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A B S T R A C T

The continuous introduction of renewable electricity and increased consumption through electrification of the
transport and heating sector challenges grid stability. This study investigates load shifting through demand
side management as a solution. We present a four-month experimental study of a low-complexity, hierarchical
Model Predictive Control approach for demand side management in a near-zero emission occupied single-family
house in Denmark. The control algorithm uses a price signal, weather forecast, a single-zone building model,
and a non-linear heat pump efficiency model to generate a space-heating schedule. The weather-compensated,
commercial heat pump is made to act smart grid-ready through outdoor temperature input override to enable
heat boosting and forced stops to accommodate the heating schedule. The cost reduction from the controller
ranged from 2-17% depending on the chosen comfort level. The experiment demonstrates that load shifting
is feasible and cost-effective, even without energy storage, and that the current price scheme provides an
incentive for Danish end-consumers to shift heating loads. However, issues related to controlling the heat pump
through input-manipulation were identified, and the authors propose a more promising path forward involving
coordination with manufacturers and regulators to make commercial heat pumps truly smart grid-ready.
1. Introduction

A fast and determined transition to a carbon neutral economy is
more urgent than ever. The summary for policy makers associated
with the 6th annual report from The Intergovernmental Panel on
Climate Change reads: ‘‘All global modeled pathways that limit warming
to 1.5 ◦C (>50%) with no or limited overshoot, and those that limit warming
to 2 ◦C (>67%) involve rapid and deep and in most cases immediate [Green
house gas] emission reductions in all sectors’’ [1]. This means that not only
long term solutions, but also existing solutions need to be implemented,
immediately. Space heating is a major energy consumer with potential
for large reductions both short and long term. The focus here is on
single-family houses, since they pose a particular grand challenge for
the overall savings potential in the space heating sector. Single-family
houses are small but many in numbers, meaning that they make up a
large share of the sector. Estimates indicate that about 55% of Danish
heated area belongs to single-family houses [2]. Further complicating
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ik@teknologisk.dk (I. Katic), dimon@es.aau.dk (J.D. Bendtsen).

the issue is that a majority of the single-family houses are owned by
the residents themselves [3]. This is not bad in itself – self-ownership
has many socioeconomic benefits – but it does mean that any solution
introduced to a single-family house has to be highly cost-beneficial in
order to get the individual owners to invest in energy upgrades. A
popular investment, seen across the European Union, is to acquire a
heat pump (HP). In the period 2005 to 2020, sales increased from about
0.5 mill. to 1.62 mill units sold with air-sourced being the most popular
type [4]. The rise in heat pumps is only one factor in an increasingly
electrified economy, which starts to put strain on the electric grid with
peak loads threatening stability and capacity. In Denmark the response
is a new network tariff model for electricity, tarifmodel 3.0, which was
introduced on the 1st of January, 2023 [5]. This model allows the
DSO(grid)-operators to differentiate the end-user tariffs substantially
over the course of the day in order to nudge the end-user into changing
their consumption away from peak load periods and increase demand at
vailable online 26 June 2023
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Fig. 1. Upper: The Nord Pool market spot price plotted together with the Danish tariff
Model 3.0. The price model is used for the economical evaluation of the experiment.
Lower: The normalized (𝑥𝑖∕max(𝑥)) daily price development of the price model.

ight. This situation also impacts households heated by an electric heat
ump who, although having some tax-benefits, still have to pay the full
rid-tariffs. In other words, the owners need to change their heating
abits or face the cost of heating in expensive periods. Many danish
ouseholds are already on a time-varying price which is based on
he Nord Pool hourly spot-market and time-of-use distribution prices.
dding the two price schemes together means that the difference
etween high and low prices within a day can be several times larger
han the lower price, as seen in Fig. 1. This can create some very costly
ituations, but also opportunities for cost savings. One such opportunity
s to utilize a price-aware controller to load shift by boosting heat
roduction (charge) in low cost periods and decrease (discharge) in
igh cost periods either with help of an energy storage [6,7] or directly
sing the thermal mass of the building itself [8–10]. A variable-speed
eat pump can be used to boost heat by increasing the compressor
peed, but this comes with a significant loss of efficiency (coefficient
of performance, COP). Further, the COP of an air-to-water HP is highly
dependent on ambient temperature, which means that not only price
but also weather factors need to be considered as well.

A method suitable for automating heat load shifting is Model Predic-
tive Control (MPC) [8]. During the last 30 years, MPC has been studied
extensively in the context of building control due to its structural ability
to integrate building dynamics, heating system and environmental
aspects into an optimal control problem (OCP) formulation capable
of handling both constraints and discrete states. A range of different
versions of MPC have been suggested: Deterministic MPC, Stochastic
MPC, Robust MPC, Learning MPC, Offset-free MPC, Implicit MPC and
Explicit MPC [11]. While the studies are numerous, the method has
so far failed to make a broad impact on the space heating sector. The
reported reasons are installation costs of sensor and actuators, model
development costs [12] and user-acceptance.

Although the number of long term (beyond 30 days) building scale
demonstrations are few compared to simulation studies, a selection of
noteworthy examples do exist. In [12] a 6000 m2, occupied office build-
ing in Switzerland both in periods during winter and summer which
combined into about 30 weeks of testing. While reporting that the
control itself was a success, the author questions whether the method
is mature enough to be implemented in similar buildings. In [13] two
heat pumps and a gas boiler were controlled in a 960 m2 occupied office
2

c

building in Brussels during the winter of 2014–2015 reporting cost
savings of 30% while improving comfort. In Halifax, Canada, a 10 000
m2 university building was controlled using MPC for four months with
reported savings of 29% electricity and 63% heat [14]. In the category
single-family houses, [15] controlled four houses for 5 months and re-
ported an average cost reduction of 9% when compared to 7 benchmark
houses and in [16] HPs in 300 homes were ON/OFF throttled to reduce
peak loads. The low number of residential experiments is likely due to
the low potential for savings, which disqualifies large implementation
costs. The requirement for simple solutions have spurred a branch of
low-complexity1 MPC e.g. with only one central heat meter as in [8].
Recent studies [8,17] have demonstrated the basic feasibility of such
schemes, but both studies point out that longer evaluation periods are
needed to reliably verify their practical usefulness. Furthermore, oc-
cupancy in single-family houses is a fundamentally different condition
from office buildings due to the invasive nature of sensor feedback on
the occupants’ behavior, which must also be addressed.

Our contribution in this paper is a 97 day long study demonstrating a
price responsive, low-complexity, hierarchical Mixed-Integer MPC con-
trol scheme on an occupied single-family house featuring an air-to-water
heat pump and floor heating (FH). The controller is designed to min-
imize costs by shifting heating loads according to the electricity price
signal together with other predictable and/or measurable factors. The
controller is developed as a comparably low-complexity solution which
only makes use of an internet connected control unit, a central heat
meter, electricity meters, and room thermostats. Further, the weather
forecast is provided by a weather service and the model is a single zone
model which is based on a weighted average room temperature for the
entire house. The controller is deliberately designed not to make use of
explicit occupancy information, in order to protect the occupants’ right
to privacy. The main findings from the experiment are: the near zero
emission house demonstrated a high level of flexibility with respect
to time-of-heating. Further, it is possible to boost the floors with heat
during intensive sun radiation periods (when there is plenty of own-
produced PV electricity) without further deteriorating the comfort.
Controlling the upper layer using an area weighted average building
temperature has shown to be unproblematic with respect to comfort in
the test house.

The layout for the rest of the paper is as follows. Section 2 presents
the case, an overview of the heating side and the electrical side viewed
from a control perspective. Section 3 presents the hierarchical control
strategy, starting with the supervisory controller and followed by the
mid-level controllers. Section 4 contains the models used in the paper.
Section 5 describes the experiment before the results are presented in
Section 6. As the results are based on real data, Section 7 is dedicated to
the authors’ interpretation of the results. Finally, a common discussion
section followed by conclusion in Sections 8 and 9, respectively.

2. System

This section starts with an introduction to the case followed by an
overview of the heating system and electrics before delving into the
control retro-fit. The relevant signals are listed in Table 1.

2.1. Case study

The case is a 230m2, two-story single-family house from 2018; see
ig. 2. According to the Danish building regulation, it is classified as a
ow energy class building (BR2020), which, among other requirements,
mplies a maximum annual heat demand of 20 kWhm−2 [18]. It is
ocated on Sjælland (Zealand) in Denmark, with a south view over
he sea. A south facing photovoltaic system is placed on the roof with

1 Low-complexity is meant as relative to solutions where the heat
onsumption of each heating zone is known.
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Table 1
Relevant signals.

