subject 𝑠 , predicate 𝑝 or object 𝑜 , respectively. If 𝑛 points to two
different features, e.g., 𝑠 ∧ 𝑝 , 𝑠 ∧ 𝑜 , or 𝑝 ∧ 𝑜 , its color field is defined
as yellow, magenta, or cyan, respectively. The color field is set to
white when 𝑛 has simultaneous access to the three features.

Example. An example of node color change is shown in Figure 5c.

The color of a leaf node is green because the fragment it points to is a

triple pattern fragment for the triple pattern ⟨?𝑠, 𝑎𝑎, ?𝑜⟩ and its index
value is aa. If a new RDF triple with a subject aa is inserted into this

leaf node, its color is changed from green to yellow because yellow is

a mixed color of green (for predicate) and red (for subject). After the

node color change process is over, the leaf node will store two different

pointers, two hash values, and two accumulated values.

After adding the RGB color model to MPT, the RGB-Trie can
convert any form of triple pattern query into keyword queries with
different color combinations, which is described in § 6. We also give
a cardinal Rule of color mixing for the RGB color model in RGB-Trie
to improve its query performance. Details are shown in § 5.3.

5.3 Operations of RGB-Trie

At the beginning of VeriDKG, an empty RGB-Trie is stored in the
genesis block (the first blockchain block). Along with each new RDF
data outsourced to the storage nodes (Figure 2b-❶), the auditors
change the RGB-Trie according to the newly committed transaction
about the new RDF data (Figure 2b-❷). There are three kinds of
operations, i.e., insert, update, and delete, introduced as follows.

5.3.1 Insert Operation. After receiving a transaction with an ad-
dress points to an RDF triple ⟨𝑠, 𝑝, 𝑜⟩, the auditors add three items
[𝑠, 𝑟𝑒𝑑], [𝑝, 𝑔𝑟𝑒𝑒𝑛], [𝑜, 𝑏𝑙𝑢𝑒] to an item list 𝐿. For each item 𝑖𝑡𝑒𝑚𝑖

in 𝐿, the auditors search for an insertion point 𝑛𝑜𝑑𝑒𝑝 of the root
node of RGB-Trie by traversing its child nodes.

For each item 𝑖𝑡𝑒𝑚𝑖 , if the auditors find 𝑛𝑜𝑑𝑒𝑝 , it inserts 𝑖𝑡𝑒𝑚𝑖 to
𝑛𝑜𝑑𝑒𝑝 through a recursive insertion algorithm. If they cannot find
𝑛𝑜𝑑𝑒𝑝 , auditors create a new child node 𝑛𝑜𝑑𝑒𝑛𝑒𝑤 of the root node
of RGB-Trie and insert 𝑖𝑡𝑒𝑚𝑖 to 𝑛𝑜𝑑𝑒𝑛𝑒𝑤 . In the insert processing,
if at any time the next character to be matched in the item does not
match the characters stored in all children of an inserted node, the
RGB-Trie will create a new child node of the inserted node to store
the remaining unmatched part of the item. If 𝑛𝑜𝑑𝑒𝑝 has more than
one character (i.e., slices of character, which is a variable-length
character array), and the unmatched part of the item is only partly
the same as the slices, 𝑛𝑜𝑑𝑒𝑝 will split (i.e., keep the matched part
of the slices in the node and create two new child nodes to store
the remaining part of 𝑖𝑡𝑒𝑚𝑖 and the remaining part of the slices).

Example.Consider Figure 5a as an example. Suppose 𝑡3 = ⟨𝑎𝑏𝑏, 𝑏𝑐𝑎,
𝑎𝑏𝑏𝑎⟩ is a new triple. When it is inserted into the tree, the right child

node of node 𝐵𝑟𝑎𝑛𝑐ℎ1 is converted to an extension node with a new

triple fragment 𝐹𝑟𝑎𝑔.3. The node 𝐵𝑟𝑎𝑛𝑐ℎ2 will only keep prefix bc
and split with two new child nodes, including a leaf node 𝐿𝑒𝑎𝑓 6 with
𝐹𝑟𝑎𝑔.7 and a leaf node 𝐿𝑒𝑎𝑓 5 with prefix a and a new triple fragment

𝐹𝑟𝑎𝑔.6. And 𝑡3 will also be inserted into 𝐹𝑟𝑎𝑔.4.
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Finally, after the insertion process, the auditors update RGB-
Trie’s hashes and colors and change it to a new state. Different
nodes have different methods to update their hash value. Let | |
be the concatenation operator of multiple values, ℎ𝑎𝑠ℎ(·) is the
cryptographic hash function, and the hash update processing of
different types of nodes in RGB-Trie are as follows:

For a leaf node 𝑛𝑙 , the hashing process is:
• 𝑓𝑛 = the triple pattern fragment(s) that 𝑛𝑙 points;
• 𝑐𝑛 = the keyword related index content in 𝑛𝑙 , i.e., a segment

of the keyword.
• ℎ𝑛 = ℎ𝑎𝑠ℎ(𝑐𝑛 | |ℎ𝑎𝑠ℎ(𝑓𝑛)), it is the hash value of 𝑛𝑙 .

