
 

  

 

Aalborg Universitet

The effects of respiratory rate and tidal volume on pulse pressure variation in healthy
lungs-a generalized additive model approach may help overcome limitations

Enevoldsen, Johannes; Brandsborg, Birgitte; Juhl-Olsen, Peter; Rees, Stephen Edward;
Thaysen, Henriette Vind; Scheeren, Thomas W L; Vistisen, Simon Tilma
Published in:
Journal of Clinical Monitoring and Computing

DOI (link to publication from Publisher):
10.1007/s10877-023-01090-6

Creative Commons License
CC BY 4.0

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Enevoldsen, J., Brandsborg, B., Juhl-Olsen, P., Rees, S. E., Thaysen, H. V., Scheeren, T. W. L., & Vistisen, S.
T. (2024). The effects of respiratory rate and tidal volume on pulse pressure variation in healthy lungs-a
generalized additive model approach may help overcome limitations. Journal of Clinical Monitoring and
Computing, 38(1), 57-67. https://doi.org/10.1007/s10877-023-01090-6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1007/s10877-023-01090-6
https://vbn.aau.dk/en/publications/9e012b0a-1013-43af-b13c-1df967a19c7c
https://doi.org/10.1007/s10877-023-01090-6


Vol.:(0123456789)1 3

Journal of Clinical Monitoring and Computing (2024) 38:57–67 
https://doi.org/10.1007/s10877-023-01090-6

ORIGINAL RESEARCH

The effects of respiratory rate and tidal volume on pulse pressure 
variation in healthy lungs–a generalized additive model approach 
may help overcome limitations

Johannes Enevoldsen1,2   · Birgitte Brandsborg2   · Peter Juhl‑Olsen1,3   · Stephen Edward Rees4   · 
Henriette Vind Thaysen5   · Thomas W. L. Scheeren6,7   · Simon Tilma Vistisen1,2 

Received: 3 April 2023 / Accepted: 5 October 2023 / Published online: 16 November 2023 
© The Author(s) 2023

Abstract
Pulse pressure variation (PPV) is a well-established method for predicting fluid responsiveness in mechanically ventilated 
patients. The predictive accuracy is, however, disputed for ventilation with low tidal volume (VT) or low heart-rate-to-res-
piratory-rate ratio (HR/RR). We investigated the effects of VT and RR on PPV and on PPV’s ability to predict fluid respon-
siveness. We included patients scheduled for open abdominal surgery. Prior to a 250 ml fluid bolus, we ventilated patients 
with combinations of VT from 4 to 10 ml kg−1 and RR from 10 to 31 min−1. For each of 10 RR-VT combinations, PPV was 
derived using both a classic approach and a generalized additive model (GAM) approach. The stroke volume (SV) response 
to fluid was evaluated using uncalibrated pulse contour analysis. An SV increase > 10% defined fluid responsiveness. Fifty 
of 52 included patients received a fluid bolus. Ten were fluid responders. For all ventilator settings, fluid responsiveness 
prediction with PPV was inconclusive with point estimates for the area under the receiver operating characteristics curve 
between 0.62 and 0.82. Both PPV measures were nearly proportional to VT. Higher RR was associated with lower PPV. 
Classically derived PPV was affected more by RR than GAM-derived PPV. Correcting PPV for VT could improve PPV’s 
predictive utility. Low HR/RR has limited effect on GAM-derived PPV, indicating that the low HR/RR limitation is related 
to how PPV is calculated. We did not demonstrate any benefit of GAM-derived PPV in predicting fluid responsiveness.
Trial registration: ClinicalTrials.gov, reg. March 6, 2020, NCT04298931.

Keywords  Dynamic filling variable · Fluid responsiveness · Hemodynamic monitoring · Heart–lung interaction · 
Mechanical ventilation · Pulse pressure variation

1 � Background

Ventilator-induced pulse pressure variation (PPV) is a well-
established and accurate method for predicting fluid respon-
siveness [1, 2]. Despite this accuracy, there are important 
limitations to its clinical use, including ventilation with low 
tidal volume (VT) and low heart-rate-to-respiratory-rate ratio 
(HR/RR) [3–5]. These limitations are frequently discussed, 
although their physiological basis is incompletely under-
stood [3].