Variable Unit Description

𝑄̇HP [W] Heat flow output from HP
𝑄HP [kWh] Heat output from HP
𝑃HP [W] Electric power input to HP
𝐸HP [kWh] Electric energy input to HP
𝑃PV [W] Electric power output from photovoltaic
𝑃G [W] Electric power from grid
𝑃APP [W] Household electric power consumption
𝑇R [◦C] Return temperature to HP
𝑇R,𝑖 [◦C] Return Temperature from FH circuit 𝑖
𝑇r,𝑗 [◦C] Air temperature in room 𝑗
𝑇r,ref,𝑗 [◦C] Reference temp. in room 𝑗
𝑇f,𝑗 [◦C] Estimated floor temperature in room 𝑗
𝑣𝑖 [◦C] ON/OFF Valve setting for circuit 𝑖
𝑞 [kg s−1] Total flow into the FH system
a [V] Output voltage from ambient temperature sensor

Fig. 2. Blueprint of the floor plan with area distribution. Blue numbers indicate the
number of FH circuits in each zone. Red circles show the presence of a room thermostat.

a measured peak output of 4 kW in end of December and 5.5 kW in
June. Space heating and domestic hot water is provided by a Bosch
Compress 6000 AW (air-to-water) heat pump with a nominal capacity
of 7 kW. Domestic hot water takes priority over space heating. Based
on measured data the nominal electric consumption ranges from 200W
to 2500W. Floor heating, embedded in concrete, is installed throughout
the house. The floor heating system is controlled by a Wavin controller
and consists of 15 circuits delivering heat to 11 heating zones. Each
zone has one thermostat assigned, meaning that if more circuits are
supplying the same zone all valves in the particular zone opens when
heat is requested. The circuits are ON/OFF controlled based on devia-
tions from the temperature reference provided for each zone. The heat
pump is controlled by an ambient temperature compensated heat curve.
The household has a variable electricity price contract, which is based
on the Nord Pool market spot-price.

2.2. Heating system

Fig. 3 shows the heating system with associated signals. Note that
heat flow to the floor heating system, 𝑄̇HP, and electric power consump-
tion of the heat pump, 𝑃HP, are measured.

The HP feeds the floor heating system with water, which in turn
delivers the heat to the heating zones.
3

Fig. 3. The diagram of the heating system in the house. The colors represent the kind
of signal: red for measured variables, green for control inputs and black for estimated
variables. Pipes on warm side are red and cold side blue.

Fig. 4. The internal electricity grid of the house expressed in power. Red variables are
measured quantities.

Fig. 5. Shows the overview of the hardware and communication protocols. Blue color is
for preinstalled hardware, green for installed sensors, yellow is the off-site infrastructure
and purple are data services.

2.3. Electricity

The household electric grid is shown in Fig. 4. The main units
are photovoltaic panels and the heat pump which have separate elec-
tricity meters. The other household appliances are aggregated into an
unknown disturbance.

2.4. Retrofit architecture

The retrofit architecture, which is built and implemented by Neogrid
Technologies, is seen in Fig. 5. The infrastructure consists of an onsite
part and a backend with the control box acting as gateway between
them. The backend is responsible for refining, organizing, downloading
data from weather and price services, and storing data, which is used
for analysis and model fitting. The control box is responsible for provid-
ing control signals and collecting measurements from all units. In this
case, it means to provide the artificial ambient temperature overwrite,
via a digital to analog converter (DAC) and blocking the compressor
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using a relay. The datahub (Eloverblik) is an online platform, provided
by the danish publicly owned company Energinet, where electricity-
customers can get an overview of their consumption or share data with
third-party. We use the BACnet and Modbus protocols to communicate
with the floor heating controller for collecting room temperatures and
other data from the floor heating system, and sending set-points to the
valves.

2.5. Object oriented description of commercial domestic heat pump

In this section common properties for commercial air-to-water HP’s
are listed together with references to how they are modeled in the
literature.

(1) ON/OFF indicator: the HP turns off when heat demand is
absent. In this work the indicator variable 𝛿HP ∈ {0, 1} is one
when the HP is ON and zero if OFF [19,20].

(2) Minimum load: the minimum load and operation range of a
variable speed HP is often considered and modeled as a set
𝑃HP ∈ {0} ∪ [𝑃HP, 𝑃HP] [19,21,22].

(3) Coefficient of performance: the coefficient of performance
(COP) is the ratio between the produced heat and consumed
input energy (here electricity). It is often modeled as a static
function, 𝑓HP ∶ R → R.

(4) Down-time: to avoid start-up cycling some HPs feature a (some-
times adaptive) down-time period measured in hours. To incor-
porate this a model for minimum up- and down-time can be
included [20,23].

(5) Limit on rate off change: the internal controllers of a domestic
HP sometimes prevent it from changing state too rapidly.

(6) Domestic hot water production: the HP switches between pro-
viding space heat and domestic hot water. Domestic hot water
is often prioritized.

(7) Discrete compressor speed steps: the compressor speed is
often operated at certain steps rather than continuous action.
Some speeds are excluded as resonance with the casing can cause
noise.

(8) Low pass filter on ambient temperature signal: it is common
practice that commercial HPs apply a low pass filter to the
ambient temperature signal before it is provided to the internal
controllers.

(9) Defrosting: an air-to-water HP needs to defrost the evaporator
regularly in order to function properly. This event is treated as
a random process which takes priority.

t is desirable that any MPC operating an HP can handle the listed
roperties.

. Control

The control objective is to provide the required comfort level at the
owest cost feasible. To accomplish this, the controller needs to make
wo high-level control actions. First, it must choose the heat pump
eat flow 𝑄̇HP(𝑡) ∈ R and the FH water flow 𝑞(𝑡) ∈ R. Second, it

must guide the water to the most suitable rooms. It is not possible to
control the heat and water flow directly, but it is possible to influence
them indirectly. The heat production can be indirectly controlled using
ambient temperature 𝑇a, and valve positions 𝑣 affect flow:

𝑄̇HP(𝑡) = 𝑓 (𝑇a, ⋅), 𝑞 = 𝑔(𝑣, ⋅), 𝑣 ∈ R𝑁 , 𝑇a ∈ R (1)

The (⋅, ⋅) notation indicates that heat and water flow are not only
functions of ambient temperature and valve positions, but other factors
too.
4

Fig. 6. Shows the control diagram with signals. Blue indicates computations conducted
remotely and green indicates onsite units and yellow the physical components. The gray
boxes contain the control layers in the hierarchical control structure. The update period
is shown in the modules.

3.1. Control hierarchy

The control concept comprises three control levels, see Fig. 6. The
upper layer contains the supervisory controller that is aware of energy
assets connected to the system as well as important externalities such
as weather and electricity prices. It treats the energy assets as objects
with properties which can be utilized for optimal control. A key feature
of the supervisory controller is that it knows what the energy assets
can do, and why they should do it, but not how to make them do it.
The middle layer is tasked with tracking the heat reference, delivered
by the supervisory controller, and distributing the heat to appropriate
rooms. This layer knows how to deliver the demanded energy, but not
why it does it. Based on the heat reference and room temperatures, the
valve selector chooses the valves to be opened in order to provide a
flow, which works as an operating point for the heat controller, and
to transport the heat to the rooms that need it the most. The heat
controller follows the heat reference by providing an artificial ambient
temperature to the ambient temperature publisher to indirectly control
the compressor speed.

The lowest layer handles the interface between the control signal
and the actual hardware. The ambient temperature publisher translates
the artificial ambient temperature provided by the heat controller to
a voltage which emulates the outdoor temperature sensors output at
given temperature. The valve controller translates the valve-selection
into room temperature references designed to force circuits open or
closed.

3.2. Supervisory controller

Fig. 7 presents the concept for the supervisory controller in the
upper layer.

The controller relies on three main components, forecasts, models
and measurements. Based on these, the controller computes a heat
reference (or ‘‘budget’’), 𝑄ref, which is dispatched to the lower level

controllers. The hierarchical structure makes the supervisory controller
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Fig. 7. Overview of the top layer supervisory controller.

ore flexible than a monolithic structure, since it can calculate the heat
eference without concern for how the heat is delivered—it just needs
o know at which efficiency and rate the heat can be delivered. The
iggest drawback of using heat for the interface is that it needs to be
easured, and adding a heat flow sensor to the hydraulic network is

ostly.