For an extension node 𝑛𝑒 , denotes its child nodes is {𝑐𝑛1, 𝑐𝑛2 . . .
𝑐𝑛𝑘 }, the hashing process is:

• 𝑓𝑛 = the triple pattern fragment(s) that 𝑛𝑒 points;
• 𝑐𝑛 = the keyword related index content in 𝑛𝑒 , i.e., a segment

of the keyword.
• 𝑐ℎ𝑛 = ℎ𝑎𝑠ℎ(𝑐𝑛1 | |𝑐𝑛2 . . . | |𝑐𝑛𝑘 )
• ℎ𝑛 = ℎ𝑎𝑠ℎ(𝑐𝑛 | |ℎ𝑎𝑠ℎ(𝑓𝑛) | |𝑐ℎ𝑛), it is the hash value of 𝑛𝑒 .

For a branch node 𝑛𝑏 , denotes its child nodes is {𝑐𝑛1, 𝑐𝑛2 . . . 𝑐𝑛𝑘 },
the hashing process is:

• 𝑐𝑛 = the keyword related index content in 𝑛𝑏 , i.e., a segment
of the keyword.

• 𝑐ℎ𝑛 = ℎ𝑎𝑠ℎ(𝑐𝑛1 | |𝑐𝑛2 . . . | |𝑐𝑛𝑘 )
• ℎ𝑛 = ℎ𝑎𝑠ℎ(𝑐𝑛 | |𝑐ℎ𝑛), it is the hash value of 𝑛𝑏 .

Besides, RGB-Trie updates the color of all nodes on this path at
the same time. It follows the RGB additive color mixing rule. The
color of a node is determined by a mixture of the index field in
which it stores its content and the color of its children, and the
specific descriptions are shown as follows:

Basic color mixing rule. Under this rule, each node in the
RGB-Trie has a triple (𝑅,𝐺, 𝐵), and each element of the triple is a
binary value. We use 1 to indicate that the color exists, and 0 to
indicate that the color does not exist. For example, in Figure 6, the
color of the root node is white and represented as (1, 1, 1), because
all child nodes of the root node contain all items of the RDF triple.
To update the color of a non-leaf node on the RGB-Trie, the node
needs to OR the color triples of all its child nodes.

Gradient color mixing rule. Under this rule, each node in the
RGB-Trie has a triple (𝑅,𝐺, 𝐵), and each element of the triple is
an 8 bits value. We use (255, 0, 0) to represent color red, (0, 255, 0)
to represent color green and (0, 0, 255) to represent color blue. To
update the color of a non-leaf node on the RGB-Trie, it needs to
calculate the proportion of different items of RDF triples (i.e., s, p,
and o) in its child nodes. For example, in Figure 6, the color triple
of the root node can be calculated as (255 ∗ (3/5), 255 ∗ (2/5), 255 ∗
(1/5)), because there are 5 RDF triples in the whole KG, including 3
pointed by subject, 2 pointed by predicate and 1 pointed by object.

The two color mixing rules offer distinct advantages and draw-
backs. The basic rule simplifies color calculations and ensures pre-
cise and comprehensive query results. In contrast, the gradient color
mixing rule empowers clients to decide query termination based
on color proportions, enhancing efficiency but potentially reducing
recall. Importantly, the recall reduction doesn’t compromise query
verifiability, as it aligns with client preferences. We will assess the
query performance of these rules in § 9.

Branch
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Branch
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Root

Leaf Leaf

t1, t2

Frag. 2
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Frag. 3
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s, p s, o
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Figure 6: The color mixing rule in RGB-Trie.

5.3.2 Update & Delete. When a data owner wants to update or
delete an RDF triple stored in storage nodes, it asks the storage
nodes to update or delete that triple, and sends a new transaction
consisting of the triple and a field marked for update or deletion
to the auditors. When the auditors receive the transaction, they
will update or delete the triple item and update the nodes in the
RGB-Trie to a new state. Under these two operations, the update
process of the RGB-Trie is similar to the insert operation.

5.4 Cost Analysis

Here, we provide the time and space complexities associated with
the RGB-Trie. Time complexity:When inserting an item with a
word of length 𝐿 and a color, the auditor traverses the RGB-Trie
recursively level by level, which incurs 𝐿 comparisons in the worst
case. Updating RGB-Trie’s hashes and colors upon an insertion
involves reversing the order of traversal and 𝐿 executions. Thus,
insertion has a time complexity 𝑂 (𝐿), with 𝐿 being the length of
the word to be inserted. Similarly, update, deletion and querying
also have time complexity 𝑂 (𝐿).