Low VT ventilation was presented as a limitation by De 
Backer et al. in 2005, where it was shown that PPV only 
reliably predicted fluid responsiveness in patients ventilated 
with a VT > 8 ml kg−1 [5]. However, low VT was highly 
associated with a diagnosis of acute respiratory distress 
syndrome (ARDS), making it difficult to isolate the effect 
of VT. The study results may also have been affected by RR 
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[4], respiratory system compliance [6], and other aspects of 
underlying lung disease. There are clinical studies with low 
VT ventilation where PPV predicts fluid responsiveness well, 
but the predictive performance varies substantially [7]. It has 
been shown that PPV is highly correlated between different 
VT settings in the same patient [8], and that low VT is asso-
ciated with lower PPV [9, 10]. Therefore, adjusting PPV by 
VT, respiratory driving pressure or changes in pleural pres-
sure, has been suggested [11–13]. The effect of VT on PPV 
is, however, still unclear. No studies have simultaneously 
investigated low VT and low HR/RR limitations in the same 
patients to decouple these potentially interacting effects.

Low HR/RR was presented as a limitation by De Backer 
et al. in 2009, where it was shown in 17 patients that a HR/
RR < 3.6 hindered accurate fluid responsiveness prediction 
using PPV [4]. The authors suggested that this was caused 
by a negative interference between the cyclic swings in the 
right and left ventricular stroke volume, respectively. We 
speculate that the low HR/RR limitation may, at least par-
tially, result from a sampling problem specific to the classic 
PPV algorithm. In the HR/RR study [4], PPV was calculated 
for individual respiratory cycles [4, 14]. When there are few 
beats per respiratory cycle (low HR/RR), the beats may not 
lie close to the maximal and minimal possible pulse pressure 
(PP) in each cycle, giving an underestimation of PPV [10]. 
This limitation could be overcome by estimating PPV from 
a generalized additive model (GAM) of PP [15, 16].

We investigated the following research questions:
1. Predefined primary endpoint: how does altering VT 

and RR affect PPV’s ability to predict fluid responsiveness?
2. What is the agreement between PPV derived with a 

GAM and with the classic approach, and is the agreement 
related to HR/RR?

3. How does altering VT and RR affect PPV?

2 � Methods

This prospective study was conducted at Aarhus University 
Hospital, Denmark, after approval by the Central Denmark 
Region Ethics Committee (January 2020, case no.: 1-10-72-
245-19) and registration on ClinicalTrials.gov (March 2020, 
identifier: NCT04298931). Patients gave written informed 
consent prior to participation.

2.1 � Study population

We included adults (≥ 18 years) scheduled for elective open 
abdominal surgery with hemodynamic monitoring using 
a FloTrac™ (4th generation) based device (EV1000™ or 
HemoSphere™, Edwards Lifesciences, Irvine, California).

Exclusion criteria were: irregular heart rhythm (e.g. 
atrial fibrillation), known left ventricular ejection fraction 

(LVEF) ≤ 40%, known right ventricular dysfunction 
(reported qualitatively or Tricuspid Annular Plane Systolic 
Excursion (TAPSE) < 17 mm) (a recent echocardiographic 
examination was not required), and pregnancy.

The cohort constitutes a convenience sample.

2.2 � Protocol

Anaesthesia was induced with propofol and maintained 
with sevoflurane on a Dräger Perseus® A500 (Dräger, 
Lübeck, Germany) anaesthesia machine; remifentanil was 
used for analgesia, and rocuronium for muscle relaxation. 
A thoracic epidural catheter was placed, and tested with 
3 ml lidocaine 2% with adrenaline before induction. Arte-
rial- and central venous pressure transducers were zeroed 
to atmospheric pressure and levelled at the right atrium. 
Patients were ventilated with pressure regulated volume 
control (VC-CMV + Autoflow®) with inspiration-expi-
ration-ratio of 1:2, without any spontaneous breathing 
efforts.