.2.1. Design of supervisory controller
The conceptualized version of the Mixed Integer Optimal Control

roblem (MIOCP) at the core of theMixed Integer Model Predictive Control
MIMPC) is seen in equation system (2) on a form which describes
he functionality of the cost and various constraints rather than the
mplementation. Note that (2) contains two sub-versions decided by the
ndicator variable 𝛿OP. It must be stressed that the value of 𝛿OP is chosen
efore implementing the problem, it is not an optimization variable (in
his case study: 𝛿OP = 1). The difference between the two versions is
he HP efficiency model.

(𝑢∗OP) = min
𝑢OP

𝑓G(𝑃G) + 𝑓CO2
(𝑃G) + 𝑓cmf(𝑇r, 𝑇r,ref) (2a)

𝑢OP =

{

(𝑃HP, 𝛿HP, 𝑆) 𝛿OP = 1
(𝑄̇HP, 𝛿HP, 𝑆) 𝛿OP = 0

(2b)

OP ∈ R𝑁 × {0, 1}𝑁 × R𝑁s
+ (2c)

.t.

G = 𝑃HP − 𝑃PV + 𝑃APP (2d)

𝐱𝑖+1 = 𝐀𝐱𝑖 + 𝐁𝑄̇HP,𝑖 + 𝐄𝐝𝑖, 𝑇r,𝑖 = 𝐂𝐱𝑖 (2e)

if 𝛿OP = 1 then 𝑄̇HP,𝑖 = 𝑓HP,𝑄̇(𝑃HP,𝑖, 𝑇a,𝑖)𝛿HP,𝑖 (2f)

if 𝛿OP = 0 then 𝑃HP,𝑖 = 𝑓HP,𝑃 (𝑄̇HP,𝑖, 𝑇a,𝑖)𝛿HP,𝑖 (2g)

𝑃HP,𝑖 ∈

{

[𝑃HP, 𝑃HP] 𝛿HP,𝑖 = 1

0 𝛿HP,𝑖 = 0
(2h)

𝛿HP,𝑖 = 𝛿HP,𝑖 − 𝛿HP,𝑖−1 𝛥𝑃HP,𝑖 = 𝑃HP,𝑖 − 𝑃HP,𝑖−1 (2i)

𝑃HP,𝑖 ∈

{

[𝛥𝑃HP, 𝛥𝑃HP] 𝛿HP,𝑖 = 1

(−∞, 𝛥𝑃HP] 𝛿HP,𝑖 = 0
(2j)

𝛥𝛿HP,𝑖 = −1 ⟹ 𝛿HP,𝑖+1,… , 𝛿HP,𝑖+𝑀−1 = 0 (2k)

The cost function is the sum of three functions. First, a linear term,
𝑓G(𝑃G), describing the differentiated cost of either importing from or
exporting to the electricity grid. The input is consumed electricity from
the grid, 𝑃G, with positive values indicating import. The prices for
buying and selling to the grid are given as 𝑐+ > 0 and 𝑐− > 0,
5

E E
respectively. The second term is a self-imposed CO2-tax. The third is the
comfort term which punishes deviations from the desired temperature.
Slack variables are used to ensure feasibility. Together the terms make
out a convex cost-function.

The constraint (2d) describes the electricity balance were the
amount of electricity bought from the grid (G) is calculated. Constraint
(2e) describes the linear dynamics of the house. Constraints (2f)–(2k)
models the properties of the HP presented in Section 2.5. Constraints
(2f) and (2g) both describes the HP efficiency, but only one is active
dependent on the initial choice of 𝛿OP. Constraint (2h) describes the
piece-wise function where the compressor either is off, or operating
in the range [𝑃HP, 𝑃HP]. The constraint (2j) limits the rate off change

etween control periods. To meet the requirement that the HP can be
urned off from any operational state, the down rate is set to −∞ when
HP,𝑖 = 0. Last (2k) forces the HP to stay turned off for minimum 𝑀

sample times. Having described the functionality of the optimization
problem the next part focuses on implementation aspects.

The guiding principle for the implementation is that the structure of
the problem is convex if the problem is relaxed, meaning that if integer
variables are replaced with continuous ones, the problem is convex. The
cost function from equation system (2) is implemented as:

𝐽 (𝑢OP) = 𝑐−T
E 𝑃G + 𝛥𝑐+T

E 𝑃+
G + 𝑧cmf + 𝑐𝑇s 𝑆 (3)

ere the auxiliary variables 𝑃+
G , 𝑧cmf ∈ R𝑁

+ are introduced. The variable
+
G is defined as entry-wise max(0, 𝑃G) and 𝑧cmf has to be larger than
ny competing comfort constraints. The vector 𝛥𝑐+E = 𝑐+E − 𝑐−E > 0
escribes the positive difference between buying price and selling
rice. Note that the buying price needs to be higher than the sell-
ng price, otherwise the solution to the optimization problem entails
uying excessive amounts of electricity just to sell it again in the
ame instance. The auxiliary variable 𝑧cmf encodes the expression
ax(𝑓cmf,1(𝑇r, 𝑇r,ref),… , 𝑓cmf,𝑁cmf (𝑇r, 𝑇r,ref)) where 𝑓cmf,𝑖(𝑇r, 𝑇r,ref) with

𝑖 ∈ {1,… , 𝑁cmf} is either an affine or quadratic positive definite
function. This formulation gives room for skewed functions which
can for instance penalize either over- or under-heating. Note that the
artificial CO2-tax term is not missing, it is merely incorporated into the
buying price as described in Section 4.5.

The HP efficiency model in either (2g) or (2f) is implemented
using the known Mixed Logic Dynamics technique from [24] where an
auxiliary variable is introduced 𝑧HP,𝑖 to either be zero of mirror the
value of the function dependent on 𝛿HP,𝑖. To preserve convexity of the
input set, only an inequality is used instead of the original equality
seen in (2g). if 𝛿OP = 0 then 𝑃HP,𝑖 ≥ 𝑓HP,𝑃 (𝑄̇HP,𝑖, 𝑇a,𝑖) and if 𝛿OP = 0
hen 𝑄̇HP,𝑖 ≤ 𝑓HP,𝑄̇(𝑃HP,𝑖, 𝑇a,𝑖)𝛿HP,𝑖. The structure of the problem forces
he solution onto the curve emulating the equality constraint. When
OP = 1, there are a few cases where 𝑄̇HP deviates from the curve to
void the cost of overheating. To avoid this an equality constraint can
e implemented with the added computational cost. The constraint in
2h) is implemented as e.g. in [19,21,25], so is the constraint in (2j).
he down-time model constraint in (2k) can be implemented as shown

n [25]. The problem can be summed up to

min
𝐮∈R𝑚×𝑁 ,

𝐽 (𝐱0,𝐮) (4a)

.t. (4b)

𝑘+1 = 𝐀𝐱𝑘 + 𝐁𝐮𝑘 + 𝐄𝐝𝑘, 𝐱𝑘 ∈  , 𝐱0 = 𝐱(𝑡) (4c)

1,𝑘 = 𝐂𝐱𝑘 + 𝐃𝐮𝑘, 𝐮𝑘 ∈  (4d)

2,𝑘 ≥ 𝐟convex(𝐱𝑘,𝐮𝑘) 𝐲3,𝑘 ≤ 𝐟concave(𝐱𝑘,𝐮𝑘) (4e)

here 𝐽 is the convex cost function. Section 4 details the models that
pecify the MPC formulation given here.
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Fig. 8. Shows the heat controller with feedback.