Space complexity: The space consumption of an RGB-Trie
depends on its total number of nodes, which is related to its depth
and number of leaf and non-leaf nodes. An RGB-Trie is constructed
from a dataset of RDF triples. We denote the number of distinct
items among all RDF triples in the input dataset by 𝑁 , and we
denote the cardinality of the character set of the input dataset
by 𝐷 . We can then determine an upper bound on the number of
children of each non-leaf node. We start by observing that in an
RGB-Trie, each item is stored either in a non-leaf node or in a leaf
node. Further, each non-leaf node has at least 2 and at most 𝐷 child
nodes (assuming 𝐷 ≥ 2). Next, in the worst case, an RGB-Trie
is a fully balanced binary tree with all items being stored in leaf
nodes. Thus, the leaf layer has 𝑁 nodes, each non-leaf layer 𝐿 has
2𝐿 nodes, and the RGB-Trie has ⌈𝑙𝑜𝑔2𝑁 ⌉ layers. The maximum
total number of nodes that an RGB-Trie can contain is therefore
1 + 2 + 22 + . . . + 2𝑙𝑜𝑔2𝑁−1 + 𝑁 = 2𝑁 − 1. Consequently, the space
complexity of the RGB-Trie is 𝑂 (𝑁 ).

6 QUERY PROCESSING AND VERIFICATION

As described in § 3.1, each SPARQL query combines some triple pat-
terns with aggregation operations. We achieve a verifiable SPARQL
query process in two steps, i.e., verifiable triple pattern query and
verifiable fragments aggregation, as follows.

Verifiable Triple Pattern Query. A triple pattern query aims
to search for a triple pattern fragment that matches a given triple
pattern. Algorithm 1 describes the verifiable triple pattern query
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Algorithm 1: Verifiable triple pattern query
1 Function Search for fragments (𝑟 ,𝑡𝑝𝑖 ):

Input :RGB-Trie root node 𝑟 , a triple patten 𝑡𝑝𝑖
Output :Triple pattern fragments 𝑓 , matching path 𝑝

2 foreach 𝑖𝑡𝑒𝑚𝑖 in 𝑡𝑝𝑖 do

3 𝑓𝑖 , 𝑝𝑖 = r.nodeSearch(𝑖𝑡𝑒𝑚𝑖 )
4 if 𝑓𝑖 != null then

5 add 𝑓𝑖 to 𝑓

6 else

7 add 𝑝𝑖 to 𝑝

8 return 𝑓 , 𝑝;
9 Function Get proof (node with 𝑓𝑖 ,𝑓𝑖 ∈ 𝑓 , 𝑝):

10 foreach node with 𝑓𝑖 do

11 add hash(𝑓𝑖 ) to 𝑉𝑂 ;
12 while node.parent != null do

13 add nodeInfo to 𝑉𝑂
14 foreach 𝑛𝑜𝑑𝑒𝑖 ∈ 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑 do

15 add 𝑛𝑜𝑑𝑒𝑖 .ℎ𝑎𝑠ℎ to 𝑉𝑂
16 node← node.parent

17 if 𝑝 != null then

18 add 𝑝 , Merkle proof of 𝑝 to 𝑉𝑂
19 return 𝑉𝑂

process through RGB-Trie. First, the auditor searches in RGB-Trie to
find the triple pattern fragments that match the input triple pattern
(Lines 1-8). Each given value of the triple pattern, i.e., 𝑖𝑡𝑒𝑚𝑖 , visits
the RGB-Trie to query related triple fragments with their colors
independently. RGB-Trie uses the depth-first search method to find
a path in RGB-Trie that matches 𝑖𝑡𝑒𝑚𝑖 , and the path ends at a leaf
node or an extension node. Then, if 𝑖𝑡𝑒𝑚𝑖 matches successfully,
RGB-Trie will add the fragment pointed by the end-point node and
its Merkle proof to a verification object (VO) (Lines 9-16). Otherwise,
if 𝑖𝑡𝑒𝑚𝑖 matches failed, RGB-Trie will add a set of nodes with their
Merkle proofs, including the nodes in the partially matched path
and all child nodes of the last node in this path, to the VO (Lines
17-18). Finally, the VO is returned to the client.

After receiving the results and proof, the client can verify them
by comparing the recovered root node’s hash that it calculates with
the root hash of RGB-Trie which is kept in the current block header.
If they are equal, the verification succeeds.

Example. To search a triple pattern 𝑡𝑝𝑖 = ⟨𝑎𝑎𝑎, ?𝑝, 𝑎𝑎𝑏⟩ in Fig-

ure 5a, an auditor should extract two items aaa and aab with color

red and blue, and later search the RGB-Trie to find the related triple

pattern fragments. The auditor will get the results 𝑅𝑎𝑎𝑎 = {𝑡1}, and
𝑅𝑎𝑎𝑏 = ∅, because no nodes in RGB-Trie have both a prefix content of

aab and possess the blue color. Finally, the auditor takes the inter-

section of two intermediate results 𝑅𝑎𝑎𝑎 and 𝑅𝑎𝑎𝑏 and gets the final

result ∅. Thus, the auditor will return the final result of 𝑡𝑝𝑖 (i.e., ∅), the
intermediate result {𝑡1} with its Merkle proof, and the non-existing

proof of 𝑅𝑎𝑎𝑏 to the client.

