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Abstract

In quantitative genetics, Markov chain Monte Carlo (MCMC) meth-
ods are indispensable for statistical inference in non-standard models
like generalized linear models with genetic random effects or mod-
els with genetically structured variance heterogeneity. A particular
challenge for MCMC applications in quantitative genetics is to obtain
efficient updates of the highdimensional vectors of genetic random ef-
fects. We discuss various strategies to approach this problem including
reparametrization, Langevin-Hastings updates, and updates based on
normal approximations. The methods are compared in applications to
Bayesian inference for three data sets using a model with genetically
structured variance heterogeneity.
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1 Introduction

Given observations of a trait and a pedigree for a group of animals, the basic
model in quantitative genetics is a linear mixed model with genetic random
effects. The correlation matrix of the genetic random effects is determined
by the pedigree and is typically very high-dimensional but with a sparse in-
verse. Maximum likelihood inference and Bayesian inference for the linear
mixed model are well-studied topics (Sorensen and Gianola, 2002). Regard-
ing Bayesian inference, with appropriate choice of priors, the full conditional
distributions are standard distributions and Gibbs sampling can be imple-
mented relatively straightforwardly.

The assumptions of normality, linearity, and variance homogeneity are in
many cases not valid. One may then consider generalized linear mixed mod-
els where the genetic random effects enter at the level of the linear predictor.
San Cristobal-Gaudy et al. (1998) proposed another extension of the linear
mixed model introducing genetic random effects influencing the log residual
variances of the observations thereby producing a genetically structured vari-
ance heterogeneity. Considerable computational problems arise when aban-
doning the standard linear mixed model. Maximum likelihood inference is
complicated since it is not possible to evaluate explicitly the likelihood func-
tion and conventional Gibbs sampling is difficult since the full conditional
distributions are not anymore of standard forms.

The aim of this paper is to discuss strategies to obtain efficient Markov
chain Monte Carlo (MCMC) algorithms for non-standard models of the kind
mentioned in the previous paragraph. In particular we focus on the problem
of constructing efficient updating schemes for the high-dimensional vectors
of genetic random effects. We review the methodological background and
discuss the various algorithms in the context of the heterogeneous variance
model. Apart from being a model of great interest in its own right, this
model has proven to be a hard test for MCMC methods. We compare the
performances of the different algorithms when applied to three real datasets
which differ markedly both in size and regarding the inferences concerning
the genetic covariance parameters.

Section 2 discusses general strategies for obtaining efficient MCMC algo-
rithms while Section 3 considers these strategies in the specific context of
the San Cristobal-Gaudy et al. (1998) model. Section 4 presents results of
applying two MCMC schemes to data sets with pig litter sizes, rabbit litter
sizes, and snail weights. Some concluding remarks are given in Section 5.
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2 MCMC strategies for high-dimensional prob-

lems

We initially discuss MCMC strategies in a rather general framework where
given the vector of random effects a and a parameter vector β, the vector y

of observed traits follows some density f(y|a,β). As usual in quantitative
genetics, a is assumed to be zero mean normal with covariance matrix σ2

aA

where A is the additive genetic relationship matrix and σ2
a is the additive

genetic variance. In the following we assume known σ2
a and β and focus on

MCMC strategies for sampling from the posterior

p(a|y) ∝ f(y|a,β)p(a|σ2
a)

where we for notational convenience omit β and σ2
a on the left hand side.

An algorithm for sampling a can typically easily be extended with updates
of the lower dimensional quantities β and σ2

a in order to sample the full
posterior distribution of (a, σ2

a,β). We assume that the reader has some
familiarity with MCMC methods. An introduction to MCMC can be found
e.g. in Sorensen and Gianola (2002).

2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm generates a Markov chain a1, a2, . . . as
follows. Given the current value ai of the Markov chain, a proposal aprop is
generated from a proposal density q(aprop|ai). With probability

min{1, p(aprop|y)q(ai|aprop)

p(ai|y)q(aprop|ai)
} (1)

the new state ai+1 is given by aprop; otherwise ai+1 = ai. Under weak con-
ditions of regularity and after a suitable ‘burn-in’, the generated Markov
chain provides a dependent sample from the posterior distribution of a. The
question is now how to choose a suitable proposal density q.