Patients were observed in the context of a fluid adminis-
tration prescribed by the treating anaesthetist, where acute 
hemodynamic perturbations were not expected (e.g. due to 
surgery). In the study period, any infusions were kept con-
stant, and no bolus medication was administered. Before 
the fluid administration, a ventilation protocol was initi-
ated comprised by a series of VT- and RR combinations 
(10 combinations of VT: 4, 6, 8, and 10 ml kg−1 (predicted 
body weight [17]) and RR: 10, 17, 24, and 31 min−1; see 
Fig. 1. Each setting was used for 30 s. For each RR, VT 
was applied from lowest to highest. The order of the RR 
settings 17, 24 and 31 min−1 was randomised, while the 
four settings with RR of 10 min−1 were always applied 
last to minimise effects of potential lung recruitment from 
ventilation with VT = 10 ml kg−1. The maximal allowed 
airway pressure was 40 cmH2O. Afterwards, the ventila-
tor was reset to pre-protocol settings. Two to four minutes 
after the ventilation protocol, 250 ml of fluid (albumin or 
acetated Ringer’s solution as decided by the anesthesiolo-
gist) was administered through a fluid warming system 
(3 M™ Ranger™) over two minutes. The observation 
window ended two minutes after completion of the fluid 
administration.

2.3 � Data recording

We used VitalRecorder [18] to record data from the bed-
side monitor (Philips IntelliVue™ MX550, Eindhoven, the 
Netherlands) and the haemodynamic monitor (Hemosphere 
or EV1000), and VSCapture [19] to record data from the 
ventilator. Recordings were synchronised before analysis.
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2.4 � Pulse pressure variation

Recordings were divided into ten 30-s windows: one for 
each protocolised ventilator setting (We used 30-s win-
dows to have room to exclude e.g. ectopic beats. On pilot 
data, 20-s recordings were sufficient to derive PPV from 
a GAM). Individual heart beats were detected from the 
arterial waveform, and starttime (diastole) and PP (systolic 
pressure—diastolic pressure) were recorded. A beat was 
marked as an extrasystole and excluded if the time since 
the previous beat was less than 90% of the median of the 
ten preceding beat intervals. The following (post-ectopic) 
beat was also excluded. Additionally, outlier beats defined 
by a PP more than ± 25% from the median of the ten near-
est beats were excluded. Thirty-second windows contain-
ing more than two extrasystoles were excluded.

Two PPV calculations were performed for each 30-s 
window: the classic calculation (PPVClassic) and PPV 
estimated using a GAM (see Fig. 2). With PPVClassic, we 
aimed to match the calculation of PPV described by De 
Backer et al. [4, 5]: Consecutive pairs of maximum and 
minimum PP were selected so each maximum is within 
one respiratory length of the previous minimum, and each 
minimum is within one respiratory length of the previous 
maximum. For each maximum-minimum pair, PPV was 
calculated as.

 
PPVClassic was defined as the mean PPV of the last three 

maximum-minimum pairs during a protocol ventilator set-
ting (see Fig. 2c).

The GAM-derived PPV (PPVGAM) was calculated as 
described previously (see Fig. 2b) [15]. This method quan-
tifies the respiratory variation in PP by decomposing the 
series of PP measurements into a repeating respiratory 
component, and a slower trend over time. The respiratory 
component’s peak-to-peak amplitude divided by the mean 
PP constitutes PPVGAM.

2.5 � Fluid responsiveness

Stroke volume (SV) was estimated using pulse contour anal-
ysis (FloTrac). Each patient’s SV response to the 250 ml 
fluid challenge was calculated as:

Where SVpre and SVpost are the medians of two minutes 
of SV measurements (six samples), before and after fluid 
administration. A ΔSV>10% was considered a positive fluid 
response (prespecified).

2.6 � Statistics

Data were analysed with R 4.1.0, tidyverse, pROC, boot and 
brms [20–24]. Data and code for this section are available at 
https://​doi.​org/​10.​5281/​zenodo.​69843​10.

2.6.1 � Sample size calculation

The study was powered with respect to fluid responsiveness 
prediction. We expected that 50% of patients would be fluid 
responders; therefore, to reach a power of 0.9 with α = 0.05, 
33 patients should be included. We decided to include 50 
patients to account for uncertainty in the number of fluid 
responders and to increase precision of the mixed-effects 
model estimates.