Verifiable Fragments Aggregation. After the triple pattern
query, a data aggregation process needs to be executed on an auditor
that collects the intermediate results (i.e., triple pattern fragments)
to get the final results. A SPARQL begins with an operation SELECT

Algorithm 2: Verifiable data aggregation
1 Function Get result and proof (𝑓 , 𝑡𝑝 , 𝑝𝑘):

Input :Triple fragments 𝑓 , triple pattern list 𝑡𝑝 ,
RGB-Trie 𝑅, public key 𝑝𝑘

Output :Query result 𝑆 , verification proof 𝜋
2 foreach 𝑓𝑖 ∈ 𝑓 do

3 foreach 𝑡𝑝 𝑗 ∈ 𝑡𝑝 do

4 𝑡𝑝 𝑓𝑖 𝑗 ← R.search (𝑓𝑖 , 𝑡𝑝𝑖 ) and add 𝑡𝑝 𝑓𝑖 𝑗 into 𝑡𝑝 𝑓𝑗
5 add 𝑡𝑝 𝑓𝑗 into 𝑡𝑝 𝑓
6 𝑆 ← aggregate (all 𝑡𝑝 𝑓𝑖 ∈ 𝑡𝑝 𝑓 )
7 𝜋 ← prove (𝑡𝑝 𝑓𝑖 , 𝑝𝑘)
8 return {𝑆, 𝜋}
9 Function Verify proof (𝑅, 𝜋 , 𝑋 ∗):

Input :Triple pattern fragments 𝑡𝑝 𝑓 , query result 𝑆 ,
verification proof {𝑋 ∗, 𝜋}

Output :verification result
10 foreach 𝑡𝑝 𝑓𝑖 ∈ 𝑡𝑝 𝑓 do

11 add 𝑎𝑐𝑐 (𝑡𝑝 𝑓𝑖 ) into 𝐴𝐶𝐶
12 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑉𝑒𝑟𝑖 𝑓 𝑦𝑃𝑟𝑜𝑜 𝑓 (𝐴𝐶𝐶, 𝜋)
13 return 𝑟𝑒𝑠𝑢𝑙𝑡

followed by a subset of variables in the triple patterns, and then
a keyword WHERE followed by a set of triple patterns (i.e., a BGP)
connected by some graph patterns (e.g., JOIN, LEFT JOIN, FILTER)
and operations (e.g., OPTIONAL, UNION, ORDER BY). It is worth not-
ing that most graph patterns and operations can be converted to
set operations between subgraphs. For example, for a JOIN graph
pattern involving the same features of two triple pattern fragments,
an auditor treats the features of these two fragments as two sets
and constructs a proof for their intersection through VSO. In the
following, we will describe the detailed execution process of the
verifiable fragments aggregation on the graph patterns and opera-
tions that can be converted to set operations and give the solutions
for other operations.

In VeriDKG, the auditor is responsible for aggregating the inter-
mediate results from the triple pattern query transfers the aggre-
gation operations in SPARQL query request into accumulator set
operations (e.g., intersection, union, complement, and difference)
and uses the following algorithm to generate verification proofs of
the aggregating operation.

Algorithm 2 describes the process of verifiable fragments aggre-
gation. First, for each triple pattern, an auditor uses the RGB-Trie to
search for its related triple pattern fragments (Lines 2-5). After all
triple pattern fragments are found, the auditor aggregates them to
get the final query result (Line 6). To generate the verification proof
of the final result, the auditor uses the accumulated values of all
triple pattern fragments and generates a verification proof 𝜋 (Line
7). The client that receives the query result uses the proof 𝜋 and the
accumulated values to verify the query result locally (Lines 9-13).

Example. Figure 7 gives an example of fragments aggregation, the

SPARQL query selects 𝑠 fields from two fragments through two triple

patterns including a p-fixed triple pattern and an o-fixed triple pattern.

The generation proof is < 𝑎𝑐𝑐 (𝑋 1), 𝑎𝑐𝑐 (𝑋 2), 𝜋, [1, 1, 0], [1, 0, 1] >.
To calculate the accumulated value of each triple pattern frag-

ment, all the auditors collaboratively generate a pair of keys (i.e., a
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Fragment 1

<s1,p1,o3>

<s3,p1,o1>

<s4,p1,o3>

Fragment 2

<s1,p3,o2>

<s4,p4,o2>

<s6,p2,o2>

SELECT ?s  

WHERE {

s? p1 o?

s? p? o2

}

Fragment 1

Result Set

<s1>

<s4>

Get Result

Proof

< 𝑎𝑐𝑐 𝑋1 , 𝑎𝑐𝑐 𝑋2 ,
𝜋, 1,1,0 , 1,0,1 >>

𝜎𝑝=𝑝1

Fragment 2

𝜎𝑜=𝑜2

Get Proof

⋈𝑠

Figure 7: Example for proof generation of two triple frag-

ments 1 and 2, respectively. (𝜎 is an operator to select triples

from a triple pattern and ⋈︁ is an operator to join fragments

based on a specified column.

public key and a private key), share the public key in a public way,
and share the private key in a private way (e.g., secret sharing [53]).
All the accumulated values are stored on the extension nodes and
leaf nodes of RGB-Trie.