3.3. Valve selector

The valve selector, or dispatcher, is a mixed integer linear program-
ming problem tasked with providing the flow, 𝑞, as requested, 𝑞ref, and
istribute the water to the most suitable rooms. Note that the Valve
elector is only reactive control. The optimization problem is

min
𝑣∈{0,1}𝑀

𝐽 (𝑣) = min
𝑣∈{0,1}𝑀

𝑐𝑞‖𝑞ref − 𝑞‖22 + 𝑐T
cmf𝑣 (5a)

.t. (5b)

𝑞 =
𝑀
∑

𝑖=1
𝑣𝑖𝑞𝑖, (5c)

𝑞 = 𝑐0 + 𝑐1𝑞 + 𝑐2𝑞
2 (5d)

𝑞 ≥ 𝑞min, (5e)

𝑟𝑚 ≥
𝑀
∑

𝑖=1
max(𝑣0,𝑖 − 𝑣𝑖, 0), (5f)

𝑣𝑗 = 1, ∀𝑗 ∈  . (5g)

he cost function is a trade-off between following the flow reference
nd delivering the heat to the right rooms. The two terms are weighted
y 𝑐𝑞 ∈ R+ and 𝑐cmf ∈ R𝑁r . The comfort cost is pre-calculated as
cmf,𝑖 = 𝑎(𝑇r,𝑖 − 𝑇r,ref,𝑖) with 𝑎 > 0 such that cold rooms get priority.
he expressions (5c) and (5d) describe the flow as a function of valve
onfiguration. In (5c) the flow is a sum of contributions, but since the
low saturates as more valves open a second order polynomial is used
n (5d) to model this effect. The term 𝑞2 seems to deliver a range of
quare and bilinear terms, which is inconsistent with MILP. Luckily,
𝑖 is binary, meaning that 𝑣𝑖𝑣𝑗 is an AND statement (𝑣𝑖 ∧ 𝑣𝑗) can be

encoded by Mixed Logic Dynamics(MLD) as a linear inequality [24].
The squared terms are unproblematic since 𝑣2𝑖 = 𝑣𝑖. Encoding the binary
polynomial has a cost in form of added binary auxiliary variables. The
added number of binary variables is

(𝑀
2

)

, which in this case is 55,
making a total of 66 variables. Constraint (5e) forces a minimum flow,
(5f) limits the number of valves that can be closed in one iteration and
(5g) forces circuits open which belong to too cold rooms.

3.4. Heat controller

The heat controller, placed in the middle layer, is required to deliver
heat, 𝑄HP, according to the heat reference. Further, it suppresses the
compressor in periods with no demand and is responsible for timing the
HP start. The diagram is seen in Fig. 8. The signals are: reference vector
𝑄ref ∈ R𝑁 , artificial ambient temperature, 𝑇a, the voltage representing
the said ambient temperature, a, the measurement vector, 𝑦HP =
[

𝑄̇HP 𝑃HP

]

, and the binary compressor blocking signal, 𝑏c. During the
test period a PID-controller and a short horizon MPC were tested. The
PID-controller uses the measured heat flow and the reference in regular
feedback. The MPC accumulates the delivered heat flow over the hour
to match the heat reference given for that hour. Beyond heat control,
the two controllers need to handle defrosting periods, DHW production
and start delays as mentioned in Section 2.5. Defrost periods and DHW
production are handled by detecting the event and setting the controller
to standby-mode. After releasing the compressor block, it takes about
6

c

1.5 h before the heat pump starts, therefore the reference vector is used
to remove the blockage a defined time-span before the actual control
takes place. More detail is given in a parallel paper in progress.

4. Models and parameter identification

This section presents the model and the subsequent parameter
identification for each module that is included in the MIOCP. Sec-
tions 4.1–4.4 presents models used directly for control while Section 4.5
contains the price model which is used both for guiding the price-
aware controller and evaluation. Finally, Section 4.6 describes how
benchmark data from previous heating season, where the baseline
controller was running, is used to evaluate the proposed controller.

4.1. Single-zone lumped parameter house model

The single-zone house model, seen in (6), has, as argued in [26],
two dynamic states which describe an averaged room (𝑇r) and floor
emperature (𝑇f). The reason for modeling using only a single zone
s given in [17]. Here the affects caused by position of doors and air
tratification led the authors to conclude that a single-zone model is as
seful as multi-zone model for MPC. In [8] a volume weighted average
emperature is used since only the central heat meter is available.
he purpose of the model is to make the MPC responsive to the

mpact of high sun intensity, ambient temperature and heat created
y household appliances. These three aspects should be included if
forecast is available, otherwise they can be omitted at the cost of

ncreased uncertainty. In this work the forecast for heat produced by
ousehold appliances and occupation is left out. The reason is partly
echnical, but also driven by privacy concerns.

r𝑇̇r = 𝑈r
(

𝑇f − 𝑇r
)

+ 𝑈a
(

𝑇a − 𝑇r
)

+ 𝑄̇s (6a)

𝐶f𝑇̇f = 𝑈r
(

𝑇r − 𝑇f
)

+ 𝑄̇HP (6b)

he control input to the model is heat flow 𝑄̇HP measured over the
loor heating system. The two-state formulation allows for estimating
he overall heat capacity of the building through 𝐶f and to capture the
apid air temperature changes, caused by sun radiation, in 𝐶r. The state
pace formulation is given as,

̇ (𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) + 𝐄𝐝(𝑡) (7a)

(𝑡) = 𝐂𝐱(𝑡) 𝐂 =
[

1 0
]

(7b)

= −1 𝐁 = −1 𝐄 = −1 (7c)

=

[

𝐶r 0
0 𝐶f

]

 =

[

−
(

𝑈r + 𝑈a
)

𝑈r
𝑈r −𝑈r

]

 =

[

0
1

]

(7d)

=

[

𝑈a 𝑔s,1 𝑔s,2
0 0 0

]

𝐱 =

[

𝑇r
𝑇f

]

𝐮 =
[

𝑄̇HP

]

𝐝 =

⎡

⎢

⎢

⎢

⎣

𝑇a
𝐼s

𝐼s,dir

⎤

⎥

⎥

⎥

⎦

(7e)

he input is total heat flow, 𝑄̇HP, and the disturbances are ambient
emperature, direct sun irradiation. The common indoor temperature
s an area weighted average of all room temperatures,

r =
𝐴r,1𝑇r,1 +⋯ + 𝐴r,𝑁𝑟

𝑇r,𝑁𝑟

𝐴r,1 +⋯ + 𝐴r,𝑁𝑟

(8)

The power from sun radiation can be estimated in many ways, but is
here chosen to be:

𝑄̇s = 𝑔s,1𝐼s + 𝑔s,2𝐼s,dir (9)

𝐼s = 𝐼s,dir(1 − 𝛼̃cloud) (10)

here 𝐼s,dir [Wm−2] is direct sun and 𝛼̃cloud is the fraction of cloud
over. This particular formulation gives short but intense bursts of



Applied Energy 347 (2023) 121398S. Thorsteinsson et al.

e

𝑄

w
f
t

4

C

w

C

f
𝑃

𝑄

i

4

p

m
v

sunlight which can capture the rapid increases in room temperature
seen in the data. A similar sun radiation term can be added to Eq. (6b),
but note that the coefficients of matrix 𝐄 need to be positive to keep
the model grounded in physics.

The model is discretized using Zero Order Hold (ZOH) discretiza-
tion. Figures of the parameter fits are shown in Appendix B.2.

4.2. State estimation of 𝑇r and 𝑇f

Since the virtual average floor temperature, used in the MPC, is not
measured a Linear Kalman Filter (LKF) is used to estimate the state at
sample time 𝑘. The LKF is updated each 5 min. The model in (7) is
observable for any 𝑈r, 𝑈a > 0.

 =

[

𝐂
𝐂𝐀

]

=

[

1 0
−
(

𝑈r + 𝑈a
)

𝑈r

]

(11)

This is the case even if the matrices 𝐀, 𝐁 and 𝐄 have been found using a
black box method, since the parameter in eq. system (7) can be solved
for, if 𝑄̇HP is known.

4.3. Air-to-water heat pump efficiency model

In order to inform the supervisory controller on the efficiency of
the HP a relation between heat production and electricity consumption
is formulated. It is inspired by the formulations provided in [27–
32],2 where the HP efficiency is provided by the Carnot coefficient of
performance, COPCARNOT = 𝑇H

𝑇H−𝑇C
, and a non-ideality factor (also called

fficiency factor), 𝜂HP:

̇ HP = 𝜂HP(𝑃HP)COPCARNOT𝑃HP

= COPHP𝑃HP (12)

ith COPHP being the overall efficiency for a given HP. The expression
or heat as a function of electricity (direct way) is denoted as 𝑓HP,𝑄̇ and
he reverse way where electricity is calculated from heat is 𝑓HP,𝑃 .