A simple and often used proposal density is a multivariate normal den-
sity centered in the current value ai of the chain and with covariance ma-
trix hI where h is a user-specified proposal variance and I is the identity
matrix, i.e. q(aprop|ai) is the density of N(ai, hI). The resulting Metropolis-
Hastings algorithm is known as a random-walk Metropolis algorithm. In high-
dimensional problems, the random-walk Metropolis algorithm may converge
very slowly and produce highly auto-correlated samples.

A simple step forward is to use gradient information in the proposal den-
sity. The proposal distribution of a Langevin-Hastings algorithm is given by
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N(ai + h∇ log p(a|y)/2, hI) where ∇ log p(a|y) is the gradient of the poste-
rior density. Intuitively, the use of gradient information helps to direct the
algorithm towards regions of high posterior density. In applications in spa-
tial statistics (Christensen and Waagepetersen, 2002) the Langevin-Hastings
algorithm has proven superior to the random walk Metropolis algorithm.
In the context of quantitative genetics, Langevin-Hastings has been succes-
fully applied to implement Bayesian inference in Sorensen and Waagepetersen
(2003), Ros et al. (2004), Ibáñez-Escriche et al. (2006) and Damgaard (2007).

When choosing the proposal variance h, rules of thumb suggest that one
should aim at acceptance rates of about 25% for random walk and 60% for
Langevin-Hastings updates. Single-site schemes where the components in a

are updated in turn may lead to poorly mixing Markov chains due to high
correlation between the components of a.

2.2 Reparametrization

Simulation studies in Gustafson et al. (2004) show that Langevin-Hastings
updates may not work well if the components of a have very different poste-
rior variances. In applications in quantitative genetics, the individuals may
contribute with different numbers of observations and may have different
numbers of relatives with records. Hence the posterior variances may be
very different. The correlation structure of the Langevin-Hastings proposal
described in the previous section moreover typically differs markedly from the
posterior correlation structure where the components are not independent. It
may therefore be useful to transform a into a quantity whose components are
less correlated a posteriori. Using the factorisation A = TDTT (Henderson,
1976), one may let a = σaγBT where B = D1/2T and γ is a priori standard
normal N(0, I) (note that we regard vectors as row vectors). The posterior
correlation matrix of γ given y is then closer to the correlation matrix I of
the Langevin-Hastings proposal. The joint posterior of (γ, σ2

a) given (y,β)
is of the form

p(γ, σ2
a|y,β) ∝ f(y|σaγB,β)p(γ)p(σ2

a) (2)

where p(γ) and p(σ2
a) denote respectively the multivariate standard normal

density of γ and the prior for σ2
a. Given a current value γi, the Langevin-

Hastings proposal is of the form

γprop = γi(1− h/2) + (h/2)∇ log p(γi|y, σ2
a,β) + ǫi (3)

where ǫi is N(0, hI) distributed. Posterior samples ai are straightforwardly
obtained by back-transforming samples γi from (2).
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It is important to note that with the reparametrized posterior (2) one
looses conjugacy in the sense that the conditional distribution of σ2

a given
(y,γ,β) is not χ−2 when the usual χ−2 prior is used for σ2

a. To maintain
conjugancy one may stick to the posterior of a but use proposals aprop =
σaγ

propBT obtained by transforming Langevin-Hastings proposals (3) with
γi = ai(σaB

T)−1.

2.3 Normal approximation of the posterior

Suppose for a moment that q(aprop|ai) is equal to the target density p(aprop|y).
The Metropolis-Hastings algorithm then produces independent draws from
the posterior. This indicates that an efficient Metropolis-Hastings algorithm
might be obtained by constructing a proposal density which is a good ap-
proximation of the posterior density.