Verification of Non-set Operations. For other operations that
cannot be converted to set operations, the auditor can let clients
verify the results themselves or use other cryptographic tools to
generate proofs for their results. These operations include some re-
strictions in the FILTER pattern and most of the solution sequence
modifiers (e.g., ORDER BY, OFFSET, DISTINCT, LIMIT). For restric-
tions in the FILTER pattern, the auditor can use a hash function, a
partial path of RGB-trie, VSO, or generate a general zero-knowledge
proof to prove that the result satisfies its constraints. Specifically, a
matching or no-matching constraint of two words can be verified
by their hash values, a regular expression constraint can be verified
by VSO and a Merkle proof provided by a partial path of RGB-Trie,
and a range proof of whether the query result satisfies a certain
size range can be generated through bulletproof [16]. For the solu-
tion sequence modifiers, since the sorting criteria are given by the
clients, they can verify the query results themselves without proof.
A GROUP BY clause is used to group query results based on one or
more variables, and can also be checked by clients themselves.

Time-window Query. It is straightforward to extend the query
algorithm to support time-window multi-version queries because
the state of RGB-Trie at each moment is recorded by its root hash
which is stored in the block header with a timestamp. Therefore, to
query historical data in DKG, a client only needs to send a SPARQL
query request with a given time period to an auditor, and the auditor
uses the previous version RGB-Trie for the time-window queries.
For verification, the client can use the Merkle root corresponding
to the time window stored locally to verify the query result.

7 VERIFIABILITY ANALYSIS

VeriDKG enables verifiable SPARQL query in DKGs, which ensures
soundness, completeness, and freshness as defined in § 4.3. Next,
similar to the common security definition of verifiable query [73,
74], we describe the formal definition of our SPARQL query’s secu-
rity as follows.

Definition 6 (Query verifiability). A SPARQL query is verifiable
if the success probability of any polynomial-time adversary A is
negligible in the following experiment:

For a SPARQL query 𝑄 , A is picked as the auditor for execut-
ing the triple pattern queries and fragments aggregation, and A
produces result 𝑅 and proof 𝑉𝑂𝑡 for 𝑄 . A succeeds if one of the
following results is true: 1) 𝑅 includes an RDF triple which does not
satisfy 𝑄 (correctness); 2) There exist an RDF triple which is not
in 𝑅 but satisfies 𝑄 (completeness); 3) 𝑅 includes an RDF triple
not from the latest DKG (freshness).

Theorem 7.1. VeriDKG is verifiable with respect to Definition 6
if the hash function is a pseudo-random function, the accumulator is

secure under the q-SBDH assumption, and the proportion of malicious

auditors will not exceed the fault threshold of blockchains.

Proof. We intuitively prove Theorem 7.1 by three cases, which
represent proofs of soundness, completeness, and freshness.

Case 1: This case means a tampered or fake RDF triple 𝑡 is re-
turned, which does not satisfy the BGPs (i.e., a set of triple patterns)
of 𝑄 . In this case, if 𝑡 passes client verification following the sound-
ness in Definition 6, it implies that the auditor can obtain two
distinct triple pattern fragments sharing the same digest 𝑅𝐺𝐵𝑟𝑜𝑜𝑡
in the on-chain ADS or two distinct set operation results with the
same accumulator proof 𝜋 . Case 2: This case means an RDF triple 𝑡
that satisfies the BGPs of 𝑄 is missing from 𝑅. In this case, if the
returned result 𝑅 verifies with the client under the completeness
criterion in Definition 6, it suggests that the auditor can acquire a
triple pattern fragment lacking some matching triples but sharing
the same digest 𝑅𝐺𝐵𝑟𝑜𝑜𝑡 as the genuine fragment or an incomplete
set operation result with the same accumulator proof 𝜋 as the gen-
uine result. Case 3: This case means the result 𝑅 involves an old
RDF triple 𝑡 that satisfies 𝑞 but is not from the latest DKG. In this
case, once 𝑡 passed the verification of the client under the freshness
in Definition 6, it means that the auditor can get two different
triple pattern fragments (i.e., a new and an old) with the same digest
𝑅𝐺𝐵𝑟𝑜𝑜𝑡 of the on-chain ADS or the auditor can get two different
set operation results with the same accumulator proof 𝜋 .

However, all these three cases contradict two assumptions. First,
the on-chain ADS digest 𝑅𝐺𝐵𝑟𝑜𝑜𝑡 is generated by a cryptographic
hash function, making it nearly impossible for the auditor to forge
another fragment with the same hash value as the genuine one.
Second, the unforgeability of verifiable set operations, proven to
hold under the q-SBDH assumption [12]. A special case occurs
when the auditor returns a null result to the client while the system
indeed has the matched query result. This case also contradicts the
first assumption as the auditor must provide non-existence proof.

