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Abstract

Past cognitive neuroscience studies using naturalistic stimuli have considered narratives holistically and focused on
cognitive processes. In this study, we incorporated the narrative structure, the dramatic arc, as an object of investiga-
tion, to examine how engagement levels fluctuate across a narrative-aligned dramatic arc. We explored the possibility
of predicting self-reported engagement ratings from neural activity and investigated the idiosyncratic effects of each
phase of the dramatic arc on brain responses as well as the relationship between engagement and brain responses.
We presented a movie excerpt following the six-phase narrative arc structure to female and male participants while
collecting EEG signals. We then asked this group of participants to recall the excerpt, another group to segment the
video based on the dramatic arc model, and a third to rate their engagement levels while watching the movie. The
results showed that the self-reported engagement ratings followed the pattern of the narrative dramatic arc.
Moreover, while EEG amplitude could not predict group-averaged engagement ratings, other features comprising dy-
namic intersubject correlation (dISC), including certain frequency bands, dynamic functional connectivity patterns and
graph features were able to achieve this. Furthermore, neural activity in the last two phases of the dramatic arc sig-
nificantly predicted engagement patterns. This study is the first to explore the cognitive processes behind the dra-
matic arc and its phases. By demonstrating how neural activity predicts self-reported engagement, which itself aligns
with the narrative structure, this study provides insights on the interrelationships between narrative structure, neural
responses, and viewer engagement.

Key words: dramatic arc; dynamic functional connectivity; EEG; engagement; intersubject correlation; narrative
cognition

Significance Statement

Dramatic narratives follow a complex structure termed as the narrative arc. Here, we addressed the com-
plexity of this structure to explore brain responses during narrative cognition. We examined the link between
the narrative arc and its six phases with self-reported engagement, and whether brain responses elicited by
a narrative can predict engagement levels. Our results showed that the group-averaged engagement ratings
followed the dramatic arc model. EEG features predicted group-averaged engagement patterns and also
engagement levels in the last two phases. This is the first study to characterize the narrative dramatic arc
phases at the neural level. It contributes to the fields of cognitive narratology and neuroscience by extending
current knowledge on how the brain responds to narratives.

Introduction
Narratives are naturally engaging stimuli and a useful

instrument for understanding affective and cognitive

processes (Sonkusare et al., 2019). Regardless of their
format (e.g., pictorial, written, audiovisual) or whether they
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are fictional or real, narratives share a general structure: be-
ginning, middle, and end (Aristotle, 1984; Varotsis, 2018).
Since Freytag’s seminal work (Freytag and MacEwan,
1895), it has been theorized that dramatic narratives follow a
complex structure known as the narrative dramatic arc. A
modern version of Freytag’s arc comprises six phases (Fig.
1A, top panel): exposition, rising action, crisis, climax, falling
action, and denouement (Laurel, 1991).
A narrative arc intends to create and build tension from

the beginning of the story until its climax and then reduce
the tension until the end of the narrative (Boyd et al.,
2020). Thus, the dramatic arc provides a framework for
structuring a compelling and engaging narrative that cap-
tures the audience’s attention and keeps them engaged
throughout the story (Busselle and Bilandzic, 2009; Bilandzic
et al., 2019). However, one thing is the dramatic arc from the
author’s point of view, and another thing is its actual effect
on the audience. The correspondence of the dramatic arc
with the curve of engagement (Song et al., 2021a). could be
considered an indication of success in its implementation.
Theoretically, many things can influence this correspon-
dence or lack thereof, for instance poor development or rep-
resentation of the story, the level of familiarity with the story
or with its archetypical model/genre, etc. Considering this,
self-reported continuous engagement levels provide evi-
dence of the success in the narrative implementation, which
can further guide our correlation with brain responses.
Previous neuroimaging studies have provided insights

into the relationship between narrative and cognitive
processes. They have investigated how the brain re-
sponds to narrative event boundaries (Baldassano et al.,
2017; Silva et al., 2019; Zheng et al., 2022), movie fea-
tures (van der Meer et al., 2020), narrative comprehension
(Nguyen et al., 2019; Betzel et al., 2020; Song et al.,
2021b) and perspective taking (Lahnakoski et al., 2014),
among other topics. Particularly, past studies have inves-
tigated the relationship between narrative engagement
and neural activity. They found that functional connectiv-
ity varies depending on perceived narrative transportation
(Vaccaro et al., 2021), and potentially predicts fluctuations
in attention (Song and Rosenberg, 2021) and engagement
levels (Song et al., 2021a). Moreover, specific neural pat-
terns emerge during movie watching and reflect self-re-
ported engagement with the movie (van der Meer et al.,
2020), and graph theoretical features are reported to have a
relationship with attention (Hong et al., 2013) or emotional
moments of audiovisual stimuli (Gupta and Falk, 2015;

Vorwerk et al., 2019; Zhang and Liu, 2021). Furthermore, in-
tersubject correlation was shown to capture narrative en-
gagement. Movies evoking emotional responses, which is
related to engagement, lead to high levels of brain synchro-
nization and spectral synchronization across individuals
(Maffei, 2020). In fact, several studies demonstrated that en-
gaging moments in audiovisual narratives increase specta-
tors’ shared neuronal responses (Dmochowski et al., 2012;
Cohen et al., 2017; Poulsen et al., 2017; Song et al., 2021a;
Grady et al., 2022). Although these studies used narratives
as stimuli, they investigated the connection between
engagement and neural responses without focusing on
narrative structure. Therefore, the relationship between
narrative engagement, brain responses, and narrative
arc is underexplored.
Past cognitive neuroscience studies have considered

narratives holistically. Hence, whether engagement levels
and brain responses relate to each other in each phase of
the narrative arc has not yet been investigated. The exis-
tence of a defined structure in narratives may reflect an
evolutionary need for effective information sharing be-
tween individuals (Boyd et al., 2020), but an unanswered
question is whether each narrative phase evokes a differ-
ent brain response. The answer to this question would
advance our understanding of the structure and function
of narratives from a neurologic perspective. In fact, the
“nexus of narrative and mind” (Herman, 2009; p 30) has
been the concern of cognitive narratology for the past two
decades. While acknowledging the challenges of explor-
ing the field of narrative cognition (Bruni et al., 2021), this
study investigates: (1) how the engagement levels fluctu-
ate across a dramatic arc in line with a narrative; (2)
whether it is possible to predict this engagement from
neural activity; and (3) to further examine narrative com-
prehension, the idiosyncratic effects of each phase of
the dramatic arc on brain responses as well as the rela-
tion between engagement and brain responses are ex-
plored. We use an explorative approach to fulfill these
goals. We presented an excerpt of a movie that followed
the narrative arc structure to a group of participants
while collecting EEG brain signals. We then asked this
group of participants to recall the excerpt, another
group to segment the video based on the narrative arc
model, and the last group to rate their engagement lev-
els while watching the movie. Using these datasets, we
extracted several EEG features to explore which fea-
tures better represented the link between engagement
levels and brain responses in the whole narrative arc
and across its phases.

Materials and Methods
The study comprised four parts with three different

groups of participants that used the same stimulus: (1)
EEG; (2) recall (freely recalled voice recordings); (3) self-
report (self-reported engagement data); and (4) event seg-
mentation (the dramatic-arc phase identification data).
The data collection process for EEG and recall was con-

ducted in November, 2020 as part of a larger study.
Participants signed an informed consent sheet before
starting the experiment and were paid for their time. The
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study received approval from the ethics committee for the
Technical Faculty of IT and Design at Aalborg University,
and it was performed in accordance with the Danish Code
of Conduct for Research and the European Code of
Conduct for Research Integrity. The codes used in this
study are from Song et al. (2021a) and are addressed in
Code accessibility part.