.3.1. Heat as a function of electricity: 𝑓HP,𝑄̇
The expression chosen for the COPHP is:

OPHP = 𝑘
𝑃HP

+
(

𝑘0
𝑃HP

+ 𝑘1 + 𝑘2𝑃HP

)

COPCARNOT (13)

ith

OPCARNOT ≡
𝑇F + 273.15
𝑇F − 𝑇a

(14)

and the requirement that the coefficient 𝑘2 is negative and the forward
temperature is constant 𝑇̂F. The reason for this choice is that the heat
unction 𝑓HP(𝑃HP) contains a second order polynomial when the power
HP is multiplied onto (13):

̇ HP = 𝑘 + (𝑘0 + 𝑘1𝑃HP + 𝑘2𝑃
2
HP)COPCARNOT (15)

and taking the second order partial derivative of (15) with respect to
𝑃HP shows that

𝜕2𝑄̇HP
𝜕2𝑃HP

= 𝑘2COPCARNOT < 0 (16)

mplying that if all other variables are constants then (15) is concave.

.3.2. Electricity as a function of heat: 𝑓HP,𝑃
The inverse formulation, seen in (17), where electricity is the de-

endent variable, is convex if the coefficient 𝑘2 > 0.

𝑃HP = 𝑘 + (𝑘0 + 𝑘1𝑄̇HP + 𝑘2𝑄̇
2
HP)

1
COPCARNOT

(17)

2 Although, all formulations cited here are based on the non-ideality factor
ultiplied with the Carnot COP they all differ with respect to choice of

ariables.
7

4.4. Photovoltaic power forecast

The forecast model for the power output of the photovoltaic panels
(PV) is based on the data from the weather forecast service Yr.no [33]
and measured historical time series of the power output from the PV. In
this work it is chosen to be a regression expression, although the model
for the predicted PV output could in principle be any suitable non-
linear model (neural network, decision tree, etc.) since the produced
electricity is not dependent on any influenceable variables.

4.5. Price model

The hourly price models for buying and selling electricity from/to
the grid is given in (18) and (19), respectively. The models are used
in the supervisory controller and for evaluation. The price for buying
electricity is

𝑐+excl. vat = 𝑐spot + 𝑐tariff +𝑤CO2
𝑐CO2

+ 𝑐tso

𝑐+E = 𝑐+excl. VAT + 0.25𝑐+excl. vat (18)

where the spot price, 𝑐spot, distribution tariff, 𝑐tariff, transport tariff, 𝑐tso,
and are given in [€/kWh]. The self-imposed artificial CO2-tax, 𝑐CO2

, is
given in [€/kg]. Hence, the variable 𝑤CO2

is the hourly estimated CO2
emission in kg per kWh electricity. The Danish VAT rate is 25% of the
full price and the Transport Service Operator (TSO) tariff is a fixed rate
of €0.02. The selling price model is

𝑐−E = 𝑐spot (19)

The distribution tariffs, 𝑐tariff, chosen for the test are based on future
signaled prices for January 1st, 2023 in Denmark. The exact tariffs vary
between Distribution Systems Operators (DSOs), but the pattern is low
prices at night, a higher daily price with a sharp increase in the cooking
peak. The chosen model is inspired by [34].

𝑐tariff =

⎧

⎪

⎨

⎪

⎩

0.027e 𝑡 ∈ [00.00, 06.00)
0.081e 𝑡 ∈ [06.00, 17.00), [21.00, 00.00)
0.26e 𝑡 ∈ [17.00, 21.00)

(20)

It is worth noting that the tariffs need to be realistic, since the choice
of values has a large impact on savings potential. If an unrealistic price
of €10 is used for the evening peak instead of €0.26, the price-aware
controller shuts the HP off in this period and gains and unfair advantage
over the price-unaware.

The second part of the price model regards PV produced electricity
and the impact the HP has on self-consumption. In the test house the
electricity is phase-metered, but the exact per phase import and export
is unknown since the numbers are aggregated and stored on hourly
basis. Since the data is aggregated, the meter is instead treated as
a summation meter with one-hour reporting. The netting interval is
unknown even though it is important for the measure of import and
export, as shown in [35]. The available signals are hourly import,
𝐸IM(𝑘), hourly export, 𝐸EX(𝑘), hourly production from the PV, 𝐸PV
and consumption from HP, 𝐸HP(k). The difference between export and
import, seen in (21), is the net import, 𝛥𝐸G(𝑘), which is the billable
amount. For notational purposes the hour indicator 𝑘 is implied hence
on.

𝛥𝐸G = 𝐸IM − 𝐸EX (21)

The sun power corrected cost associated with running the HP is then:

𝐸∗
HP =

{

0 𝛥𝐸G ≤ 0
min

(

𝐸HP, 𝛥𝐸G
)

𝛥𝐸G > 0
(22)

The same amount of available PV produced solar power and consump-

tion is imposed on similar/comparable days (definition in Section 4.6),
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which are used in the controller evaluation. The consumption of similar
days is corrected using the difference in HP consumption:

𝛥𝐸HP = 𝐸HP,cmp − 𝐸HP,exp (23)

with 𝐸HP,exp being the HP consumption for the experiment and 𝐸HP,cmp
he similar day. The virtual net import increases when the HP consumes
ore in hour 𝑘 and vice versa, as seen in (24).

𝐸∗
G(𝑘) = 𝛥𝐸G + 𝛥𝐸HP(𝑘) (24)

he corrected net import for similar/comparison days is:

∗
HP =

⎧

⎪

⎨

⎪

⎩

0 𝛥𝐸∗
G ≤ 0

min
(

𝐸HP,cmp, 𝛥𝐸∗
G

)

𝛥𝐸∗
G > 0

(25)

The idea behind this mode of calculating the HP consumption is that
other appliances use the self-produced electricity too, and the HP
should ideally consume less than the excess capacity.

4.6. Evaluation procedure

The objective of the evaluation procedure is to answer whether the
new price- and forecast-aware controller saves money when compared
to the existing benchmark controller described in Section 2.1. The
key performance indicator is daily cost given the weather conditions.
It is inherently difficult to benchmark and validate the performance
of a controller operating in a complex environment with many un-
controllable external factors such as weather and occupant activities.
Further, the long time-constants play a significant role by demanding
long test periods. Ideally, the benchmark and MPC-controller should
be run in parallel on exact copies of the same building placed at the
same location, with occupants doing the same activities. Although,
some buildings support such circumstances, this can obviously not be
asked of the occupants. Instead, a benchmark data-set from the same
house is used for the evaluation. The benchmark data-set is based on
data collected from the former heating period (2021–2022) where the
original benchmark controller was operating. The data is sorted into
full days creating a collection of comparison days cmp, seen in (26),
from which appropriate subsets can be selected. The daily generated
data on set form is:

cmp =
{

𝑑𝑎𝑦𝑛 =
(

𝐸𝑛
G, 𝑇

𝑛
a , 𝑐

+,𝑛
E , 𝐸𝑛

PV
)}

(26)

𝑛 = 1,… , 𝑁cmp, 𝐸𝑛
G, 𝑇

𝑛
a , 𝑐

+,𝑛
E , 𝐸𝑛

PV ∈ R𝑁day (27)

with 𝐸𝑖
G and 𝐸𝑖

PV being the electricity consumption from grid and
production from PV in kWh during day 𝑖, respectively, 𝑇 𝑖

a the ambient
temperature, 𝑐+,𝑖E the hourly electricity price for day 𝑖, and 𝑁day = 24.
Note that benchmark days where the system has been manipulated or a
significant amount of data is missing are dropped to minimize pollution
of the results. A similar data collection, exp, is generated from the
xperiment period. The MPC-controller is evaluated daily by comparing
he operation cost of day 𝑖 to a subset of benchmark days, 𝑖

cmp ⊂ cmp,
drawn from the full benchmark data-set. The subset, 𝑖

cmp, is drawn
according to the following rule:

𝑖
cmp = {𝑑𝑎𝑦 |

− 𝛥𝑇 a,dn ≤ 𝑇 a,cmp − 𝑇
𝑖
a,exp ≤ 𝛥𝑇 a,up,

− 𝛥𝐸PV,dn ≤ 𝛴𝐸PV,cmp − 𝛴𝐸𝑖
PV,exp ≤ 𝛥𝐸PV,up,

𝑇 a,cmp, 𝛴𝐸PV,cmp ∈ 𝑑𝑎𝑦 ∈ cmp} (28)

with 𝑇 a, 𝛴𝐸PV being average ambient temperature and accumulated
electricity production from PV, respectively. The constants 𝛥𝑇 a,dn and
𝑇 a,up are the down- and up-search range for ambient temperature,

respectively. Similar, 𝛥𝐸 , 𝛥𝐸 makes out the search-range for
8

PV,dn PV,up
Fig. 9. Upper: Hourly mean temperature reference calculated from the collection of
zone references. Lower: Hourly virtual discomfort price. Both vectors are used in
equation system (2).

accumulated electricity produced by the PV. Here the PV is used as an
indicator for sun radiation. This is not a perfect indicator, since the
sun altitude and intensity vary with the seasons, thereby creating a
bias. However, it is found to be a good indicator for dealing with cloud
conditions on-site, since it directly measures the level of shadow on the
building. With ambient temperature and sun irradiation accounted for,
factors such as occupant behavior and previous day heating patterns
are left out. This undeniably causes noise, making the electricity con-
sumption of the HP distribute randomly for any given day. To decrease
the influence of the noise, the controller is run over a long period to
obtain more consistent results.