□

8 DISCUSSION

Storage Optimization of RGB-Trie. Since RGB-Trie needs to
store the index information of all triples, the size of RGB-Trie in-
creases fast as the KG data is continuously added. Storing the latest
RGB-Trie in every block will be expensive. Thus, in VeriDKG, au-
ditors only need to update part of the RGB-Trie in a new block
with its transactions, and the internal nodes of the two RGB-Tries
in two blocks are mostly the same. Based on the node pointers
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design in [48], we use a node pointer structure to link the same
path between multiple RGB-Tries in multiple blocks.

Limitations and Potential Workaround. When deploying
VeriDKG in real-world environments, some limitations and po-
tential workarounds must be considered. First, while VeriDKG
effectively protects against malicious behavior between storage
nodes, it does not address the possibility of malicious data owners
introducing fake or junk data-a challenge seen in widely used AI
applications. To mitigate this concern, we assume the integration of
a content moderation mechanism (e.g., as proposed in existing stud-
ies [33, 36, 58]) to detect malicious data owners. Second, there are
several resource-intensive tasks in VeriDKG, such as data storage,
blockchain consensus, and query execution. However, incentivizing
participants to effectively contribute resources can be complicated
and requires careful consideration of the interests of different par-
ticipants and ways of ensuring fairness. Third, VeriDKG introduces
auditors that are responsible for maintaining trust anchors in the
DKG. They require higher hardware specifications compared to
existing DKG nodes. For example, the Ethereum backend requires
a full node with at least 16GB of RAM and a 1TB SSD. Hardware
requirements for blockchain node deployment vary widely depend-
ing on factors such as network, participation level, and use case.
Careful selection of settings by application deployers is critical.

Real-worldDeployment.The deployment of VeriDKG involves
several main steps. Blockchain nodes, acting as auditors, are initially
set up with robust hardware configurations, including substantial
RAM and storage capacity. Users access the DKG through respon-
sive interfaces from a variety of devices. Storage nodes, equipped
with suitable hardware and data distribution software, host and
share the KG data. Additionally, scalability, maintenance strategies,
and regulatory compliance are considered to ensure seamless real-
world operation. VeriDKG is particularly suited to high-trust data
scenarios, such as those found in healthcare and finance, and offers
trusted data to improve AI fidelity.

Graph Model Extension of VeriDKG. In addition to RDF
triple-based KGs, some recent studies focus on graph model-based
knowledge graph management. VeriDKG can be extended to such
graph-based DKGs by managing RDF data in a graph database.
This involves two steps: storing RDF triples as a graph, where
entities are represented as nodes and relations are represented as
edges, and converting SPARQL queries into graph patterns, such
as paths or trees. Taking Neo4j7 as an example, we can use tools
such as rdf2neo [14] to convert RDF triples into a Neo4j graph and
to convert SPARQL queries into Cypher queries.

9 PERFORMANCE EVALUATION

9.1 Implementation

A prototype of VeriDKG is implemented in Java, Go and JavaScript.
In the prototype, the blockchain involving the auditors is imple-
mented based on Go-Ethereum [26] and the decentralized storage
system is implemented based on IPFS [10]. The prototype has a
user-server architecture that is implemented based on Spring Boot
framework [59] and the blockchain interfaces and requests are in
the form of web3.js [27]. For the proposed ADS, the level of the tree

7https://neo4j.com/

Table 3: Overall comparison of four different systems

Schemes Query Verifiability

Storage cost

of index (KB)

Triple pattern

query time (s/ms)

P2P-LI [3] % 317982 7.392/3.696
P2P-RGB % 5647 36.990/18.495

Colchain [4] % 317982 8.374/4.187
VeriDKG ✓ 9193 51.116/25.558

is set to 32, and the cryptographic hash function is SHA-256. The
triple fragments stored on storage nodes are separate HDT files [29],
which allows the storage nodes to efficiently execute triple patterns.
For VSO, our prototype uses library named ate-pairing [34].

9.2 Experimental Setup

Hardware Configuration. We run 16 VeriDKG auditor nodes and
16 storage nodes on 32 64-bit Linux servers (Ubuntu 20.04) with
Intel i9-11th CPU and 64GB memory. All nodes are run on separate
machines, and we set the bandwidth of connections to 20Mbps.

Baseline. Three state-of-the-art DKGs are considered as three
baselines. (1) A DKG with a locational index in every peer [3] (P2P-
LI). (2) VeriDKG without the blockchain architecture and Merkle
tree characteristic, which is a DKG with an untrusted RGB-Trie
(P2P-RGB). (3) A sharding blockchain-based DKG in ColChain
(Colchain) [4]. Colchain adopt the same consensus of Ethereum
and hardware configuration. Besides, the maximum number of
shards in Colchain is 16, and each shard has 8 nodes which are
put into the docker containers.