2.6.2 � Fluid responsiveness prediction

Fluid responsiveness prediction, with PPVGAM or PPVClassic 
as predictors, was evaluated using receiver operating charac-
teristic (ROC) analysis. Confidence intervals (95%) for area 
under the ROC curve (AUROC) were calculated using the 
DeLong-method [25].

PPV = 100 ⋅

(

PPmax − PPmin

)

(

PPmax + PPmin

)

∕2

ΔSV = 100 ⋅
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SVpre

Hyperventilation
Hypoventilation

50 %

75 %

100 %

150 %

200 %

250 %

1

2

3

4

5

6

7

8

9

10

4

6

8

10

71 134210
Respiratory rate [min ¹]

Ti
da

l V
ol

um
e 

[m
l k

g(
pb

w
)¹

]

Fig. 1   Example of the series of ventilator settings applied. Each 
numbered dot represents a combination of tidal volume (normalised 
to predicted body weight (pbw)) and respiratory rate. The numbers 
represent an example of the order of application of the settings. For 
each respiratory rate, tidal volumes were applied from low to high. 
Respiratory rates 17, 24 and 31 min−1 were applied in random order. 
Respiratory rate 10 min−1 was always applied last to avoid having any 
recruitment effect from the highest tidal volume (10  ml  kg(pbw)−1) 
influence the remainder of the recording. Curved lines represent set-
tings with equal alveolar ventilation, assuming a dead space volume 
of 1 ml kg(pbw)−1. The curved lines’ labels denote the alveolar ven-
tilation relative to ventilation with a respiratory rate of 14 and a tidal 
volume of 7 ml kg(pbw)−1

https://doi.org/10.5281/zenodo.6984310
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2.6.3 � Comparison of PPVClassic and PPVGAM

We used Bland–Altman analysis to compare PPVClassic with 
PPVGAM at each ventilator setting [26]. Limits of agreement 
(95% LoA) were calculated as mean(PPVGAM − PPVClassic) 
± 1.96*SD(PPVGAM − PPVClassic), where SD is the stand-
ard deviation. Confidence intervals (95%) for bias and LoA 
were calculated using nonparametric bootstrapping with 
4000 resamples.

2.6.4 � The effect of VT and RR on PPV

To investigate the effect of each ventilator setting on PPV, 
we fitted a Bayesian mixed-effects model with a patient-
specific intercept and a separate variance for each ventilator 
setting.

In brief, the model describes the relative effects of VT 
and RR on PPVs measured within a patient. The relative 
effects were fitted for each of the two PPV methods (GAM 
and Classic). While the estimated relative differences were 
the same for all patients (fixed effects), the absolute PPV val-
ues can differ between patients (random effect). The physi-
ological understanding of this is that patients have individual 
Frank-Starling curve operating positions, and that each ven-
tilator setting produces a PPV conditional on the patient’s 
position on the Frank-Starling curve.

To increase robustness to outlying values, a Student’s T 
likelihood distribution with four degrees of freedom was 
used. The link function was the logarithm, and, conse-
quently, the exponential of the model coefficients are the 
relative effects on PPV.

A formal model formulation with prior specification and 
rationale is presented in Online Resource 1.
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Fig. 2   Illustration of the two methods used to calculate pulse pres-
sure variation (PPV). The patient was ventilated with a tidal volume 
of 8 ml kg−1 and a respiratory rate of 24 min−1. Panel a: a 30 s time 
series of pulse pressure (PP) measurements is available for PPV cal-
culation at each ventilator setting. Panels b and c illustrate calcula-

tion of PPV with a generalized additive model (GAM): the 30 s time 
series is decomposed into a trend in PP over time (b) and the cyclic 
variation in PP with each respiratory cycle (c). PPVGAM is the varia-
tion in PP that is explained by the respiratory component (c). Panel d 
illustrates the classic calculation of PPV
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The model was sampled using Stan, via the R interface 
brms [24, 27].

Posterior distributions were summarised as median 
and 95% interval (2.5th to 97.5th percentile). This inter-
val gives a range of values for each parameter that are 
compatible with the observed data, similar to a confidence 
interval [28].

To compare residual standard deviation across different 
ventilator settings, we calculated the coefficient of varia-
tion (CV): the residual standard deviation divided by the 
expected value of PPV for each ventilator setting.