Participants, equipment, and experimental design
EEG and recall
Thirty-two right-handed participants (13 females) with

Mage ¼ 26.84 (SD¼ 4.33, range: 20–37) wore a 32-channel
EEG device (10–20 system; Brain Products). Impedance of
the active electrodes was kept below the minimum thresh-
old as stated by the manufacturer (i.e., ,25 kV) during the
whole experiment, and the data were recorded by the Brain
Products software at a sampling rate of 1,000 Hz. A virtual
reality headset (HTC corporation) placed on top of the EEG
device was used for the stimulus presentation. We then told
the participants they would see an 8min 27 s excerpt of an
audiovisual movie, and we instructed them to pay close atten-
tion to the movie as they would be requested to recall it. The
excerpt was from the movie Pride and Prejudice and Zombies
and can be seen here: https://youtu.be/zp6EPM62wAk. We
chose this subplot because it contains the six phases of the
narrative arc proposed by Laurel (1991). (The complete arc

includes the “inciting incident” phase. However, based on the
author’s description and for practical reasons, wemerged this
phase with the “rising action” phase.) Approximately 50min
after having watched the video, we asked the participants to
recall the story from the movie excerpt aloud, and we re-
corded these recollections with amobile phone.

Self-report
Another group of 20 participants (nine females) with

Mage ¼ 24.80 (SD¼ 2.26, range: 22–30) watched the
same movie excerpt on a computer. While watching it,
they continuously reported their levels of their engage-
ment by adjusting a slider scaled from 1 (“not engaging at
all”) to 9 (“completely engaging”). The slider bar was con-
stantly visible at the bottom of the screen during the ex-
periment. This stimulus presentation and recording of
responses was controlled by PsychoPy v3.0 software.
Before the self-report study, the definition of engagement
(inspired by Song et al., 2021a) was provided to the
participants.

Event segmentation
A third group of 19 participants (eight female) with Mage ¼

26.10 (SD¼ 2.74, range: 23–32) attended a workshop in
which they were introduced to the concept of narrative plots
and the six phases of the dramatic arc structure (Fig. 1A,
top panel). Next, we asked them to watch the movie excerpt

Figure 1. Analysis of event segmentation, self-report, and recall. A, Upper panel, The starting point of each phase as identified by
the independent participants after participating in a workshop, including the span of each phase and the phase’s names. The y-axis
of this panel indicates the expected engagement evoked by the narrative plot. A, Middle panel, The raters’ z-normalized engage-
ment ratings. The hot colors denote higher scores, and the cold colors indicate lower scores. A, Bottom panel, The z-transformed
group-averaged engagement ratings. The dashed vertical lines represent the start of the new phase and the end of the previous
phase. B, The participants’ recall similarity for each separate phase. In this case, the falling action and denouement phases were
combined. The matrices show the similarities between the subjects, with the hot colors indicating higher similarity scores. The hori-
zontal bars show the SDs of the subjects’ recall similarities. The stars indicate that there was a significant difference (p, 0.001) be-
tween the SDs of the last phase as compared with other phases.
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and time stamp the moments at which each of the phases
started and ended in the movie. In this study, we considered
the modern version of Freytag’s arc comprising six phases
(Fig. 1A, top panel): exposition, rising action, crisis, climax,
falling action, and denouement (Laurel, 1991). In the exposi-
tion phase, the story’s contextual information is given. In the
rising action phase, the tension created by the conflict is es-
calated and intensified. In the crisis phase, a dilemma re-
lated to the conflict occurs. In the climax phase, there is a
turning point in which a decision is made, or the dilemma is
solved. From a modern perspective, the climax represents
the section with the most action. In the falling action phase,
the story focuses on secondary conflicts and plots. In the
denouement phase, the story comes to an end. A recent
study has presented quantitative evidence that narratives
follow this general narrative arc (Boyd et al., 2020).

Data preprocessing
EEG dataset
The EEG signals were first passed through a third-order

Butterworth filter that had 1- to 40-Hz cutoff frequencies to
remove low and high frequency noises. After this, channels
having the activity above the threshold of the mean6 3 �
SD were detected as noisy channels. In addition, all the
channels were visually inspected by the first author to detect
bad channels, which were removed from the channel list.
The average number of rejected channels per participant
was 0.936 0.60. One participant was excluded because of
having more than four bad channels. To remove eye-related
artifacts and other remaining noises, the filtered data (with-
out noisy channels) were fed into an independent compo-
nent analysis (ICA) algorithm. Using the second-order blind
identification method, the source activities (components)
were estimated, and eye-related artifacts and other noise
sources were detected. The criteria for detecting and re-
moving the noisy components were that the spectral activ-
ity, time course trial-by-trial activity, and topo-map of all the
components were evaluated by the first author and con-
firmed by an expert. All the noisy components were re-
moved from the components list. The information regarding
the component’s activity was calculated and plotted using
the EEG-Lab toolbox. The average number of rejected com-
ponents per participant was 4.6260.86. Next, using the
calculated ICA coefficients, the data were turned back from
source space to channel space, and the de-noised data
were obtained. The rejected channels were then interpo-
lated by the spherical spline method using the information
from six surrounding channels in the FieldTrip toolbox.
Afterward, the de-noised data were re-referenced to the av-
erage activity of all the channels. Next, we downsampled
the EEG data to 200Hz by segmenting the EEG signal into
bins of averaged data from five sample points (Silva et al.,
2019). Since a major part of the current study was based on
functional connectivity analysis, an obstacle was the pres-
ence of volume conduction, which causes spurious connec-
tivity values among EEG channels (Khadem and Hossein-
Zadeh, 2013). These spurious connectivities exist because
channels are far from source activities, so the activity of
each neural source is picked up by multiple channels. To re-
duce the volume conduction effect, we used the current

source density (CSD) method (Mitzdorf, 1985). This method
obtains the spatial properties of each de-noised channel
while neglecting the effect of other channels by using the
second spatial derivative of the EEG recorded in that chan-
nel (Dini et al., 2020). The CSD toolbox (Kayser and Tenke,
2006) was used to apply the CSD method to the de-noised
data with the medium spline flexibility of m¼ 4, as de-
lineated by Dini et al. (2020) and Fitzgibbon et al. (2015).
Finally, the data obtained after the implementation of CSD
were z-normalized across time and downsampled to 200Hz
to reduce the calculation load. This preprocessing proce-
dure is demonstrated in Figure 2A.

Statistical analyses, data processing
In this section, we detail the methods and the imple-

mented statistics. To facilitate easy reading, we have pro-
vided the results of self-report and event segmentation
here together with the methodology employed to obtain
them.

Event segmentation
As previously mentioned, 19 participants attended a work-

shop in which they were asked to indicate the times at which
each phase of the dramatic arc started after they were pro-
vided with the definitions for each phase. Using the indicated
times, we explored the moments that participants consis-
tently mentioned as the start of each phase. Implementing
Silva et al. (2019) method, the number of participants’ indica-
tions that were different from the chance level was calculated
using 3 s as a window of coincidence (Baldassano et al.,
2017). Shuffling the number of observations 1000 times, a
null distribution was generated. Then, the coinciding time
points with a significance threshold of p, 0.05 were tested.
At least eight of the participants (42.11%) should have coin-
ciding answers that could not be explained by chance (for
more on choosing the starting time points, see Silva et al.,
2019). This approach resulted in the data detailed in Table 1.
The dramatic arc presented by the participants is illustrated
in Figure 1A, upper panel.