Datasets and Benchmark. We evaluate the query performance
of VeriDKG using six real-world datasets that represent different
scenarios and using queries from largeRDFBench [52] benchmark,
which is used widely in the Semantic Web community. The datasets
include DBPedia-Subset (42,849,609 triples), GeoNames (107,950,085
triples), Jamendo (1,049,647 triples), Linked MDB (6,147,996 triples),
DrugBank (517,023 triples), and Semantic Web Dog Food (103,595
triples). The largeRDFBench queries in our evaluation include sim-
ple (S), complex (C), and large data (L) categories. Moreover, we
develop a variant of simple queries named time-window simple
queries to study the time-window query in VeriDKG.

Metrics. We measure the following metrics of VeriDKG: 1) On-
chain Storage Cost (OSC): the storage space size of transactions in
the blockchain, 2) Transaction Throughput (TT): the number of com-
mitted transactions per second, 3) Triple Pattern Query Time (TPQT):
the amount of time to receive the triple pattern query results, 4)
Query Execution Time (QET): the amount of time to receive the full
query results, 5) Number of Exchanged Messages and Transfer Bytes

(NEM & NTB): the number of messages exchanged and transferred
bytes between nodes, 6) Proof Generation Time (PGT): the amount
of time to generate the verification proof of query results, and 7)
Verification Time and Object Size (VT & VOS): the amount of time to
verify query results and the proof size.

9.3 Experimental Results

9.3.1 Overall Comparison. Table 3 provides an overview of the
performance of VeriDKG, comparing its query verifiability, index
storage cost, and triple pattern query execution time with those of
three baseline systems on the six datasets. Here, the clients send
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2,000 triple pattern query requests to each system. As shown in
Table 3, only VeriDKG enables verifiable SPARQL query results,
ensuring that themalicious storage nodes cannot tamper with query
results. Considering the index storage cost, the index size of P2P-LI
and Colchain is 317,982 KBs, while P2P-RGB and VeriDKG only
need 5,647 KBs and 9,193 KBs, respectively. The reasons are that the
RGB-Trie compresses the index by combining the same prefixes of
keywords and thatVeriDKG needs aMerkle characteristic to enable
query verifiability. As for the triple pattern query time, P2P-LI and
BC-SC need 7.392s (3.696ms per query) and 8.374s (4.187ms per
query) to get the query results because they have the same index,
and Colchain has to find the triples in the blockchain transactions.
P2P-RGB and VeriDKG respectively require 36.990s (18.495ms per
query) and 51.116s (25.558ms per query) to get the query results
because they have the same index, and VeriDKG need more time
to generate the verification proofs.

In summary, VeriDKG is the only one DKG that achieved verifi-
able SPARQL query and has a smaller index size than the locational
index-based systems. Although it requires more time to get the
triple pattern query results than the existing systems, it can guar-
antee the verifiability of query results and the extra time is tiny in
real-world applications.

9.3.2 On-chain Cost. To alleviate the on-chain storage pressure,
VeriDKG stores the raw data on storage nodes and only keep the
metadata on blockchain. We randomly sample triples from the 6
datasets to determine the storage cost (i.e., OSC) of VeriDKG and
the other two blockchain-based baseline systems. For Colchain, it
has 16 shards and each node only stores one shard. Figure 8 shows
the average storage size of each node in VeriDKG and the baselines.

As shown in Figure 8, by comparing to the original Ethereum
blockchain scheme ETH,Colchain reduces the on-chain storage of
each node by about 80%, and maintains this ratio as the amount of
data grows. Compared to the two baselines, the storage savings in
VeriDKG can increase to over 99% as the amount of data increases.
It is because our design only keeps a succinct ADS on-chain, and
most of the growing data is stored off-chain. The ADS only needs to
update some hash values of the index information. We also compare
experimentally the storage consumption of the RGB-Trie with and
without optimization. For the VeriDKG system without storage
optimization, the total size of the RGB-Trie is 13,296MB. For the
VeriDKG system with storage optimization, the total size of the
RGB-Trie is 2,241MB. Thus, after optimizing the storage of the
RGB-Trie, the storage cost can be reduced by more than 80%.

Table 4: Performance of RGB-Trie under different rules. It

shows triple pattern query time (TPQT) and recall per 1000

queries for basic and gradient color mixing rule with differ-

ent proportion of colors required for early termination.

Rule TPQT Recall

Basic 51.2s 1
Gradient (5%) 47.5s 0.952
Gradient (10%) 40.7s 0.816
Gradient (20%) 27.8s 0.621
Gradient (30%) 22.3s 0.366

Moreover, we evaluate the transaction throughput (i.e., TT) of
ETH andVeriDKGwith different proportions of triple transactions,
and the results are shown in Figure 9. The result shows a downtrend
of TT in both systems when the proportion of triple transactions
in all transactions increases. In particular, VeriDKG has a bigger
trend in decline, which means that the update of the RGB-Trie
has a negative impact on TT. However, VeriDKG still maintains
more than 10 transactions per second in the worst case, which is
acceptable.