3 � Results

From May 2020 to June 2021, we included 52 patients who 
underwent open abdominal surgery under general anaes-
thesia. Of these, 50 had a successful measurement of the 
response to the 250 ml fluid challenge and were eligible 
for fluid responsiveness analysis. The mean duration of 
the fluid infusion was 113 (SD 27) seconds. Ten patients 
were fluid responders (ΔSV > 10%). Patient characteris-
tics, vasopressor use and average SV response to fluid are 
shown in Table 1.

Four of the 52 patients eligible for PPV analysis reached 
(or were close to) the maximal allowed airway pressure 
(40 cmH20) at RR = 31 min−1, VT = 6 ml kg−1, and did not 
have the setting: RR = 31 min−1, VT = 8 ml kg−1 applied. 
In nine windows (ventilator settings), there were more than 
two extrasystoles, leaving 507 of the 520 potential windows 
available for analysis. Online Resource 2 shows included 
and excluded beats and PPV calculation for all ten ventilator 
settings in all patients.

3.1 � Fluid responsiveness prediction

Figure 3 shows scatter plots of PPVGAM and the correspond-
ing fluid response (ΔSV) for all ventilator settings (a simi-
lar figure for PPVClassic is available in Online Resource 3 
Fig. S1). The capacities of PPVGAM and PPVClassic to clas-
sify fluid responsiveness (ΔSV > 10%) are presented as 
ROC curves in Online Resource 3 Fig. S2. At the ventilator 
setting RR = 10 min−1, VT = 10 ml kg−1, PPVGAM had an 
area under the ROC curve (AUC) of 0.73 (95% CI 0.57 to 
0.90), while the AUC for PPVClassic was 0.74 (95% CI 0.57 
to 0.92). At RR = 31 min−1, VT = 6 ml kg−1, PPVGAM had 
an AUC of 0.65 (95% CI 0.45 to 0.85), while the AUC for 
PPVClassic was 0.62 (95% CI 0.40 to 0.84). Online Resource 
3 Table S1 presents AUC, optimal PPV threshold, sensitivity 
and specificity for fluid responsiveness discrimination for all 
ten ventilator settings.

3.2 � Comparison of PPVClassic and PPVGAM

At ventilator setting RR = 10  min−1, VT = 10  ml  kg−1, 
PPVGAM was, on average, slightly lower than PPVClassic: 
mean difference (bias) = −0.36 (95% CI −0.75 to −0.08); 
limits of agreement (95%) were −2.87 to 2.16 (see Fig. 4). 
Bland–Altman plots comparing PPVClassic and PPVGAM for 
all ten ventilator settings are presented in Online Resource 
3 Fig. S3.

The relationship between PPV and HR/RR is shown 
in Fig. 5. At HR/RR below 3.6, PPVGAM was generally 
higher than PPVClassic: bias = 0.93 (95% CI 0.76 to 1.11); 
limits of agreement (95%) were −1.73 to 3.59. At HR/RR 
above 3.6, PPVGAM and PPVClassic gave very similar values: 
bias = −0.09 (95% CI −0.23 to 0.03); limits of agreement 
(95%) was −1.85 to 1.67.

3.3 � The effect of VT and RR on PPV

Model parameters are shown in Fig. 6. Estimates of the 
effects of VT = 10, 8 or 6 ml kg−1 were very close to a direct 
proportionality between VT and PPV for both PPVClassic 
and PPVGAM. Relative to PPVGAM at VT = 10  ml  kg−1, 
PPVGAM at VT = 8 ml kg−1 was 81 (95% CI 77 to 86)% and 
PPVGAM at VT = 6 ml kg−1 was 64 (95% CI 60 to 67)%. At 
VT = 4 ml kg−1, PPVGAM was 49 (95% CI 46 to 53)% and 
not compatible with the 40% expected from a direct propor-
tionality between VT and PPV. The effect of VT on PPVClassic 
was similar.

Higher RR was associated with lower PPV, and the effect 
was most pronounced for PPVClassic: at RR = 31  min−1, 
PPVClassic was 56 (95% CI 52 to 61)% and PPVGAM was 81 
(95% CI 76 to 86)%, both relative to at RR = 10 min−1.