Self-report
We then evaluated how engagement patterns changed

across time as the participants experienced the story. All the
participants’ button presses were recorded and re-sampled
to 200Hz to match themwith the EEG data for further corre-
lation analysis. To match the engagement scores with the
EEG data, we first defined a null engagement matrix with a
size equal to the EEG length, having 200 sample points per
second. Then we replaced the null values with the values re-
ferring to the engagement scores recorded by the Psychopy
software in each time point. Continuous engagement ratings
that were the same length as the video were obtained and
then z-normalized across time. The participants’ engage-
ment ratings are demonstrated in Figure 1A, middle panel.
After this, we analyzed whether the engagement patterns
were synchronized across the subjects. To do so, we calcu-
lated the pairwise correlation across engagement ratings
using the ratings of all the possible participant pairs (Song et
al., 2021a). The results indicate that there was a significant
positive correlation between pairwise engagement ratings
(mean Pearson’s r(18)¼ 0.406 0.20). We calculated the
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Figure 2. The procedure for calculating the dynamic intersubject correlation (dISC) and the results thereof. A, The steps in prepro-
cessing the EEG data. Each participant’s data went through a preprocessing stage in which the raw data were de-noised. After this,
the volume conduction effect was corrected by implementing the current source density approach and then downsampling and
z-transforming. B, The steps for calculating the dISC for three participants (from a total of 32) and one channel (out of all the
channels). The defined window (indicated by the gray) was applied to every channel for all participants. After this, we calculated the
correlation between the participants’ corresponding channels for all participant pairs. Thus, this figure demonstrates the correlations
for all three participant pairs as an example. The correlation between each window pair is one sample point of pairwise correlations
(shown by the purple, blue, and brown arrows at the top of panel). Sliding the window throughout the entire signal, we obtained a
correlation signal for the three participant pairs. The average for these correlation signals was then used in the next step. C, The
procedure for the statistical analysis that was conducted using a permutation test. First, we calculated the actual correlation be-
tween the averaged dISC and group-averaged engagement rates. Then, we phase-randomized the group-averaged correlations
10,000 times and calculated the correlation between the averaged dISC and each of these phase randomized engagement ratings.
Thus, a null distribution and an actual correlation was obtained. D, The results from the comparison of the actual correlation to the
null distribution. The orange, cyan, and, purple violin plots correspond to the FC5, FC1, and CP2 channels, respectively. The loca-
tion and the obtained p-values are reported in this panel. The black horizontal lines represent the observed correlations. E, The re-
sults from the comparison of the actual correlation to the null distribution, separately for each phase of narrative. The first row
shows the actual correlation against the null distribution and the second row indicate the channel locations which their correlation is
reported. The phases in which dISC was significantly correlated with engagement ratings (rising, crisis, and climax) are shown with
colorful violin plots and channel locations. The phases in which dISC failed to significantly predict the engagement ratings (exposi-
tion, falling, and denouement) are plotted in gray. Total of two channels (CP5 and FP2) in rising, three channels (Pz, Cz, and FP2) in
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average r by z-transforming all pairwise Pearson’s correla-
tion r values to z space using Fisher’s method, calculating
the average z values, and then transforming the averaged z
value back to r value. The correlations were significantly
positive in 89.47% of the pairwise correlations (false discov-
ery rates were corrected for number of statistical tests; cor-
rected p, 0.05). Since the participants’ engagement ratings
were significantly correlated, the group-averaged engage-
ment rating was considered representative of stimulus-
related engagement (Fig. 1A, bottom panel). A qualitative
evaluation of the group-averaged engagements revealed
that this engagement followed the dramatic arc pattern
(e.g., engagement peaks in the climax phase and gradu-
ally decreases in the last phases).

EEG
Dynamic intersubject correlation. To investigate whether

neural brain activity patterns were modulated by engage-
ment, we used dynamic intersubject correlation (dISC).
ISC is a data-driven method that correlates individuals’
neural data to others’ neural data to test whether partici-
pants perceive the same stimulus in similar ways and at
the same time while neglecting subjective differences
(Nastase et al., 2019). ISC is an approach that is well
suited to both EEG and fMRI datasets as it captures the
stimulus-driven patterns of neural activity (Simony et al.,
2016; Petroni et al., 2018; Finn et al., 2020; Imhof et al.,
2020; Dini et al., 2023). Moreover, to identify the brain re-
gions’ patterns that are modulated by stimuli, ISC is consid-
ered an alternative method that overcomes the problems of
traditional methods (e.g., general linear model) as it reduces
intrinsic noises (Simony et al., 2016; Song et al., 2021a).
Compared with traditional methods, ISC does not require
stimulus repetition and fixed experimental manipulation,
which leads to a more naturalistic experimental design
(Nastase et al., 2019; Dini et al., 2023). To test the hypothe-
sis that ISC is modulated by engagement (i.e., ISC is higher
in the more engaging moments), a tapered sliding window
with 15 samples (70ms) was obtained by convolving a rec-
tangular window with a Gaussian (s ¼ 3). The window size
was chosen based on studies that suggest that the optimal
window size for dynamic connectivity analysis is 0.05–0.07
multiplied by the sampling rate (Dini et al., 2020, 2021;

Sendi et al., 2021a,b,c, 2022a,b). Then, the designed win-
dow was slided on the preprocessed EEG signals to cover
the entire duration of the signal, with the step size of 5ms.
Next, within each window, we calculated the Fisher’s z-trans-
formed Pearson’s correlation across corresponding partici-
pant channels (e.g., correlation between the first participant’s
first channel and the second participant’s first channel) and
obtained the ISC for all participant pairs. Repeating the same
procedure for the entire signal, we obtained the dISC for all
subject pairs. The dISC calculation procedure is demon-
strated in Figure 2B. To test whether dISC was modulated by
engagement, we averaged the participants’ calculated dISC
according to the EEG channels. Then, we calculated the cor-
relation of each channel’s dISC with the group-averaged en-
gagement ratings (see the self-report section above) and
obtained the actual correlation. To test the statistical signifi-
cance of the calculated correlation, we used a permutation
test. To generate the null distribution, the self-reported en-
gagement ratings were phase-randomized, and the correla-
tion between the calculated dISC and phase-randomized
engagements were calculated for each iteration. This null dis-
tribution was generated because the phase randomization re-
tained the characteristics of the temporal dynamic, such as
frequency and amplitude, but it changed the phase (Song et
al., 2021a). Repeating this procedure 1000 times, we ob-
tained a null distribution and tested the significance of the ac-
tual correlation assuming a one-tailed significance test with p
¼ (11number of null r values � empirical r)/(11 number of
permutations), R2, and the mean squared error (MSE; find
more details in Song et al., 2021a). Figure 2C demonstrates
the permutation test procedure. All the reported p-values are
corrected using Benjamini–Hochberg false discovery rate
(FDR) correction to account for multiple comparisons
(Benjamini and Hochberg, 1995).

EEG amplitude. Changes in cognitive and attentional pat-
terns during task performance can be predicted from multi-
variate fMRI activity (Debettencourt et al., 2015; Haynes,
2015). Although the data used in previous studies are mainly
obtained from fMRI, it was worthy to test whether it is possi-
ble to predict the engagement patterns using preprocessed
EEG amplitudes without extracting any features. To do this,
we applied a window with the same characteristics as above
and placed the signal, and we then calculated the average

Table 1: The starting time points indicated by the participants

Phase Starting point (s) Duration (s) Number of participants who agreed (%) SD of all responses (s)
Exposition 0 151 19 (100%) 0
Rising action 151 149 13 (68.42%) 95.83
Crisis 300 45 10 (52.63%) 65.92
Climax 345 115 12 (63.16%) 32.37
Falling action 460 22 17 (89.47%) 23.74
Denouement 482 24 18 (94.74%) 4.05

This table shows the time stamps for starting and duration made by independent raters. The choice of the starting time point of each phase of the dramatic arc
was obtained from the data of 19 participants that indicated these moments. From the starting time points, the duration of each phase was calculated. The number of par-
ticipants that indicated the same time points statistically and the standard deviation (SD) of all responses are indicated in the last two columns, respectively.

continued
crisis, and two channels (FT8 and FC6) in climax were the predictor channels. For the nonsignificant phases (exposition, falling and
denouement), we just plotted three examples of the channels (C4, FC6, and CP5) to show where the actual correlation is located
against the null distribution.
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EEG amplitude within each window. To predict the engage-
ment ratings with an EEG signal, a leave-one-subject-out
(LOO) cross-validation method was implemented using non-
linear support vector regression (SVR) models. The SVR
models were trained using the participant’s EEG activity in
each window, with one participant’s data being excluded.
The SVR models were tested on the held-out participant’s
EEG activity in the corresponding window to predict the
group-averaged engagement ratings (see above, Self-re-
port). The LOO procedure is illustrated in Figure 3D. In each
cross-validation fold, the Fisher’s z-transformed Pearson’s
correlation between the observed and predicted engage-
ment ratings was calculated to serve as an indicator of pre-
dictive performance. We used this metric to evaluate the
model’s performance as the main question of this study is
whether the temporal dynamic patterns could be captured
by the model rather than whether the model could predict
the actual values of group-averaged engagement ratings.
To test the statistical significance, we used a permutation
test. The null distribution was generated by training and test-
ing the same SVR models using the data from the actual
brain patterns to predict phase-randomized group-averaged
engagement ratings, which were repeated 1000 times. After
this, we calculated the prediction accuracy using the above-
mentioned correlation analysis and generated the null distri-
bution of performance. Finally, we compared the actual
model’s performance to the null distribution, assuming a
one-tailed significance test with p ¼ (11 number of null r
values � empirical r)/(11 number of permutations), R2, and
MSE (see Song et al., 2021a).