We calculate a virtual cost for benchmark day 𝑗, with respect to
experiment day 𝑖,

cost𝑗cmp =
𝑁day
∑

𝑘=0
𝑐+,𝑖E (𝑘)𝐸𝑗

G(𝑘)

𝑐+,𝑖E ∈ day𝑖exp, 𝐸𝑗
G ∈ day𝑗cmp ∈ 𝑖

cmp (29)

It simply means that electricity consumption from similar benchmark
days are imposed onto the price of the experiment day to calculate
the virtual cost. This provides a plausible alternate outcome for the
case where the benchmark controller had been running instead. This
is done since the benchmark controller is price ignorant and thereby
acts independently of the price. This maneuver would not be possible
if the comparison was between two price-aware controllers. In that
case price curves would have to be accounted for as well. The cost of
the experiment day 𝑖, cost𝑖exp, is of course calculated using the actual
electricity consumption for the day.

5. Experiment description

The experiment was conducted over 97 days in the period 2022-11-
07 to 2023-03-06. During the experiment four combinations of hourly
discomfort cost, 𝑐cmf ∈ R24, and average room temperature reference
levels, 𝑇r,ref ∈ R24, were applied, see Fig. 9. A pair consisting of a
temperature reference and a discomfort cost makes out a comfort level.
Each comfort level has a color assigned (Q, Q, Q, Q) corresponding
to the colors in Fig. 9. The cost and reference are used in the quadratic
cost term ∑23

𝑖=0 𝑐cmf,𝑖
(

𝑇r,𝑖 − 𝑇r,ref,𝑖
)2, where 𝑖 is the hour.

Having four comfort levels is a result of gradually adjusting the
overall average indoor temperature to be similar to the one from the
benchmark data in order to reduce a variable with respect to the cost
analysis. Consistency of indoor temperature was achieved at comfort
level 4 as seen in the upper graph in Fig. 11 where the average
temperature distributions are plotted. The gradual adjustment of the
reference and comfort cost was necessary because the resulting room
temperature is difficult to predict since it is dependent on many factors
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Fig. 10. Calendar overview of benchmark data and experiment periods. Green color
s benchmark days and other colors are the comfort levels during the experiment.

Fig. 11. Upper: Distribution of mean indoor temperature compared to the benchmark
eriod. Lower left: Histogram of the lowest measured temperature in the rooms.
ashed line shows the mean temperature. Lower right: Highest measured temperature

n the rooms.

uch as electricity price, heat pump efficiency, heat loss of the house,
tc.

The benchmark and experiment periods are shown in Fig. 10. The
enchmark dataset used for comparison consists of 193 days with daily
ean ambient temperatures in the range −2.5 to 15 ◦C and daily PV
roduction in the range 0 to 39 kWh. The search bound for finding
imilar benchmark days are 0.5 ◦C for ambient temperature making it
% of the full range and 2.0 kWh for daily PV electricity production
hich is 10% of the full range.

The HP efficiency model used for the entirety of the case study was
15). The coefficients were re-calibrated twice during the experiment.
irst time was after a few weeks of running MPC and second the 27th
f January. The building model was changed and refitted on the 27th
f January.

The optimization problems are implemented using Casadi [36] and
olved with the mixed integer non-linear programming solver Bon-
in [37].

. Results

This section presents the results gained from the experiment pe-
iod. Note that with respect to the cost analysis comfort level 3 (Q)
nd 4 (Q) should be given the highest attention since they both,
n average, feature higher indoor temperatures than the benchmark
eriod and therefor provides the best foundation for investigating the
9

avings potential. Comfort level 1 (Q) and 2 (Q) are included to
Fig. 12. Day-to-day development of the total accumulated saving rate for each comfort
level.

Table 2
Shows the accumulated economical savings estimate for space heating over the test
periods.

Comfort level Average
benchmark
cost [€]

Exp. cost
[€]

Reduction
[€]

Saving
rate [%]

1 (Q) 10.92 7.33 3.59 32.8
2 (Q) 49.84 35.34 14.50 29.1
3 (Q) 126.42 123.49 2.93 2.3
4 (Q) 42.65 35.23 7.42 17.4

3 and 4 169.07 158.72 10.35 6.1

All 229.83 201.39 28.43 12.4

provide a broader overview of the challenges related to carrying out
the experiment.

6.1. Temperature comfort

The temperature distributions in Fig. 11 show that the indoor
temperature has not been impacted by the MPC controller providing
price-led load shifting. This is particularly clear in the lower left and
right plot which shows the distribution of minimum and maximum
room temperatures, respectively. The min./max. room temperature
are defined as min ∕max

(

𝑇r,1(𝑡),… , 𝑇r,𝑁𝑟
(𝑡)
)

. The lower minimum tem-
perature is caused by one room where the reference was set to 19
◦C.

Since the house was occupied throughout the test, the residents
were sent a questionnaire about the experienced indoor climate on the
11th Jan. 2023. The questions and answers can be read in Appendix A.

Although each room has an assigned temperature reference, not
much attention has been given to individual rooms besides responding
to complaints, which was only necessary once, at comfort level 1.
Two rooms, hobby and bedroom, had reference settings at 19 and 21
◦C, respectively, and the rest had 22.5 ◦C. The hobby room is partly
detached from the rest of the house, and it was thus easy to keep the
temperature low. The bedroom could not be kept at 21 ◦C, even though
the floor heating circuit was seldom on. This shows, as pointed out
by [17], that it is difficult to maintain large discrepancies between room
temperatures within a NZEB.

6.2. Heating costs and energy consumption

This section is dedicated to the investigation of the savings po-
tential. The section consists of Table 2, which sums up the savings
accumulated during the test periods and Fig. 13 presents costs with
respect to individual days. Note that a row in each table has been
dedicated the combined analysis of comfort level 3 and 4.
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Fig. 13. Upper: Daily space heating cost during the experiment period (crosses) compared with the virtual costs, calculated based on Section 4.6, from similar days (dots). Each
experiment day is assigned one column and are sorted according to daily mean temperature. The black horizontal line (-) marks the mean benchmark cost. Lower: Savings between
mean benchmark cost and experiment cost. The colors of the triangles refer to the comfort level at given experiment day.
Table 2 shows a significant 12 percentage point saving on the
heating bill, but looking at the absolute savings of €28.4, derived from
97 operation days, the results are more modest. Further, it can be seen
that the comfort level has a significant impact on savings. Fig. 12 shows
the development of the estimated saving rate for each comfort level.
The large variance in daily savings means that the long-term expected
saving rate has not settled after 10 days. Fig. 13 contains the cost results
broken down into individual test days (One test day per column),
which are analyzed with respect to average ambient temperature and
sun intensity. Dots are similar benchmark days derived according to
description of Section 4.6 and the black lines in each column represents
the average cost of similar benchmark days. The results reveal three
main ambient temperature regions: the warm (6 to 13 ◦C), the medium
(0 to 6 ◦C) and the cold (−5 to 0 ◦C). In the warm region, the heating
demand is so low that percentage losses or gains amounts to very small
differences in savings or losses. The medium region shows the highest
potential for savings. The results from cold, sunny days are difficult to
assess due to a sparse amount of similar days present in the benchmark
data, but the immediate results point at consistent losses. Further, it can
be seen that sunny days (reddish dots and crosses) reduce costs since
they drop lower than their more cloudy counterparts. This is of course
related to overheating events, which might be uncomfortable. The plot
also shows that the costs increase as temperature decreases.

Table 3 shows the electricity consumption. It is common that studies
experience an increase in primary energy consumption when applying
price responsive control (15.8% more electricity in [10], 10.3% more
heat in [8]), as is the case for comfort level 1 and 3, albeit the values
observed here are significantly higher. Comfort level 2 and 4 show a
reduction, which is likely to be connected to the lower indoor temper-
ature in comfort level 2 and a sequence of sunny days for comfort level
4 which the MPC controller could capitalize on.
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Table 3
Accumulated electricity consumption from the experiment and benchmark data.