The residual variation is shown in Online Resource 3 Fig. 
S4. The relative variation of the observations around the 
model predictions (CV of the residuals) was similar between 
PPVClassic and PPVGAM, except for at RR = 31 min−1, where 
PPVClassic had a higher uncertainty (the difference in CV 
is 16 (95% CI 3 to 30)%-points). The CV was lowest at 
RR = 17 min−1 for both PPVClassic and PPVGAM.

4 � Discussion

This study had three main aims. First, we sought to describe 
VT’s and RR’s impact on PPV’s ability to predict fluid 
responsiveness. Second, we compared PPV calculated with 
a classical approach to PPV calculated from a GAM, as we 
expected that the classical approach tends to underestimate 
PPV at low HR/RR. Third, we investigated the direct impact 
of VT and RR on PPV.
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Table 1   Characteristics of 
patients included in the study

ASA score American Society of Anesthesiologists physical status classification system, SV Stroke volume 
estimate from FloTrac® pulse contour analysis, MAP Mean arterial pressure, SAP Systolic arterial pres-
sure, DAP Diastolic arterial pressure, PP Arterial pulse pressure, HIPEC Hyperthermic intraperitoneal 
chemotherapy, APE Abdomino-perineal excision, VRAM Vertical rectus abdominis myocutaneous flap, 
pbw predicted body weight
1 Median [IQR]; n (%), 2Two patients received no fluid challenge, 3Surgical procedures are counted in the 
first matching category

Variable ΔSV ≤ 10%, N = 401 ΔSV > 10%, N = 101 Total, N = 522

Age 65 [57, 73] 61 [55, 69] 64 [57, 72]
Sex
 Female 21 (52%) 4 (40%) 26 (50%)
 Male 19 (48%) 6 (60%) 26 (50%)

Height [cm] 173 [166, 179] 180 [165, 184] 173 [165, 180]
Weight [kg] 78 [70, 82] 78 [62, 87] 79 [70, 84]
Body mass index 24.8 [23.4, 28.2] 22.8 [21.6, 25.0] 24.7 [23.3, 28.2]
Predicted body weight (pbw, kg) 67 [58, 74] 75 [57, 79] 68 [57, 75]
Known hypertension 17 (42%) 1 (10%) 19 (37%)
ASA score
 1 14 (35%) 6 (60%) 21 (40%)
 2 22 (55%) 3 (30%) 25 (48%)
 3 3 (7.5%) 1 (10%) 5 (9.6%)
 4 1 (2.5%) 0 (0%) 1 (1.9%)

Surgical procedure3

 HIPEC 27 (68%) 7 (70%) 36 (69%)
 APE and/or VRAM 7 (18%) 1 (10%) 8 (15%)
 Colon resection 2 (5.0%) 0 (0%) 2 (3.8%)
 Other 4 (10%) 2 (20%) 6 (12%)

Fluid type for fluid challenge
 Acetated Ringer's solution 30 (75%) 6 (60%) 36 (69%)
 Human albumin 10 (25%) 4 (40%) 14 (27%)
 No fluid challenge 0 (0%) 0 (0%) 2 (3.8%)

Any vasopressor during study protocol 36 (90%) 10 (100%) 47 (90%)
Noradrenaline rate [µg kg−1 min−1]
 0 14 (35%) 6 (60%) 21 (40%)
  < 0.1 19 (48%) 4 (40%) 23 (44%)
  ≥ 0.1 7 (18%) 0 (0%) 8 (15%)

Dopamine rate [µg kg−1 min−1]
 0 22 (55%) 4 (40%) 28 (54%)
  < 5 17 (42%) 5 (50%) 22 (42%)
  ≥ 5 1 (2.5%) 1 (10%) 2 (3.8%)

Pre-intervention ventilation
 Tidal volume [ml kg−1 (pbw)] 7.2 [6.9, 7.8] 6.8 [6.4, 8.0] 7.2 [6.9, 7.8]
 Respiratory rate [min−1] 14 [14, 16] 14 [14, 16] 14 [14, 16]
 Positive end expiratory pressure [cmH20] 5 [5, 6] 6 [5, 6] 5 [5, 6]