Dynamic functional connectivity. Changes in statistical
dependence among different brain regions (i.e., functional

network connectivity) could be a helpful approach to pre-
dicting changes in participants’ cognitive and attentional
states while performing tasks (Rosenberg et al., 2020;
Song and Rosenberg, 2021; Song et al., 2021b). To calcu-
late dynamic functional connectivity (dFC), we used the
window with the same characteristics as above and placed
it to cover the entire signal (Fig. 3A). Then, within each win-
dow, we calculated the Fisher’s z-transformed Pearson’s
correlation across all the time periods of all channels for a
single subject (e.g., the correlation between the first chan-
nel of the first subject and the second channel of the same
subject). The functional connectivity matrices had a size of
32� 32 to correspond with the channel numbers. This pro-
cedure is delineated in Figure 3B. Furthermore, to test
whether dFC patterns could be used to predict the en-
gagement ratings, we used the same LOO cross-validation
approach as used in the “EEG” investigation. The dynamic
of each cell of the 32� 32 matrices during the time course
was considered a feature (32� 31/2¼ 496 features). We
trained the SVR models using selected features of all par-
ticipants but one, and we tested the SVRmodels on the se-
lected features of the held-out participant. We employed a
feature selection step before training the model in each
cross-validation fold. The features that significantly corre-
lated with group-averaged engagement ratings (one-sam-
ple Student’s t test with a significance threshold of p,
0.010) were selected as candidate features to train the
model (Shen et al., 2017). We evaluated the predictive
model’s performance using the same approach as above.

Graph features. Graph-theory-based methods are help-
ful tools for understanding brain functional connectivity ar-
chitecture (Farahani et al., 2019), and they enable better

Figure 3. The schematic representation of the dynamic predictive model. A, The sample of preprocessed signals and sliding window
(gray squares). B, The functional connectivity among all channels was obtained from the signals occurred within each window. C, Out
of each functional connectivity matrix, three graph features, node degree, clustering coefficient, and betweenness centrality, were ex-
tracted. D, The procedure of the predictive model. In “Step 1,” we concatenated all the functional connectivity matrices (or graph fea-
tures) of all subjects and divided it to a train and test sets (the leave-one-subject-out procedure). In “Step 2,” we trained a support
vector regression model using the functional connectivities of all subjects but one to predict the averaged engagements and tested
the model on the leaved-out subject. The output of Step 2 is the predicted engagement rating. By calculating the correlation between
actual engagement and predicted engagement, we obtained the actual correlation. In “Step 3,” we shuffled the engagement ratings as
presented in Figure 2 and repeated Step 2 to predict these shuffled ratings. By calculating the correlation between the predicted en-
gagement and each shuffled engagement scores and repeating it for all the 1000 shuffled engagement scores, we obtained a null dis-
tribution of correlations. By testing the actual correlation on this null distribution, we obtained the significancy level of the prediction.
Note that we implemented this procedure for functional connectivity features and all three graph features separately.
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characterization of the behavior of EEG signals that simple
linear methods fail to explain (Ismail and Karwowski, 2020).
Therefore, it was worthy to explore how dFC structures are
related to engagement prediction. To do so, we calculated
three graph features using the connectivity matrices obtained
from each window throughout the entire signal (Fig. 3C).
This approach enabled us to evaluate the changes in
functional connectivity structures in the time under inves-
tigation. Each electrode was considered a node, and the
weighted number of correlations between the nodes were
considered edges. The calculated graph features con-
sisted of: (1) a node degree (ND), which was obtained from
totaling all the weights connected to a node; (2) a clustering
coefficient (CC) of a node, which was determined by aver-
aging the weights between the corresponding node and
two other nodes that made a triangle with that node; (3) a
betweenness centrality (BC) of a node, which was identi-
fied by calculating the number of shortest paths in the net-
work that includes the corresponding node. Each of the
graph features was calculated at the electrode level, result-
ing in a matrix with the size of 1� 32. The detailed defini-
tions of the graph features selected in this study can be
seen in García-Prieto et al. (2017). We extracted all the
graph features using FastFC toolbox (https://github.com/
juangpc/FastFC).

Association of dynamic intersubject correlation with
frequency bands. Previous studies have investigated how
the intersubject correlation is related to the spectral activ-
ity of the EEG signals (Dmochowski et al., 2012; Lankinen
et al., 2014; Chang et al., 2015; Maffei, 2020). We calcu-
lated the frequency information of intersubject correlation
inspired by Maffei (2020), using the same window as used in
previous parts. (To better understand this part, refer to Fig.
2B; however, instead of calculating the correlation of the sig-
nals of two windows, we calculated Eq 1.) Within each win-
dow, we calculated the dISC spectral activity of all subject
pairs. In each subject pair and each window, dISC spectral
was defined as the “magnitude-squared coherence of ho-
mologous channel activity” using Equation 1 from Maffei
(2020):

ISCiABðfÞ ¼
jGiAiBðfÞj2

GiAiAðfÞGiBiBðfÞ
: (1)

Where A and B refer to subject A and subject B, i refers to
the ith channel, GiAiBðfÞ refers to the cross-spectral density in
channel i of two subjects, and GiAiAðfÞ and GiBiBðfÞ represent
the auto-spectral density of channel i of subject A and subject
B, respectively. We calculated the ISCiABðfÞ for all subject
pairs and all the channels, resulting in (30� 29)/2¼ 435 sub-
ject pairs. By averaging over subject pairs, we obtained the
ISC ðfÞ. Next, we divided the resulting spectral density into
four frequency bands: ISC-d (1–4Hz), ISC-u (4–7Hz), ISC-a
(8–13Hz), and ISC-b (14–30Hz). By repeating the same pro-
cedure for all the windows, we obtained the dISC-bands.

Recall
We manually transcribed the full audio files recorded in

recall. We cleaned the transcripts by removing unrelated
sentences and words (e.g., “if I remember correctly,”
“what did he say,” “hmm,” etc.) for further analysis. We

then segmented each participant’s transcribed recalls
into six different phases based on the movie moments
identified by the group of participants in the event seg-
mentation section. That is, we assigned each sentence to
one of the six phases based on whether the events de-
scribed in the sentence occurred within the phase’s time
period. To evaluate the similarities in the participants’ re-
calls in each phase, we used latent semantic analysis
(LSA; Landauer et al., 2013; Nguyen et al., 2019). LSA is a
statistical method used to represent text similarity in se-
mantic spaces and that has human-like performance
(Landauer et al., 1998). We combined all the prepro-
cessed recalls (text-type documents) from each phase
for all participants (32) in a single big document. The
LSA method was then used to identify every word in the
big document and to remove repetitive and infrequent
words. Next, the main components of the big document
were extracted by applying a singular value decomposi-
tion method. We set the number of components to 20,
which was the optimal number of components for each
phase with the least perplexity that was suggested by the
linear discriminant analysis (LDA) model that searched
through 5, 10, 15, and 20 candidate components. As an out-
put, the method decomposed the existing words to the
bags of words (i.e., components) with similar meanings.
After this, it assigned scores to each participant’s document
based on their relationship with the extracted components.
Finally, by calculating the pairwise distance (i.e., cosine
distance) of the participant’s documents, we obtained
the content similarity between all possible pairs con-
tained in participant’s recalls.

Code accessibility
The raw data collected and used in this study is freely

available here: https://zenodo.org/record/7871245#.
ZErwxnZBxPY. The code created for the preprocess-
ing, processing, and analyses performed in this study
is freely available here: https://github.com/hosseindini/
Neural-Processes-behind-Narrative-Engagement. The
code and data can be used by other researchers with the
condition of citing the present study. To run the code, we
used a computer with Windows 10 as the operational sys-
tem and the following configuration. CPU: AMD Ryzen
ThreadRipper 3960� 3.8GHz Processor, 24 cores, GPU:
RTX 3090, 24GB, Motherboard: ASUS ROG Zenith II
Extreme - bundkort - udvidet ATX - Socket sTRX4 - AMD
TRX40, and RAM: CORSAIR Vengeance LPX - DDR4 - 64
GB: 4� 16 GB - DIMM 288-PIN.