9.3.3 Verifiable Query Performance. Figure 10a shows the query
execution time (QET) for different SPARQL queries in Colchain, in
VeriDKG without the RGB-Trie (VeriDKG-NR), and in VeriDKG.
Note that there is no global index inColchain. Similar query perfor-
mance is observed of VeriDKG-NR and Colchain, and VeriDKG
is fastest for all three queries because RGB-Trie can efficiently
find query-relevant fragments, which significantly reduces the
search space. Figure 10b shows the QET for time-window queries.
VeriDKG has the shortest QET among the three systems because,
apart from the above reasons, in real-time SPARQL queries, the
auditors in VeriDKG only need to backtrack all block headers to
search for a certain previous RGB-Trie state by a given timestamp,
instead of tracing back the historical records of all query results. Fig-
ure 10c shows the average number of exchanged messages (NEM)
between nodes in the three systems.VeriDKG has the same number
of messages as Colchain because both two only need to transfer a
fixed number of fragments between nodes. Further, VeriDKG-NR
needs to transmit larger messages to get the result because it lacks
an RGB-Trie and needs to download all fragments from all storage
nodes. Figure 10d shows the number of transferred KBs (NTB) in
the three systems. The nodes inVeriDKG transmit the least amount
of data for each query because VeriDKG only needs to transfer
the query related triple pattern fragments to the auditor, which are
more compact than the entire RDF dataset.

Comparison of different color mixing rules. As we men-
tioned in § 5.3, the gradient color mixing rule can improve the query
performance of RGB-Trie while decrease its recall (i.e., the fraction
of relevant RDF triples that are returned). Thus we test the triple
pattern query time (TPQT) and recall of 1000 triple pattern query
requests in VeriDKG under different color mixing rules. Table 4
shows the results. The results imply that the gradient color mixing
rule can reduce the time of triple pattern query VeriDKG, while
relaxing the early termination conditions results in higher query
efficiency at the expense of lower recall rates.

922



S C L
10-2

10-1

100

101

102

103

E
xe

c.
 T

im
e

 (
S

)

 Colchain  VeriDKG-NR  VeriDKG

(a) QET.

S C L

100

101

102

103

E
xe

c.
 T

im
e 

(S
)

(b) QET (time -window).

S C L
10-1

100

101

102

103

104

M
es
sa
ge
s

(c) NEM.

S C L
10-1

100

101

102

103

104

105

T
ra

ns
fe

rr
ed

 K
B

s

(d) NTB.

Figure 10: Query performance (y-asix in log scale).

20 40 60 80 100
102

103

104

105

P
G

T
 (

m
s)

 S   C
 L   Time-window

Number of queries
(DG proof)

P
G

T
 (

m
s)

Number of queries
(Merkle proof)

20 40 60 80 100
100

101

102

103  S   C
 L   Time-window

Figure 11: Proof generation time (y-axis in log scale).

9.3.4 Verification Cost. All the query results with their verification
proofs are generated on an auditor and need to be verified on the
client side. Therefore, the proof generation time on the auditor,
the size of proof, and the verification time on the client are very
important for the availability of VeriDKG. A proof consists of
two parts: a Merkle proof and a data aggregation (DG) proof. We
evaluate the verification costs of these two proofs as follows.

Figure 11 shows the proof generation time (PGT) of the auditor
for four SPARQL query types (S, C, L, and time-window S query). It
shows that the complex queries have the longest PGT because they
have the highest number of query-related fragments, each of which
needs a Merkle proof. On the other hand, the large data queries
have the longest PGT for data aggregation proof. Because most of
their query-related fragments exceed those of the other queries,
they need the most time to generate the accumulated values.

Figure 12 shows the verification time (VT) for proofs of different
SPARQL queries, which are the same in Merkle proof, and complex
queries have slightly longer Merkle proof VT. This is because all
queries need to calculate the same Merkle root hash, while the
complex queries need to calculate hashes of more fragments. From
the VT results for the data aggregation proof, we can see that
the verification is fast and is related only to the number of query-
related fragments. Figure 13 shows the VO size for the different
query types. It shows that for both Merkle and data aggregation
proofs, the complex queries have the largest VOS because they have
the highest number of fragments.

10 CONCLUSION

In this paper, we design, implement, and evaluate VeriDKG, which
supports verifiable SPARQL query in Web 3.0. We design a new
ADS called RGB-Trie for verifiable subgraph locating and combined
the tree with cryptographic accumulators for verifiable aggrega-
tion for intermediate results. We also do extensive experiments
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to test the performance of VeriDKG, and the results show that
VeriDKG implements verifiable SPARQL with a competitive query
performance compared with the state-of-the-art. Compared with
the leading-edge DKGs, VeriDKG reduces the index storage over-
head by 97%. As for future work, we plan to extend VeriDKG to
a privacy-preserving scenario and enable reliable semantic query
when the data is encrypted.
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