Comfort level Accumulated
average electricity
(Benchmark) [kWh]

Accumulated
Electricity
(Experiment) [kWh]

Percentage
increase [%]

1 (Q) 41.4 45.9 11.0
2 (Q) 110.5 96.3 −12.8
3 (Q) 398.9 492.9 23.6
4 (Q) 191.8 178.0 −7.2

3 and 4 590.72 670.96 13.6

All 743 813 9.5

Table 4
Accumulated heat produced by the HP.

Comfort level Accumulated
Average heat
(Benchmark) [kWh]

Accumulated heat
(Experiment) [kWh]

Percentage
Increase [%]

1 (Q) 192.6 218.3 13.4
2 (Q) 455.1 385.7 −15.2
3 (Q) 1667.2 1919.0 15.1
4 (Q) 799.9 707.5 −11.5

3 and 4 2467.13 2626.56 6.5

All 3115 3231 3.7

As with electricity, the heat production (Table 4) has increased, but
percentage-wise, not as much. This can be explained by the lower COP
causing less heat to be produced for the electricity.
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Fig. 14. Upper: Average daytime price as a function of the average temperature.
Lower: Daily savings formulated in percentage as a function of the day over night
price ratio. Colors indicate the daily average ambient temperature and the contours
the density.

Fig. 13 gives a sense of monetary savings potential, but it hides some
important factors leading to significant savings larger than €1. Fig. 14
explores these factors.

The upper figure clearly shows an inverse correlation between daily
average ambient temperature and the average daytime electricity price
during this heating season. This partly explains the larger savings
potential between 1 and 5◦C seen in Fig. 13. The price is in the high end
while the house still maintains flexibility. The next influential factor
is volatility in prices which is explored in the lower graph of Fig. 14.
Here the daily relative savings are plotted against the day over night
average price ratio. Nighttime price is defined as the average price
between 00:00 and 06:00, and daytime is given as the average over
the remaining period. Although the dots are more scattered here, some
important trends can be seen. First, the price ratio decreases with colder
temperatures. Second, most days with a price ratio above three resulted
in savings and, third, cold days gave significant loses.

6.3. Heat pump efficiency model

As the HP efficiency model informs the MPC on the trade-off be-
tween heat boosting and efficiency loss, it is highly important that
it is accurate. Fig. 15 shows that the general COP fell when the HP
was operated according to the new controller, leading to inaccurate
estimates.

The dashed lines represents the original fit, which is based on data
from the benchmark controller at various fixed ambient temperatures,
the scattered dots represents data points obtained in the test period and
the solid lines are from an updated parameter fit. The original fit has an
𝑅2 value of 0.92, but since it performed poorly during operation – often
overestimating the efficiency – the fit was updated (solid lines), which
resulted in lower predicted efficiencies. The main take away is that
it is necessary to update the model repeatedly when the operational
style changes, otherwise severe miscalculations are introduced. Fig. 16
presents the results of the updated fit.
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Fig. 15. The two parameter fits for the HP efficiency model during the experiment. The
dashed lines describe the COP as a function of electricity consumption at varies fixed
ambient temperatures. The solid lines show the updated fit, which matches the data
(scatter dots), obtained during the experiment, better than the original. The coloring
indicates the ambient temperature level with blue signaling cold and red warm.

Fig. 16. The red contour lines shows the distribution of the new data calculated using
the pre-experiment fit.

6.4. Space-heating production patterns

In this section the daily heat production patterns are presented and
compared to the benchmark data. The upper graph in Fig. 17 shows
the daily heat production curves normalized with respect to part of the
full day. Lower shows the actual hourly production in kWh.

The heat production has increased remarkably at night meaning that
the controller bets against the classic night setback strategy despite it
generally being colder at night causing the HP to be less efficient. The
midday production has increased, but most notably is the complete lack
of heating in the evening peak period between 17:00 and 21:00.

7. Interpretation of the results

In this section the authors provide their interpretation of the data
and results presented in the former section. Starting with Table 2,
where comfort levels 1 and 2 (Q and Q, respectively) show a clear
percentage-vise savings potential. At comfort level 1, the indoor tem-
perature was uncomfortably low, so this result is ignored. Test period
2 (Q) is more interesting since the residents experienced a comfortable
indoor climate while saving on heating costs. This raises the question:
Did the price responsiveness cause the economical savings? The answer
is unknown since the lower average indoor temperature, and thereby
lower heat demand, could have been the main reason. The main take-
away from comfort level 2 is that even a NZEB can gain by lowering
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Fig. 17. Upper: Distribution of daily production patterns from the benchmark con-
roller compared with the MPC controller. The 𝑦-axis is the hourly fraction of total

production for a given day. Lower: Actual hourly heat production.

indoor temperature. Test period three (Q) was executed with an aver-
age indoor temperature of 0.2 ◦C higher than the one of the benchmark
ata, meaning that the 2.3% savings are likely to be contributed to the
ontroller.

Having established that overall savings are possible under the cur-
ent Danish price scheme, the next part investigates situations which
re particularly favorable or unfavorable for the controller. Before
eading on, keep in mind that large savings can only originate from
ituations with large potential costs. For the analysis Figs. 11, 13, 14,
5, Tables 3 and 4 are used. Fig. 13 reveals that the largest share of
onsistent savings are generated between 0.7 and 4.0 ◦C. The large

loss seen at 1.1 ◦C is the transition day between test period 2 and 3
where extra energy was needed to lift the average indoor temperature.
The lower ambient temperature increases the demand for heat which
increases the cost. However, as this is true for all buildings in the region
not only the consumption dependent costs are driven up, so are the
electricity prices. This is visible in the upper graph of Fig. 14, where
the average daytime price is inversely correlated with the temperature.
The result is that heat demand and price amplifies each other which
increase the daily cost dramatically when the ambient temperature is
below 5 ◦C.

Having established the factors driving up costs, we turn the at-
tention to daily price variation which also impacts the potential for
cost savings, see the lower graph in Fig. 14. Although, the results are
more scattered than in the upper graph, three trends can be seen. First,
the day/night price-ratio is more likely to be higher at high ambient
temperatures. Second, at ratios above three, the controller is likely to
save money, albeit these are mostly warm low cost days. Third, the
most interesting trend is the range 0 to 5 ◦C, where the ratio often was
above 2, securing significant percentage-vise savings.

At this point the price conditions for savings are established. Hence,
we return focus to test periods 3 and 4 (Q and Q, respectively) and
sk: Is the potential for savings larger than presented here? The controller

responded to the price signal by changing the daily heating pattern
significantly, as seen in Fig. 17. Several things impact savings: model
errors, forecasts errors, lack of controller robustness and more. This
said, the loss of HP efficiency, mentioned in Section 6.3, stands out
as a major plausible limiter. The efficiency loss originates not only
from the higher loads but also due to the dynamic operations. The loss
from dynamic operations puts load shifting at a disadvantage. When the
12

supervisory controller calculates the heating plan it also considers the
continuous approach featured by the benchmark controller but discards
it as inefficient compared to the night heating approach. This happens
because the controller relies on the HP efficiency model, which does
not inform that the default controller – the one from the manufacturer
– can operate the HP more efficiently. This can be used as a critique
of the presently implemented heat controller, yet, it can also be posed
as a question to why the manufacturers of domestic HP’s do not let
them be controlled according to a heat reference as an alternative to
the ambient temperature heating curve.

A weakness has been noticed in the MPCs reliance on forecasts.
The procedure has issues dealing with sunny days, even though the
predictive nature should ensure superiority of the MPC. Fig. 13 clearly
reveals that days with significant loses tend to have high sun intensity.
We expect this to be due a combination of several factors which
coalesce with unfortunate outcomes. The low electricity prices invite
the controller to boost heating intensely between 00:00 and 06:00 to
avoid electricity consumption during more expensive day hours. If the
model and forecasts were perfect the heat would be boosted accurately.
However, in practice an overheating event is likely to occur if a thick
cloud cover is wrongfully predicted, and intense sunshine happens
instead. The cloud cover data from the weather service has several
times been unreliable even at time-of-use. This effect can be mitigated
by correcting the forecast with live PV data. Further, a robust control
approach which restrains night boosting slightly should be applied.

8. Discussion

Having shown a savings potential through price responsive load
shifting, the following topics deserve attention: the step from simula-
tion to reality, potential performance improvements, control of the HP,
heat scheduling using an average indoor temperature and minimizing
operation costs rather than discomfort or indirect CO2-emissions.