Results
This section presents the results obtained from the meth-

ods described in the EEG and recall sections in Materials
andMethods.

Recall
Participants recall the information of the falling action and
denouement phases inmore similar ways than in other phases
As mentioned in Materials and Methods, we segmented

the transcribed recalls and assigned each segment to one
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of the phases. The length of the falling action and denoue-
ment phases was short compared with the other phases, so
we merged the recall documents of those phases to ensure
robust statistics. The averages and SDs for the number of
words in each phase are as follows: exposition (M¼ 25.15,
SD¼ 11.22), rising action (M¼ 17.19, SD¼ 8.34), crisis
(M¼ 11.36, SD¼ 7.26), climax (M¼ 16.90, SD¼ 8.15), fall-
ing action and denouement (M¼ 13.45, SD¼ 8.94). A one-
way ANOVA that had the five phases as the independent
variable revealed that there was a significant difference
in the number of words in the phases (F(4,155)¼ 15.11,
p, 0.001). To explore which phases differed from the
others, we conducted a Dunn–Sidak post hoc analysis.
The results showed that the significant differences oc-
curred only between the exposition phase and the other
phases. This difference between the exposition phase
and the other phases is expected as the exposition
phase introduces the plot, main characters, and context
and, therefore, contains more information than the other
phases, which necessitates the explanation of more
words Next, we applied LSA to the transcribed recalls of
each phase and obtained the between-subjects similar-
ity matrices as well as their SDs (Fig. 1B). Following this,
we described the mean and SD of the between-subject
similarities for each phase: exposition: M¼ 0.94, SD¼
0.15; rising action: M¼ 0.94, SD¼ 0.15; crisis: M¼ 0.94,
SD¼ 0.16; climax: M¼ 0.94, SD¼ 0.15; falling action
and denouement: M¼ 0.97, SD¼ 0.07. As the results
suggest, the falling action and denouement phase had
the maximum average similarity and the lowest SD
among the phases. Since we were interested in exploring
how the between-subject similarities changed in each
phase, we tested the statistical significance of SDs
across the phases. Thus, we implemented the same
one-way ANOVA as before but used the SDs obtained
from each phase as the dependent variables. The results
showed that there was a significant difference among
the phases (F(4,45)¼ 2.53, p¼ 0.015). Through a Dunn–
Sidak post hoc analysis, it was revealed that this differ-
ence was because of the comparison of the SD of the
falling action and denouement phase against all the other
phases (p, 0.05), where this phase’s SD was the lowest
among all the phases. The results are illustrated as bars
beside the similarity matrices in Figure 1B. The greatest
recall similarity patterns in the falling action and denoue-
ment phase implies that the participants recalled this
phase in the same way (i.e., the same information was
recalled).

EEG
Cross-subject neural synchrony follows the pattern of the
narrative dramatic arc
As discussed in Materials and Methods, we calculated

the dISC of the EEG signals, which served as an indicator
of subjects’ neural synchrony when exposed to the narra-
tive dramatic arc. After this, we tested our predictions of
the group-averaged engagement ratings (self-report)
using dISC patterns. We implemented a LOO cross-vali-
dation method followed by a permutation test to compare
the actual correlation with the null distribution. The results

revealed that the dISC significantly predicted the group-
averaged engagement ratings (two-tailed nonparametric
test, p, 0.05). The dISCs of three electrodes were signifi-
cantly correlated with group-averaged engagement rat-
ings: FC5 (r¼ 0.11, p¼ 0.023), FC1 (r ¼ �0.11, p¼ 0.034),
CP2 (r ¼ �0.10, p¼ 0.019). Out of these three channels,
FC5 was positively correlated with engagement ratings,
meaning that cross-subject neural synchrony increased in
the more engaging moments of the narrative and de-
creased in the less engaging moments of the narrative.
FC1 and CP2 were negatively correlated with engage-
ment ratings, meaning that the cross-subject neural
synchrony decreased in the narrative’s more engaging
moments and increased in the narrative’s less engaging
moments. The event segmentation results and the en-
gagement ratings indicate that the most engaging mo-
ment of the excerpt was contained within the climax
phase, whereas the less engaging moments coincided
with the other phases. FC5 showed the highest syn-
chrony among the three significantly correlated chan-
nels. Two of these channels were concentrated in the
frontal-central lobe of the left hemisphere (FC5 and
FC1). Therefore, the results suggest that the dISC fol-
lows the narrative dramatic arc pattern in the regions
concentrated in the left hemisphere frontal lobe. The re-
sults are demonstrated in Figure 2D.

EEG amplitude did not provide sufficient information to
predict group-averaged engagement ratings
We tested whether changes in group-averaged en-

gagement ratings could be predicted using preprocessed
EEG amplitudes. The models trained and tested based on
EEG amplitudes did not result in significant predictions of
group-averaged engagement ratings (p¼ 0.521, r ¼ �0.015,
MSE¼ 1.064, R2 ¼ �0.064) in any of the EEG channels. The
reported values were the result of a correlation analysis be-
tween predicted engagements based on EEG amplitudes
and actual group-averaged engagement ratings that were
averaged across the channels. Furthermore, we added a fea-
ture selection section in every cross-validation iteration to in-
crease the neural features’ specificity. Therefore, only the
EEG time courses (channels) that were consistently corre-
lated with the group-averaged engagement ratings (one-
sample Student’s t test, p , �0.010) were fed into the SVR
models instead of the data from all channels (Shen et al.,
2017). Training the models using the selected features
still did not result in robust predictions, and the EEG am-
plitudes were not significantly correlated with engage-
ment ratings (p¼ 0.742, r ¼ �0.005, MSE¼ 1.032, R2 ¼
�0.032). Therefore, our results show that EEG ampli-
tudes failed to predict the group-averaged engagement
ratings. The results obtained from testing the actual pre-
diction values on the generated null distribution is illus-
trated in Figure 4A in the form of a gray violin plot.

dFC patterns could predict the group-averaged engagement
ratings in which the central region plays a vital role
The models trained and tested using extracted func-

tional connectivity (FC) features successfully predicted
the group-averaged engagement ratings (p¼ 0.029, r¼
0.049, MSE¼ 1.095, R2 ¼ �0.095), as shown in Figure
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4A in the form of a dark red violin plot. The null distribu-
tions are positively skewed in this figure, which might be
because they were generated by training the model to
predict the phase-randomized engagements and be-
cause the model was tested to predict the same data
using the held-out participant’s dFC. Nevertheless, the
prediction accuracy was significantly higher than the
generated null distribution.
To investigate which brain regions significantly contrib-

uted to the predictions of group-averaged engagement,
we visualized the FC features that were consistently se-
lected as predictors (see Data processing; EEG; and
Dynamic functional connectivity sections) in every cross-
validation fold seen in Figure 4B,C. A total of 264 FC fea-
tures that were positively correlated with engagement and
a total of 136 FC features that were negatively correlated
with engagement were both consistently selected. We
called these features “predictive FCs.” Each participant
had a matrix consisting of these positively and negatively
correlated features. Figure 4C shows the selected FC fea-
tures averaged across participants, with red denoting
positively correlated features and blue signaling negatively

correlated features. To have a better understanding of
these predictive FCs, we first defined the five canonical
brain regions: frontal (F), central (C), parietal (P), tempo-
ral (T), and occipital (O). After this, we totaled the number
of predictive FC features included in each region, result-
ing in a 5� 5 matrix for each participant. Next, we calcu-
lated the proportion of predictive FCs relative to the total
number of possible connections among regions to cre-
ate a proportion matrix for each participant. This was
done by dividing the 5� 5 matrices by the lengths of all
possible connections among regions (i.e., networks).
Finally, by averaging the proportion matrices across the
participants, we obtained the proportion score of all pos-
sible connections (see Fig. 4B).
To evaluate whether the defined networks, containing

predictive FC information, were present more frequently
than would be explained by chance, we implemented a
one tailed nonparametric test on the number of predictive
FCs within and between regions (the significant regions
are indicated in Fig. 4B, stars; FDR-corrected p, 0.001).
All the p-values were then corrected according to the
number of test repetitions using the Benjamini-Hochberg