Consider the second-order Taylor expansion

log p(aprop|y) ≈

log p(â|y) + (aprop − â)∇ log p(â|y)T − 1

2
(aprop − â)H(â)(aprop − â)T (4)

around a value â where H(â) = A−1/σ2
a − d2

daTda
log f(y|a)|a=â is minus the

Hessian matrix of second derivatives. Provided H(â) is positive definite, the
exponential of the right hand side of (4) is proportional to the density

q(aprop|ai) ∝ |H(â)|1/2 exp
(

− 1

2

(

aprop − µ(â)
)

H(â)
(

aprop − µ(â)
)T

)

(5)

of a multivariate normal distribution with mean µ(â) = â+∇ log p(â|y)H(â)−1

and precision matrix H(â). Choosing â to be the mode of the posterior,
µ(â) = â and the determinant |H(â)| conveniently cancels out when evalu-
ating the Metropolis-Hastings ratio (1). However, if finding the mode is very
time-consuming, other possibilities are to let â be equal to the current value
ai or the result of one Newton-Raphson step starting from ai. Sampling from
a normal approximation is discussed in Section 2.4.

2.4 Implementation of the normal approximation

Typically, the genetic random effects enter the sampling density f(y|a) via
a linear predictor η = aZ where Z is an incidence matrix relating the ob-
served traits to the random effects. The precision matrix H(â) in the normal
approximation proposal density (5) then takes the form

A−1/σ2
a + ZΣ−1ZT
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where Σ−1 = d2

dηTdη
log f(y|a)|a=â. The normal approximation proposal dis-

tribution is thus formally equivalent to the conditional distribution of random
effects in a ‘virtual’ linear normal model

ỹ = apropZ + ǫ̃

where aprop is N(0, σ2
aA), E[aprop|ỹ] = µ(â), and ǫ̃ ∼ N(0,Σ) and ỹ repre-

sents ‘virtual’ noise and data. Hence we may sample from the normal ap-
proximation by applying the Garćıa-Cortés and Sorensen (1996) algorithm
based on the decomposition

aprop =
(

aprop − E[aprop|ỹ]
)

+ E[aprop|ỹ] = e + µ(â)

where the ‘prediction error’ e = (aprop − E[aprop|ỹ]) and the ‘prediction’
µ(â) = E[aprop|ỹ] are independent. Hence if esim is a simulation of e then

asim = esim + µ(â)

is a conditional simulation of aprop given ỹ. The simulated prediction error
esim may be generated as follows

1. simulate (asim, ỹsim) from the joint distribution of (aprop, ỹ) (using the
Henderson factorization A = TDTT)

2. compute µ(âsim) = E[aprop|ỹsim] by solving the standard mixed model
equations µ(âsim)[A−1/σ2

a + ZΣ−1ZT] = ysimΣ−1ZT for the virtual lin-
ear model

3. return esim = asim − µ(âsim).

Alternatively, one may exploit the sparseness of H(â) which enables fast
computation of the Cholesky factorization of H(â), (see Rue (2001) and
Rue and Knorr-Held (2005)). For the latter approach the c library GM-
RFLib (www.math.ntnu.no/~hrue/GMRFLib/ and Appendix B in Rue and
Knorr-Held, 2005) provides an extensive suite of procedures for computation
of and sampling from normal approximations. Using this library, sophisti-
cated MCMC algorithms can be constructed with little programming effort.
GMRFlib is used in Steinsland and Jensen (2005) to implement Bayesian in-
ference for a multiple trait model.

After sampling a proposal from the normal approximation one needs to
evaluate the proposal density appearing in the Metropolis-Hastings ratio (1).
The proposal density involves the determinant of the precision matrix H(â)
which cancels out if â is the mode of the posterior density or another value
which does not depend on the current state of the Markov chain. If â is
given by e.g. the current value ai or the result of one Newton-Raphson step,
sparse matrix methods as those used in GMRFLib are needed to evaluate the
determinant.
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2.5 Comparison of samplers in terms of Monte Carlo

error and computational cost

Given an MCMC sample (a1, θ1),(a2, θ2),. . .,(an, θn) from the posterior dis-
tribution of (a, θ), θ = (β, σ2

a), and some function h(a, θ), the posterior
expectation

E[h(a, θ)|y] =

∫

h(a, θ)p(a, θ|y)dadθ

is estimated by the average h̄n =
∑n

i=1 h(ai, θi)/n. The Monte Carlo variance
of h̄n is given by Vasymp/n where

Vasymp = lim
n→∞

Var
√

nh̄n = Var[h(a)|y](1 + 2
∞

∑

m=1

ρm)

is the so-called asymptotic variance given in terms of the posterior variance
Var[h(a)|y] and the Markov chain lag-m autocorrelations

ρm = Corr[h(ak, θk), h(ak+m, θk+m)].