A large amount of papers assume perfect forecasting when conduct-
ing simulation studies of MPC with the consequence that results reflect
upper performance boundaries. This is avoided in a real implementa-
tion. Nevertheless, the problem then shifts to estimating the true cost
reduction or saving rate. Fig. 12 shows the extent of the challenge
since the saving rate has not converged after 10–12 days. Even after
55 days this is not fully the case. The reason is the high volatility in
daily savings and losses which are in the range ±€3. The implications
are that short-term studies (of the order of days) are at risk of reporting
saving rates which diverge severely from the true rate. If the so called
‘‘File Drawer Effect’’ (Failing to publish negative results) is at play, the
bias might be towards too high savings potential. The strategy applied
here is to rely on benchmark data collected from the prior heating
season. However, even with a full season of data, there are holes in the
coverage, meaning that there are experiment days without counterparts
in the benchmark dataset. Ideally, the sensing equipment needs to be
installed several seasons before the experimental controller is applied
in order to have a reliable dataset.

The main focus areas for improved performance are HP control and
modeling. The performance of the MPC was degraded by problems
listed below.

• A side effect of using the compressor block function is that the HP
attempts to heat the DHW using the electric heating rod, which
has a power output of 10 kW. This is far from ideal, since just a
few minutes in this state is costly. Suggested solution: block the
compressor for space heating only.

• When the HP defrosts, the measured heat flow reverses. Any
controller regulating the heat output needs to be able to detect
and handle such a situation. Suggested solution: put the control
in standby mode.

• It is not possible to start the heat pump on demand, the only op-
tion is to release the compressor brake and wait. The waiting time
is observed to be between 60 and 120 min. Suggested solution:
adapt the block release for best start-up timing or introduce/use
open HP controller standards
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• In certain situations the heat pump shuts down before it should.
It is assumed that a combination of high ambient temperature
and low flow caused the internal controllers to shut it down.
Suggested solution: use data to figure out what events cause a
shut down.

• A low pass filter and other unknown internal states make control
through ambient temperature overwrite particularly challenging.
Suggested solution: use a heat pump with reference control for
heat.

All of these effects could have been prevented if the HP had an
nterface for set-point control. The path forward for commercial heat
umps should be to provide an interface for reference control which
ould allow the HP to operate in a near-optimal state while being part
f a coordinated and cooperative control scheme.

Using an averaged room temperature in the upper control level has
roven to be completely viable with respect to comfort. Controlling this
ay does conflict with the idea that each room should be controlled

trictly after individual references, but it is our experience that large
emperature differences within the thick shell of a low energy house
re difficult to obtain in any case.

Given that prices are the result of market mechanisms rather than
urely physical processes, it is exceedingly difficult to forecast future
rices. This controller can become more efficient if the daily price-
olatility increases, on the other hand, lower prices can make the
ontroller superfluous. This said, low prices are good for the consumer,
o one might think of the controller as an insurance against long periods
f high, volatile prices.

During the experiment period, the models were updated several
imes with the latest data. Although This was done manually, it is not
ur recommendation to implement a similar control structure without a
roper automated procedure in place. It is simply too costly to perform
pdates manually in a real setting.

Lastly, a look at some economic aspects with respect to the current
rice situation and controller performance. If the heating season lasts
months (≈ 120 days), an average cost reduction of €1 per day would

ranslate into €1200 over a 10 year period. Although it is hard to
redict, this could be a reasonable price for the controller. The MPC
ielded a reduction of €0.29 per day, meaning that it would take 34
ears to save €1200 under current price conditions. It has to be noted
hat this case involves a low energy house, and this calculation is not
eant to be extrapolated to less energy efficient houses.

The analysis of the savings potential for the MPC controller would
e incomplete if the effect of the relatively large evening peak price
s ignored. The daily recurrence of the evening peak tariff begs the
uestion: What is the saving rate from simply blocking the HP in the
vening peak period? Using the method from Section 4.6, the benchmark
ontroller has used an extra 60.0 kWh electricity in the timespan
7:00–21:00 translating to an extra cost of €34.9 over the test period
ompared to the MPC approach. Postponing the electricity consumption
o the hours following the evening peak would cost €16.1, based on
he average price between 21:00 and 01:00, resulting in an overall
eduction of €18.8. This is 66% of the estimated savings provided by
he MPC. Two things have to be noted, the peak block saving assumes a
OP of 4.2, which can only be achieved at moderate heating loads, and
he cost reduction of the experiment is calculated based on all comfort
evels.

. Conclusion

During this study an implementation oriented, price-responsive
PC controller has been tested on a commercial HP, over the course

f four months in the winter 2022–2023. The results show that load
hifting can reduce heating costs by at least 2.3%, only by activating the
eat capacity of the building structure and without reducing the indoor
13

emperature. The production patterns have been shifted to support
the grid through increased consumption at night and by shutting the
HP down in the evening peak. Further, it has been established that
under the current danish price scheme the evening peak is the decisive
cost factor, and about 66% of the savings provided by the MPC can
be obtained just by blocking the HP in the evening peak. Full or
partial shutdown in the evening peak should immediately be broadly
implemented. This rule creates correlated consumption patterns, which
might become problematic for the grid later. In case the grid operators
wish to use more coordinated approach controllers of the type pre-
sented here are needed, but, at the moment the cost reduction obtained
from price responsiveness cannot cover the costs of acquiring such
capabilities, so more financial incentive needs to be provided.

The ambient temperature overwrite applied to control the heat flow
of the HP has proven to be a functional but inefficient way to make it
smart grid-ready. A dedicated input for reference control as a standard
is to be desired if advanced control of HPs should be the norm.

Several publications have suggested that the upper layer, in a
hierarchical control structure can be controlled using a building model
having only one heating zone without degrading indoor comfort. We
can report that the results presented here support this idea. Although,
it has to be mentioned that the highly insulated shell of the house might
be a large contributor.

Future work is to automate the process of gathering quality data
from the sensors and update the models for building, HP and PV
regularly. The next natural step for the MPC is to upgrade the HP
retrofit to include control of domestic hot water production which, at
this moment, is a randomly occurring process, often taking place in the
evening peak.
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Table B.1
Fitted parameters for heat pump efficiency model.

Date 𝑘0 𝑐0 𝑐1 𝑐2 𝑇̄F

2022-11-05 125.256 −25.348 414.026 −62.854 26.63
2022-11-24 −9288.9 2363.53 1325.13 −210.53 50.00
2022-12-01 −1880.2 273.2 694.6 −101.28 50.00
2023-01-27 −793.31 105.79 509.07 −46.854 41.00

Appendix A. Resident statements

The 11th Jan. 2023, the residents were sent a questionnaire about
the experienced indoor climate comfort. Before reading the question-
naire, note that it was not conducted anonymously and the text is
translated from Danish. The questions and answers are as follows.

(1) Have you experienced an increase in discomfort with respect to
indoor climate when you compare with last heating season?

Answer: I actually think that we have felt a better comfort than
I remember from last year. There was an experience of
discomfort in the beginning of the experiment, which we
talked about, thereafter it has been quite comfortable.

(2) When you have experienced discomfort, has it been too warm, too
cold or do you experience both too warm and too cold periods?

Answer: No, we do not have any periods with unpleasantly low
temperatures. We have as always lower temperatures in
the cinema/hobby-room, but that has been fine.

(3) Is there any time of day where the discomfort most often occurs?

Answer: No comment

(4) What have you noticed with respect to floor temperatures?

Answer: It has actually been pleasantly warm, and I do not
think that we have experienced cold floors, which we
typically experience at middle-high outdoor temperatures.

(5) Have you experienced that the radiation from the floors has been
too high?

Answer: No

(6) Have you experienced that the radiation was too low? A feeling
of being cold even though the room temperature was high.

Answer: No, as said, we have not experienced that for long.

Appendix B. Model fits

B.1. Heat pump efficiency model

See Fig. B.1 and Table B.1.

Fig. B.1. Comparison between measurements and estimates for the initial fit of the
P efficiency model. The data was obtained during operation using the manufacturer’s
14

ontroller.
B.2. House model

This section shows the first and last parameter fit for the house
model described in Section 4.1 (see Figs. B.2 and B.3).

Fig. B.2. Fitted 2022-02-05 to the 35 prior days of data.

Fig. B.3. Fitted 2023-02-09 to the 10 prior days of data.
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