Figure 4. The engagement level predictions for the whole narrative. A, The testing of the actual correlation against the null distribu-
tion. Each violin plot refers to the prediction results for each EEG feature. The colored violin plots refer to statistically significant pre-
diction features, and the gray plots refer to the features that were not statistically significant. The dark red violin plot refers to the
dFC feature, and dark green plot refers to the BC feature. The light to dark gray spectrum refers to the CC, ND, and EEG features,
respectively. The gray circles in the violin plots show the actual correlation obtained in each cross-validation fold with reference to
each participant. The red horizontal lines show the observed correlation. The stars indicate that the corresponding feature had been
a predictor that was chosen because of it being significantly higher than a chance occurrence. B, The predictor FCs that are either
positively (red) or negatively (blue) correlated with engagement ratings across brain regions (F ¼ frontal, C ¼ central, P ¼ parietal,
T ¼ temporal, O ¼ occipital). Each cell represents the average number of times that each region played a predictor role. The light to
dark colors (red and blue) refer to the strength of their score, which is the number of times they were considered a predictor divided
by the length of all possible connections with other channels. To show the positive and negative features simultaneously, we used
an upper triangle for positive and a lower triangle for negative features. The original features are symmetrical. C, the predictor FC
features and channels on the scalp from three perspectives. The predictor FCs that were averaged in panel B are shown individually
here in that the positively correlated items are indicated by red and the negatively correlated items are indicated by blue. The pre-
dictor channels obtained from the BC features are represented as colored dots, with bigger dots denoting higher proportions.
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method (Benjamini and Hochberg, 1995). Our results sug-
gest that the within-central, between-central, and all other
regions except occipital were constantly and significantly
selected as predictive FC features. Although there was
also a frontal-temporal connection that was able to pre-
dict the engagement pattern, our results suggest that the
central region plays a vital role in predicting engagement
patterns.

Graph features of central and frontal regions could signifi-
cantly predict the group-averaged engagement ratings
We examined whether the graph features extracted

from the connectivity matrices described in the previous
section could predict engagement ratings. The SVR mod-
els were trained and tested using three graph features:
ND, CC, and BC. The procedure for the LOO cross-valida-
tion and the subsequent permutation test was the same
as described previously. The results show that BC signifi-
cantly predicted the group-averaged engagement ratings
(p¼ 0.035, r¼ 0.012, MSE¼ 1.101, R2 ¼ �0.101). As
shown in Figure 4A in dark green, the actual correlation is
significantly higher than the generated null distribution.
However, ND and CC failed to significantly predict the en-
gagement ratings (ND: p¼ 0.423, r¼ 0.009, MSE¼ 1.071,
R2 ¼ �0.071; and CC: p¼ 0.831, r ¼ �0.010, MSE¼
1.059, R2 ¼ �0.066). As shown in Figure 4A, gray, these
aspects were not significantly distanced from the null dis-
tributions. For BC, we evaluated which channels were
consistently selected in each cross-validation fold. The
results showed a total of three channels, with the CP2
channel being positively correlated and the CP1 and F7
channels being negatively correlated with the group-aver-
aged engagements. In Figure 4C, the predictive channels
with positive correlations are labeled in red, and those
with negative correlations are labeled in blue. Next, we
evaluated whether the repetition of these channels is
higher than would be expected by chance by calculating
the channels’ proportion of predictive BC relative to the
total number of possible channels (as above). The results
show that all three channels’ BCs were significantly se-
lected in cross-validation folds (CP2: proportion score¼
0.066, corrected p, 0.001; F7: proportion score¼ 0.433,
corrected p, 0.001; and CP1: proportion score¼ 0.033,
corrected p, 0.001). Therefore, the graph theoretical fea-
ture from central and frontal regions could significantly
predict the group-averaged engagement ratings.

dISC-d , dISC-u , and dISC-b could predict the group-
averaged engagement ratings
To test whether dISC fluctuates as a function of spectral

bands, we calculated dISC-bands in d (dISC-d ), u (dISC-
u ), a (dISC-a), and b (dISC-b ) frequency bands. Next,
having the correlation between dISC and group-averaged
engagement ratings, we tested whether dISC-bands
could predict the engagement ratings by implementing
a LOO cross-validation method followed by a permuta-
tion test. If dISC-bands could predict the engagement
ratings, we argue that there was a link between dISC
and dISC-bands, since both features could predict the
same engagement ratings: one considering the neural
synchrony across subjects and the other considering

cross-spectral density across subjects. The results
showed that dISC-d , dISC-u , and dISC-b , but not dISC-a,
could significantly predict the engagement ratings. The re-
sults concerning the statistically significant predictive chan-
nels for each frequency band are as follows (Fig. 5). dISC-d :
FT7 (r¼ 0.17, p¼ 0.022), P7 (r¼ 0.24, p¼ 0.039), P4 (r¼
0.20, p¼ 0.029), FC2 (r¼ 0.27, p¼ 0.004), F8 (r¼ 0.16,
p¼ 0.021). dISC-u : FT7 (r¼ 0.22, p¼ 0.036), P4 (r¼ 0.27,
p¼ 0.015), C4 (r¼ 0.16, p¼ 0.043), FC2 (r¼ 0.25, p¼
0.038), F8 (r¼ 0.18, p¼ 0.011). dISC-b : P4 (r¼ 0.25,
p¼ 0.024), FC2 (r¼ 0.31, p¼ 0.027). All p-values were cor-
rected according to the number of repetitions. Thus, all
these channels were positively correlated with engage-
ment ratings, meaning that cross-subject spectral density
in d , u , and b bands increased in the more engaging mo-
ments of the narrative (e.g., climax) and decreased in the
less engaging moments of the narrative (e.g., falling and
denouement). In summary, ISC-d , and ISC-u in wider re-
gions of frontal, parietal, and temporal regions were sig-
nificantly synchronized with engagement scores, while
this synchronization occurred in central and parietal re-
gions in dISC-b .

Shared neural responses could significantly predict en-
gagement in more engaging phases, whereas dFC and BC
could predict engagement in less engaging phases of the
dramatic arc
We made advancements in evaluating neural activity

that was stimulated by each narrative phase as opposed
to just making predictions for the whole excerpt. For this,
we analyzed the possibility of predicting the engagement
levels in each phase separately using the data obtained
from the brain. We segmented both the group-averaged
engagement ratings and neural activity based on the
phases delineated in the event segmentation section. We
extracted dISC, dFC, and BC features, in the same way
that we extracted to predict the whole narrative, this time
separately for six phases. After this, we implemented the
same approach for predicting dISC and the same LOO
cross-validation approach to evaluate whether the feature
could predict the engagement ratings. All the methods im-
plemented herein were identical to those explained previ-
ously, but the models were fed the neural activity and
engagement ratings of each phase, and they were trained
and tested separately in this case. For dISC, the results
showed that the dISC could significantly predict the engage-
ment ratings for rising, crisis, and climax phases, and failed to
significantly predict the exposition, falling, and denouement
phases (Fig. 2E). In rising, CP5 (r¼ 0.065, p¼ 0.015) and FP2
(r¼ 0.074, p¼ 0.032) were the predictor channels. In crisis
Pz (r ¼ �0.116, p¼ 0.033), Cz (r ¼ �0.113, p¼ 0.011), and
FP2 (r¼ 0.135, p¼ 0.014) were the predictor channels. In cli-
max, FT8 (r ¼ �0.098, p¼ 0.010) and FC6 (r ¼ �0.216,
p¼ 0.011) were the predictor channels. Regarding the non-
significantly predicted phases, we report three samples of
channels as representative of all on-significant channels.
In exposition: C4 (r¼ 0.011, p¼ 0.416), FC6 (r¼ 0.057,
p¼ 0.234), and CP5 (r¼ 0.030, p¼ 0.152). In falling: C4 (r¼
�0.092, p¼ 0.647), FC6 (r ¼ �0.054, p¼ 0.379), and CP5
(r¼ 0.015, p¼ 0.894), and in denouement: C4 (r ¼ �0.044,
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p¼ 0.733), FC6 (r ¼ �0.054, p¼ 0.575), and CP5 (r¼
0.015, p¼ 0.930) are the representative channels. For dFC
features, the results show that the models trained and
tested using the dFC features of each phase failed to signifi-
cantly predict the exposition (p¼ 0.458, r¼ 0.061, MSE¼
1.271, R2 ¼ �0.271), rising action (p¼ 0.325, r¼ 0.063,
MSE¼ 1.612, R2 ¼ �0.612), crisis (p¼ 0.627, r ¼ �0.072,
MSE¼ 1.583, R2 ¼ �0.583), and climax (p¼ 0.261, r ¼
�0.039, MSE¼ 1.431, R2 ¼ �0.431) phases. However, the
models significantly predicted the falling action (p¼ 0.028,
r ¼ �0.197, MSE¼ 1.798, R2 ¼ �0.798) and denouement
(p¼ 0.009, r ¼ �0.202, MSE¼ 1.812, R2 ¼ �0.812) phases.
The results (dFC features) obtained from comparing each
phase’s actual correlation with the generated null distribu-
tion are demonstrated in Figure 6A, which shows that the
actual correlation was significantly lower than the null distri-
bution in the falling action and denouement phases.