To attain a given Monte Carlo variance of size V , we need a sample size
of nV = Vasymp/V and if the cost of generating one sample is c then the
total cost becomes cnV = cτ Var[h(a)|y]/V where τ = 1 + 2

∑

∞

m=1 ρm is the
integrated autocorrelation. Thus cτ is an appropriate performance measure
for an MCMC algorithm. The so-called effective sample size is given by n/τ .
The integrated autocorrelation can be estimated as suggested e.g. in Geyer
(1992).

Note that the ratio τ2/τ1 of integrated autocorrelations for two MCMC
samplers is equal to the ratio n2/n1 of numbers of iterations n2 and n1 re-
quired to obtain the same MCMC variance V with the two samplers.

3 A model with genetically structured vari-

ance heterogeneity

We now discuss the methods of the previous sections within the context
of the San Cristobal-Gaudy et al. (1998) model for genetically structured
variance heterogeneity. For ease of presentation, we here omit systematic and
environmental effects. Let a∗ denote random effects affecting the residual
variance of y. Given a and a∗, the components yi of y are independent
N(µ + azT

i , exp(µ∗+ a∗zT

i )) where zi is an incidence vector with components
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equal to zero or one. The joint distribution of a and a∗ is zero mean normal
with covariance matrix G⊗A where

G =

[

σ2
a ρσaσa∗

ρσaσa∗ σ2
a∗

]

.

The correlation between the two types of random effects is given by ρ, and
σ2

a and σ2
a∗ are the variances for the genetic random effects.

3.1 Reparametrizations

Various reparametrization strategies are possible for this model. Letting
UG denote the upper triangular Cholesky factor of G (i.e. G = UG

TUG),
(a, a∗) = (γ,γ∗)UG⊗BT where (γ,γ∗) is a standard normal vector and B is
defined in Section 2.2. Langevin-Hastings updates for the vector of a priori
uncorrelated random effects (γ,γ∗) are used in Sorensen and Waagepetersen
(2003), Ros et al. (2004), and Ibáñez-Escriche et al. (2006). An alternative
reparametrization is based on (a, a∗) = (a, αa + u) where α = ρσã/σa and
u = a∗ − E[a∗|a]. Then u is N(0, σ2

ã(1 − ρ2)A) and a priori independent of
a. Hence one might update a and u in turn hoping that these quantities are
only weakly correlated a posteriori. Note that it is not guaranteed that the
Hessian matrix with respect to u is positive definite.

3.2 Normal approximations

Let Σ = diag(σ2
i ) and R = diag(ri) denote diagonal matrices where σ2

i =
exp(µ∗ + a∗zT

i ) is the conditional variance given a∗ for the ith observation
and ri = (yi−µ−azT

i ) is the ith residual. The precision matrix in the normal
approximation of the posterior for (a, a∗) is then

[

ZΣ−1ZT + A−1g11 ZΣ−1WT + A−1g12

WΣ−1ZT + A−1g12 1
2
WΣ−1WT + A−1g22

]

(6)

where W = ZR and gij are the entries of G−1. Due to the factor 1/2 in
the lower right block, this matrix cannot be recognized as the covariance
matrix of a conditional normal distribution and there is in fact no guarantee
that it is positive definite. This is further illustrated in the toy example in
Section 3.3 which shows that the joint posterior of (a, a∗) can be far from
multivariate normal. In Section 4 we use the normal approximation in turn
for a and a∗ separately. In this case the covariance matrices are given by the
diagonal blocks in (6).
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3.3 Toy example

We illustrate the various reparametrization strategies in the very simple case
where y = (−2.62,−2.42) consists of two observations, and a and a∗ are one-
dimensional. Figure 1 shows the posterior densities of (a, a∗), (γ,γ∗) and
(a,u) in the case where µ = 0, µ∗ = −1, σ2

a = 1, σ2
a∗ = 0.25, and ρ = 0.75.