Fluid challenge
 SV before fluid challenge [mL] 71 [60, 82] 58 [54, 66] 68 [59, 81]
 SV response to fluid challenge [%] 2.1 [0.6, 5.4] 17.3 [13.7, 20.1] 3.8 [1.0, 8.9]
 MAP before fluid challenge [mmHg] 70 [64, 74] 68 [62, 73] 69 [63, 74]
 MAP after fluid challenge [mmHg] 78 [71, 82] 74 [68, 81] 77 [70, 83]
 SAP before fluid challenge [mmHg] 106 [96, 120] 99 [90, 111] 105 [95, 119]
 SAP after fluid challenge [mmHg] 118 [106, 130] 112 [108, 127] 118 [107, 129]
 DAP before fluid challenge [mmHg] 53 [49, 57] 55 [50, 59] 53 [49, 58]
 DAP after fluid challenge [mmHg] 57 [53, 63] 56 [51, 65] 57 [52, 64]
 PP before fluid challenge [mmHg] 54 [48, 66] 46 [42, 60] 53 [44, 65]
 PP after fluid challenge [mmHg] 60 [53, 73] 60 [50, 67] 60 [52, 71]



63Journal of Clinical Monitoring and Computing (2024) 38:57–67	

1 3

4.1 � Fluid responsiveness prediction

Unfortunately, not much can be derived about PPV’s abil-
ity to predict fluid responsiveness from this study, mainly 
due to the low number of responders. Point estimates for 

both PPVGAM and PPVClassic showed fluid responsiveness 
prediction with mediocre/poor accuracy, even when patients 
were ventilated at VT = 10 ml kg−1 and RR = 10 min−1. Most 
confidence intervals were compatible with AUCs from 0.6 
to 0.9 (poor to excellent classification).
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eralized additive model (PPVGAM) and the stroke volume response 
(ΔSV) to a 250 ml fluid challenge. Panels are arranged with tidal vol-

umes (VT) in rows and respiratory rates (RR) in columns. One fluid 
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0

5

10

15

20

P
P

V
G

A
M

[%
]

0 5 10 15 20

PPV Classic [%]

a

Bias: -0.36
[-0.75; -0.08]

LoA: -2.87
[-4.10; -1.99]

LoA: +2.16
[+1.67; +2.83]

-2.5

0.0

2.5

P
P
V

G
A
M
-
P
P
V
C
la
ss

ic

0 5 10 15 20 25

(PPVGAM+ PPVClassic) / 2

b

Fig. 4   Scatter plot (a) and Bland–Altman plot (b) showing the 
relation between pulse pressure variation derived from a general-
ized additive model (PPVGAM) and pulse pressure variation cal-
culated using the classic approach (PPVClassic) when tidal volume 

is 10 ml  kg−1 and respiratory rate is 10  min−1. In panel b, the outer 
dashed lines represent 95% limits of agreement (LoA). Grey areas are 
95% confidence intervals for bias and LoA. The yellow line and area 
is a linear regression fit with 95% confidence intervals



64	 Journal of Clinical Monitoring and Computing (2024) 38:57–67

1 3

Based on basic Bland–Altman analysis (Online Resource 
3 Fig. S3), we demonstrated that PPV derived from GAM 
and the classic approach are very similar at VT ≥ 6 ml kg−1 
and RR ≤ 17 min−1.

4.2 � Comparison of PPVClassic and PPVGAM 
and the effects of VT and RR on PPV

Based on basic Bland–Altman analysis (Online Resource 
3 Fig. S3), we demonstrated that PPV derived from GAM 
and the classic approach are very similar at VT ≥ 6 ml kg−1 
and RR ≤ 17 min−1.

The mixed-effects model demonstrated that within the 
same patient, PPV was nearly proportional to VT across 
various levels of VT and RR. The VT effect was similar 
for PPVGAM and PPVClassic (see Fig. 6). Reuter et al. 2003, 
reported a similar proportionality between VT and stroke 
volume variation, while VT’s effect on PPV was clear, but 
less than proportional [9]. Liu et al. 2016 report results that 
seem to be compatible with a proportionality between VT 
and PPV, though they did not directly analyse this relation-
ship [8]. High RR reduced PPVClassic markedly more than it 
reduced PPVGAM (see Fig. 6). This difference likely reflects 