Furthermore, the results from training and testing the mod-
els that were fed the BC features of each phase revealed
that, for the BC feature, the models failed to significantly
predict the exposition (p¼ 0.587, r ¼ �0.016, MSE¼ 1.187,
R2 ¼ �0.187), rising action (p¼ 0.145, r ¼ �0.020, MSE¼
1.432, R2 ¼ �0.432), crisis (p¼ 0.912, r¼ 0.001, MSE¼
2.722, R2 ¼ �0.722), and climax (p¼ 0.178, r¼ 0.022,
MSE¼ 1.647, R2 ¼ �0.647) phases. However, the models
significantly predicted the falling action (p¼ 0.051, r¼
0.045, MSE¼ 1.586, R2 ¼ �0.586) and denouement (p¼
0.041, r¼ 0.097, MSE¼ 1.387, R2 ¼ �0.387) phases. The
results (BC features) from comparing each phase’s
actual correlation with the generated null distribution
are demonstrated in Figure 6B, which shows that the
actual correlation was significantly higher than the
null distribution in the falling action and denouement
phases.

Figure 5. The results for predicting group averaged engagement ratings using dISC-bands. The violin plots refer to the null distribu-
tion of the correlation value (r) between surrogated engagement scores and the calculated dISC-bands, only for the significant chan-
nels. The observed r, which is the correlation between actual engagement scores and dISC-bands, is also indicated black lines over
violin plots. The topo-plots indicate the observed r of the channels that could significantly predict the engagement scores, on the
scalp. The p-values are reported above each violin plot, and all of them are corrected. In dISC-d and dISC-u , five channels could
significantly predict the group-averaged engagement ratings. The spatial activity of the predictor channels can be seen on the topo-
plot beside the violin plot. In dISC-b , two channels could significantly predict the engagement scores and the spatial distribution of
the predictor channels can be seen in the topo-plot.
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The FCs that were consistently selected as predictors in
each cross-validation fold are shown in Figure 6C, with a
separate label for each phase. The total number of positively
and negatively correlated predictor FCs are as follows: ex-
position: 96 positively and seven negatively correlated; rising
action: 0 positively and 170 negatively correlated; crisis:
52 positively and 108 negatively correlated; climax: 14
positively and 130 negatively correlated; falling action:
40 positively and 32 negatively correlated; denouement:
184 positively and 96 negatively correlated. As in the pre-
vious section, we examined FCs that acted as predictors
in each brain region defined above. Figure 6C shows
these FCs, with a separate label for each phase. After this,
we tested whether these regions were selected in ways
that were significantly higher than would be expected for
chance selections by using the statistical analysis ex-
plained above. The significant predictor FCs are indicated
by the stars in the corresponding matrix of each phase in
Figure 6C. The results demonstrate that, in terms of the
phases in which the SVR model could successfully predict
the engagement ratings (i.e., falling action and denoue-
ment), the frontal lobe and the connection of the frontal re-
gion with other regions played a vital role in predicting the
engagements: In the falling action phase, the connection
was between frontal and occipital, and, in the denouement
phase, the connection was between frontal and parietal
and temporal regions. Moreover, the central-occipital con-
nection in the falling action phase and the central connec-
tion in the denouement phase were also significant
predictors. Although the neural activity of the other phases
failed to predict the engagement ratings, it is worth men-
tioning that, in all of them except for the exposition phase,
the frontal region was identified as a significant predictor.

We then implemented the approach explained under
Materials and Methods, Statistical analyses, data process-
ing, EEG, Graph features section to investigate which BC of
which channels were consistently selected as predictors
by calculating the proportion scores. In the last two
phases, in which the model successfully predicted the
engagement ratings using the BC feature, the selected
channels, their calculated proportion score, and the
p-values were as follows: falling action: F7, negatively cor-
related, proportion score¼ 0.033, p¼ 0.029; denouement:
C4, negatively correlated, proportion score¼ 1, p, 0.018;
P3, negatively correlated, proportion score¼ 0.066, p¼
0.018; O2, positively correlated, proportion score¼ 0.030,
p¼ 0.031; T8, positively correlated, proportion score¼
0.200, p,0.001. Therefore, in the denouement phase,
the highest-scoring channel (C4) was in the central region.
Moreover, considering all of the phases, most of the predic-
tor channels were related to the central and frontal regions.
In summary, our results show that the models trained

on dFC and BC features were able to significantly predict
the engagement ratings of the falling action and denoue-
ment phases. Moreover, the frontal and central regions as
well as their connection to other regions played an impor-
tant role in predicting the engagement ratings in the last
two phases, which was determined by the evaluation of
both dFC and BC features.

Discussion
A given description possesses narrativity when re-

ceivers identify it as being a narrative, regardless of the in-
tentions of the sender in evoking this perception (Ryan,
2005). Higher levels of narrativity are ensured in stories

Figure 6. See Figure 4. The predictions of the engagement ratings of each phase using the corresponding features. The black hori-
zontal lines show the observed correlation, and the violins show the null distribution. A, The phase prediction results for all phases
using dFC features. It shows that the prediction in the last two phases (falling action and denouement) was significantly higher than
could be explained by chance. B, The prediction results using BC features and the significant prediction that occurred in the last
two phases. C, The predictor FCs across regions and their proportion scores for each phase. D, The predictive FCs and the chan-
nels that the BCs played as predictor roles for each phase.
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that have a dramatic arc (Ryan, 2007). We addressed the
complexity of the dramatic arc to explore brain responses
during narrative cognition. Specifically, we examined the
link between the phases of a narrative arc and self-re-
ported engagement and whether brain responses elicited
by a narrative can predict engagement levels. Our results
show that the group-averaged engagements followed the
dramatic arc model and could be predicted by dISC, dFC,
and BC features. We also predicted engagement in the
last two phases by investigating the neural underpinnings
of each phase.
The fluctuations in self-reported engagement ratings

occurred synchronously for all the participants, reflecting
that individuals share states of engagement. Moreover,
individuals could identify a narrative arc structure in our
stimulus (Fig. 1A, upper panel). Notably, we found that
perceived engagement at the group level followed the
same shape as the narrative arc structure (Fig. 1A, bottom
panel). The individuals’ synchronous engagement and the
shape of its temporal development (i.e., similar to the nar-
rative arc) could be attributed to transportation effects
(see Green and Brock, 2000). This finding is also in line
with Song et al.’s (2021a) study in which it was shown that
emotional moments of a narrative evoke stronger engage-
ment levels. Moreover, previous studies have reported
that an individual’s engagement state is evoked by and
aligned with tension levels (Busselle and Bilandzic, 2009;
Bilandzic et al., 2019). Similarly, our results show that
group-averaged engagement increased in the rising ac-
tion phase, became more pronounced in the crisis phase,
and peaked in the climax phase in which there is maxi-
mum tension, after which it declines. Therefore, the dra-
matic arc regulates an individual’s engagement state by
fluctuating tension levels.
We then explored whether individuals’ brain activity