The plots demonstrate for the given parameter settings that (a, a∗) are highly
correlated a posteriori and that the joint posterior distribution of (a, a∗) is
not well approximated by a normal distribution. The transformed random
effects γ and γ∗ seem approximately uncorrelated but have different posterior
variances. As expected, a and u are less correlated a posteriori than a and
a∗ but the joint distribution is far from normal.
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Figure 1: Posterior densities for (a, a∗) (left), (γ,γ∗) (middle), and (a,u)
(right). Note that the modal value of the posterior density is subtracted in
all four plots and that contour curves are omitted for very low values of the
posterior densities.

The plots in Figure 2 illustrate the random walk and Langevin-Hastings
proposals. The Langevin-Hastings proposal mean lies in a region of higher
posterior density than the current value. This means that proposals in a
rather large region around the proposal mean have a good chance of being
accepted. Figure 3 shows that the normal approximation is poor for the joint
posterior of (a, a∗) while it works well for a and a∗ separately.

4 Examples

In this section we compare the performance of Langevin-Hastings and nor-
mal approximation MCMC algorithms applied to three data sets which have
been previously analyzed in Sorensen and Waagepetersen (2003), Ros et al.

(2004), and Ibáñez-Escriche et al. (2006). The first data set originates from a
selection experiment for pig litter size and contains 10,060 litter size records
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Figure 2: Illustration of random walk and Langevin-Hastings for (γ,γ∗) with
h = 0.4. In both plots, the bold dot represents a current state ai and 75 %
of the proposals fall within the circle. In the right plot the proposal mean is
given by the current value plus h∇ log p(ai|y)/2 indicated by the arrow.
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Figure 3: Illustration of normal approximation (dashed contours) evaluated
at the mode for the joint posterior (solid contours) of (a, a∗) (left) and for the
conditional distributions of a|a∗,y (solid curve) and a∗|a,y (dashed curve).

from 4,149 sows. The pedigree file includes 6,437 individuals. The second
data set contains 2,996 litter sizes from a divergent selection experiment for
rabbit uterine capacity with 1,161 individuals in the pedigree. The third and
largest data set consists of weights for each of 22,033 adult snails and the
pedigree file includes 22,454 individuals. For all three datasets we consider
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the model from Section 3 extended with systematic and environmental ef-
fects and impose prior distributions on the unknown location and variance
parameters. The posterior means of the genetic covariance parameters are
given in the last three columns of Table 2. The genetic correlation param-
eter ρ is negative for the pig and rabbit litter size data while it is positive
for the snail weights. More details on the data, priors, and posterior results
can be found in Sorensen and Waagepetersen (2003), Ros et al. (2004) and
Ibáñez-Escriche et al. (2006).

The first algorithm LH is the one employed in Sorensen and Waagepetersen
(2003), Ros et al. (2004) and Ibáñez-Escriche et al. (2006) where the com-
ponents of the posterior distribution are updated in turn using Langevin-
Hastings updates for the reparametrized random effects (γ,γ∗) and either
Langevin-Hastings or random walk updates for the other components. The
second algorithm NX is as LH except that the Langevin-Hastings update for
(γ,γ∗) is replaced with normal approximation updates for a and a∗ sepa-
rately. The normal approximation updates are implemented using GMRFLib.
The proposal variances for the Langevin-Hastings and random walk updates
are chosen according to the rules of thumb mentioned in Section 2.1.