a sampling effect rather than a physiological effect. At high 
RR, PPVClassic is calculated from very few beats per respira-
tory cycle, increasing the risk of a falsely low PPV. This 
result is in accordance with the original study investigating 
the HR/RR ratio effect, which found that PPV (correspond-
ing to PPVClassic in the present paper) dropped markedly 
when the HR/RR was < 3.6 [4]. Conversely, PPVGAM works 
well in low HR/RR situations, since it combines information 
from several respiratory cycles (see Fig. 2). This difference 
between PPVClassic and PPVGAM at low HR/RR is also illus-
trated in Fig. 5. When HR/RR is an exact low integer ratio 
(e.g., one, two or three beats per ventilation), both PPVGAM 
and PPVClassic can underestimate preload responsiveness, 
since the beats will occur at constant positions in each res-
piratory cycle, and these positions may not represent the 
minimum and maximum preload induced by the ventilation.

The model allows us to account for ventilator settings in 
the interpretation of PPV. As an example, consider a patient 
ventilated at a VT of 6 ml kg−1 and RR of 24 min−1. We 
estimate a PPV of 8% with the GAM method. The best guess 
of what PPV would be if VT is changed to 10 ml kg−1 and 
RR to 10 min−1 (a setting where an optimal PPV threshold 
seems established [2]), is then

For PPVGAM, a pragmatic bedside approximation would 
be to consider PPV directly proportional to VT and disregard 
the effect of RR:

Where PPV is the current PPV and VT is the current VT 
in ml kg(pbw)−1. This approximation works because for 
reciprocal changes in RR and VT (approximately maintain-
ing minute ventilation), the overcorrection from considering 
the effect of VT as proportional, closely matches the effect 
of the RR change.

The CV was similar for PPVGAM and PPVClassic, except 
when RR was high. Here PPVClassic had a significantly higher 
CV. This is in accordance with the sampling problem affect-
ing PPVClassic described above.

4.3 � Limitations

This study included relatively few fluid responders (20%). 
The aim of including patients with no acute need for inter-
vention during the 6-to-8-min ventilation protocol may 
have resulted in a more fluid-optimised population. Also, 
the uncalibrated pulse contour analysis estimate of CO is 
clinically acceptable and is probably one of the most used 
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CO modalities in GDT protocols [29], but it is not the gold 
standard for measuring CO.

Regardless of the cause, the poor predictive perfor-
mance of PPV precludes meaningful investigation of the 
hypothesised advantage of using PPVGAM to predict fluid 
responsiveness at low HR/RR. Also, PPVGAM is currently 
not available on commercial clinical monitors, but could be 
implemented if future studies demonstrate a clinical advan-
tage of the method.

We do not investigate the effect of heart rate (HR) on 
PPV. Any effect of low HR/RR on PPV could be caused, in 
part, by a direct effect of HR. In our data, higher HR is asso-
ciated with higher PPV (see Fig. 5a and b), but we cannot 
say anything about causality, since we do not experimentally 
control HR. It may be that both HR and PPV are associated 
with e.g. volume status.

In accordance with fluid responses, PPV values were rela-
tively low. We do not know whether the relative effects of 
RR and VT found in this study also apply to patients with 
higher PPV.

Patients eligible for major abdominal surgery are gen-
erally in good cardiopulmonary condition. Additionally, 
we excluded subjects with LVEF ≤ 40%, right ventricular 

dysfunction or arrhythmia. The results may not generalise 
to a population with different HR, cardiac function or lung 
compliance, such as ICU patients with ARDS, or other 
critically ill patients.

5 � Conclusion

We demonstrate that the current understanding of ventila-
tor settings’ impact on PPV is insufficient. The limitation 
associated with low HR/RR seems to be predominantly 
related to a specific method of deriving PPV rather than 
a physiological limitation. At high RRs PPV should be 
estimated over multiple respiratory cycles to avoid a basic 
sampling problem. Also, PPV is nearly proportional to 
VT, suggesting that correcting PPV for VT might make the 
optimal threshold less dependent on VT, thus improving 
the utility of PPV. However, it was not possible to dem-
onstrate whether PPV based on GAM modelling would 
result in a better prediction of fluid responsiveness than 
the classical method of deriving PPV.
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