Table 1 shows ratios of integrated autocorrelations obtained using re-
spectively LH and NX. The integrated autocorrelations are evaluated for
quadratic forms involving a and a∗ and the first two components of a and
a∗. Considering e.g. the random effect a1 for the pigs data, the integrated
autocorrelation is 818 times larger for LH than for NX. This means that
818 times more iterations are needed with LH to obtain the same precision
as for the NX algorithm (see Section 2.5 for details concerning integrated
autocorrelation and MCMC precision). Columns 2-4 in Table 2 show ratios
of integrated autocorrelations for the genetic covariance parameters using
respectively LH and NX. Regarding integrated autocorrelation, NX clearly
outperforms LH. However, the improvement is smaller for the genetic co-
variance parameters. The reason is that with LH and reparametrized genetic
random effects, we can use 3-5 times larger proposal standard deviations than
for NX in the random walk updates for the genetic covariance parameters
while still maintaining acceptance rates around 25%.

Data aA−1aT aA−1a∗T a∗A−1a∗T a1 ã1

Rabbits 44 44 38 107 111
Pigs 102 69 24 818 529
Snails 377 470 212 359 172

Table 1: Ratios of integrated autocorrelations (LH/NX) for quadratic forms
and two genetic random effects using LH and NX.
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To evaluate the performance of the algorithms, computing time must
be taken into account. Column 5 in Table 2 shows that the computing
time for one MCMC iteration is between 20 to 100 times higher for the
NX algorithm than for the LH algorithm. Hence, based on the product of
integrated autocorrelations and computing time, the LH algorithm seems
preferable for the pigs data while NX seems superior for the rabbits and
snails data.

Data σ2
a σ2

a∗ ρ c E[σ2
a|y] E[σ2

a∗|y] E[ρ|y]
Rabbits 47 14 18 20 0.82 0.16 -0.74
Pigs 56 5 13 100 1.62 0.10 -0.62
Snails 194 13 31 35 1.71 0.29 0.81

Table 2: Column 2-4: Ratios of integrated autocorrelations (LH/NX) for
genetic variance parameters using LH and NX. Column c contains the ratios
of computing times (NX/LH) for one MCMC iteration. Last three columns
contain posterior means of the genetic covariance parameters

For the data set of snail weights with high dimensional a∗, the acceptance
rate for the normal approximation updates of a∗ is quite small – around 5%
– while larger acceptance rates 50% and 30 % are obtained for the smaller
rabbits and pigs data sets. If the MCMC algorithm is initialized in values
far from the posterior mode, the acceptance probability for the normal ap-
proximation update of a∗ may be very small in which case a large burn-in is
needed.

We also tried out normal approximations for the (a,u) reparametrization
but this did not offer any improvement.

5 Discussion

Normal approximation proposal distributions are intuitively appealing and
provide smaller integrated autocorrelations than Langevin-Hastings updates
in the examples in Section 4. A distinct advantage of the normal approxi-
mation updates is moreover that they do not require user tuning of proposal
variances. However, normal approximation is not always optimal when tak-
ing into account computing time. The computing time is on the other hand
sensitive to the choice of implementation. The normal approximation up-
dates used in Section 4 are implemented using general routines in GMRFLib

based on numerical methods for sparse matrices. This approach reduces very
much the programming effort but one looses the computational advantages
offered by the specific structure of the genetic correlation matrix. For the
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rabbits data, Ibáñez-Escriche (2006) reduces the computing cost of the NX
algorithm by a factor three using the approach described in Section 2.4 where
samples from the normal approximation is obtained using the Garćıa-Cortés
and Sorensen (1996) algorithm and the Henderson factorization.

The results from the present study confirm that it is difficult to suggest
globally optimal MCMC strategies. Relative efficiency is not only dependent
on the structure of the data, as shown here, but also on the values of the
parameters of the model, as demonstrated by Shariati and Sorensen (2007)
in a simulation study. Our advice to the practitioner is try out both simple
MCMC strategies like Langevin-Hastings and more sophisticated methods
like normal approximation - and perhaps mix the different strategies. Mixing
Langevin-Hastings and normal approximation updates would e.g. resolve the
problem with a potentially long burn-in for normal approximation algorithms
mentioned in Section 4 .
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Ibáñez-Escriche, N. (2006). Models for residual variances in quantitative ge-

netics. An application to rabbit uterine capacity . Ph.D. thesis, Departa-
mento de Ciencia Animal, Universidad Politécnica de Valencia, Valencia.
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