was modulated by their engagement levels throughout
the dramatic arc model. We previously found that different
levels of narrativity led to differences in ISC and different
levels of perceived engagement, thereby predicting narra-
tivity level (Dini et al., 2023). Cohen et al. (2017) evaluated
time perception and its relation to engagement during
narrative videos, from which they posited that engage-
ment could be considered subject’s levels of similarity
among EEG channels (i.e., ISC). Moreover, the subjective
perception of time and neural processing becomes syn-
chronous when watching narratives (Cohen et al., 2017).
Dmochowski et al. (2012) stated that extracting correlated
components using ISC is related to “emotionally-laden at-
tention.” Thus, ISC might be a marker of engagement
(Dmochowski et al., 2012). Correspondingly, our results
indicate that the dISC of individuals’ frontal (FC5) elec-
trode was more synchronized in a narrative’s more engag-
ing moments, whereas electrodes also in the frontal (FC1)
and central (CP2) were less synchronized. Implementing
fully cross-validated models revealed that the dISC of the
frontocentral region became more active and involved in
predicting moment-by-moment engagement levels (Fig.
6D), whereas EEG amplitudes could not make this predic-
tion (Fig. 4A). Therefore, the dISC patterns followed the
dramatic arc structure. However, while there was an

overall positive relationship between dISC and engage-
ment with the narrative for FC5, dISC of FC1 and CP2
showed a negative correlation with engagement ratings.
Previous fMRI research also showed that the dISC of cer-
tain brain regions has a negative relationship with behav-
ioral engagement of audiovisual narratives (Song et al.,
2021a). The pattern considering the average ISC of FC1
and CP2 was organized in a way that subjects’ neural ac-
tivity was less synchronized in the engaging phases of the
dramatic arc (i.e., crisis and climax) and relatively more
synchronized in less engaging moments (i.e., exposition,
rising action, falling action, and denouement). While previ-
ous studies also found a link between engagement and
ISC levels (which supports the use of dISC as a marker of
engagement), we extended this and argued that the sub-
jects’ neural activity was modulated by the presence of a
narrative structure that unfolded as a dramatic arc. This
finding is a promising step forward in the understanding
of narrative cognition.
We extended our dISC calculation to the frequency do-

main to explore whether ISC varies as a function of spec-
tral information of the frequency bands. That is, we
evaluated whether dISC-bands could significantly predict
the engagement ratings. Few studies have investigated
the relationship between dISC-bands and engagement;
we review this literature and compare them to our findings
separately for each frequency band as follows. Regarding
the dISC-d and dISC-u , Maffei (2020) evaluated the EEG
ISC-bands while participants attended to video clips con-
taining different emotional content. They reported that
temporal and parietal ISC-d are modulated by the emo-
tional content of the videos, showing higher synchrony in
high arousal, erotic, and fearful emotional content. In ad-
dition, they reported that ISC-d was spread widely over
brain regions, where frontal and temporal sites were re-
lated to the emotional content of the movies, and poste-
rior sites peaks were related to visual stimulation. In
another study, Kauppi (2010) investigated fMRI frequency
components of ISC while participants were watching an
engaging movie. They found greater ISC in frontal and
temporal locations at low frequencies than in high-fre-
quency bands. Chang et al. (2015) reported a strong ISC-
d while participants watched a naturalistic movie clip, and
Lankinen et al. (2014) found high ISC at frequencies
below 10Hz while participants watched a silent movie.
Another study by Dmochowski et al. (2012) showed that
frontal u power increases during moments of high ISC (a
proxy for high engagement) while watching narratives. In
line with these studies, our results show that dISC-d and
dISC-u are significantly correlated with engagement rat-
ings in frontal (F8), temporal (FT7), and parietal (P7 and P4
for dISC-d , and P4 for dISC-u ) locations. The positive
correlation means higher dISC-d and dISC-u in more en-
gaging moments (e.g., climax) and lower dISC-d and
dISC-u in less engaging moments (e.g., falling and de-
nouement). Maffei (2020) found higher ISC-d in videos
containing high arousal content. We speculate that our
movie extract also evoked arousal, especially in the cli-
max phase. Dmochowski et al. (2012) found higher frontal
dISC-u in the more engaging moments of the narrative.

Research Article: Confirmation 14 of 19

July 2023, 10(7) ENEURO.0484-22.2023 eNeuro.org



We had three channels involving the frontal location that
were positively correlated with engagement ratings.
Furthermore, our results showed that in lower frequencies
(i.e., d and u ), the predictive channels are more spread
across the brain compared with the higher frequencies
(i.e., a and b ), which is in line with the findings of two past
studies (Lankinen et al., 2014; Chen and Farivar, 2020).
Regarding the dISC-b , Lankinen et al. (2014) investigated
the frequency components of ISC while participants at-
tended a silent black-and-white movie excerpt. They re-
ported statistically significant correlations across the
brain activity of the subjects in frequencies around 24Hz
frequency, although its source was speculated to derive
from the movie framing rate. Dmochowski et al. (2012)
showed that the parietal and occipital b powers de-
creased during moments of high ISC while watching nar-
ratives. Our results showed that dISC-b is significantly
and positively correlated with engagement ratings in cen-
tral (FC2) and parietal (P4) regions. This is in line with
Lankinen et al. (2014), who reported that ISC-b is mostly
correlated across subjects. However, our results do not
support the findings of Dmochowski et al. (2012), as they re-
ported a decrease in ISC-b . Regarding the dISC-a, previ-
ous studies have reported that ISC-a is modulated by
attentional demand, which is a core component of engage-
ment, and the emotional content of movies (Dmochowski et
al., 2012; Ki et al., 2016; Maffei, 2020). Contrary to it, our re-
sults did not show any significant correlation between dISC-
a and engagement ratings. This finding might be explained
by the weak modulation of the a band with attentional states
compared with ISC (Ki et al., 2016), and that dISC-a is
weaker than dISC of other frequency bands during movie
watching (Lankinen et al., 2014; Chang et al., 2015).
Importantly, the topographical patterns of ISC-bands differ
according to the emotional state induced by the stimulus
(Maffei, 2020). Therefore, our results might be specific to our
stimuli, and modulation of dISC-a with engagement would
need more investigations in further studies. In summary, our
results showed that d , u , and b bands could significantly
predict the engagement ratings, suggesting that dISC
varies as a function of these frequencies. This finding con-
tributes to unfolding the neural processes behind narrative
cognition.
Previous studies have also characterized engagement

as well as emotional and focused attentional states
(Schreiner et al., 2022), which is closely related to engage-
ment (Busselle and Bilandzic, 2009; Dmochowski et al.,
2012) using FC. In a dFC study, Song et al. (2021a) eval-
uated narrative engagement, sustained attention, and
event memory during narrative exposure. They reported
that models based on dynamic brain connections could
predict engagement states in two independent datasets.
Moreover, the default mode network activity, which fluc-
tuated in line with engagement states, was also able to
predict sustained attention and recall of the narrative
events. In the current study, we explored whether there
was a link between engagement states and FC and FC-re-
lated features (i.e., BC graph). By using similar cross-vali-
dation models, both dFC features and the BC graph
feature were significantly correlated with engagement

states (Fig. 4A). The FC networks’ patterns that acted as
predictors revealed that the central and frontal lobe
played a vital role in predicting engagement states (Fig.
4B). Most of the FC features were positively correlated
with engagement, however other FC features showed a
negative correlation with engagement ratings. Overall,
the positive FCs dominated the negative FCs, resulting
in an averaged positive relationship between dFC and
engagement. Song et al. (2021a) found that connec-
tions within the frontoparietal control network had a
negative relationship with engagement. In our study, the
negative connections were between frontal and central
electrodes and between central and parietal electrodes.
Moreover, the predictor graph channels were concentrated
on central (CP2, positively correlated; CP1, negatively corre-
lated) and frontal (F7, negatively correlated) channels. BC
had an overall positive correlation with engagement levels.
In line with the findings on dISC predictors, the dFC con-
firmed that the neural connections across central and frontal
regions were more synchronous with engagement patterns
(i.e., more neural activity in more engaging moments of the
narrative and vice versa). In addition, the BC graph feature,
in line with the dISC (specifically in the CP2 channel), re-
vealed that the central and frontal channels played a crucial
role in predicting engagement patterns. The BC graph fea-
tures have been considered putative hubs in a network
(Bullmore and Sporns, 2009). In summary, the analysis of the
dFC and BC features showed that predictive channels in fron-
tal and central regions followed the dramatic arc pattern (con-
firmed by the dISC), either in the same or opposite directions,
and that the information flow passed (or possibly accumu-
lated) through the regions of those channels to connect to
other brain regions. Hence, these features were important
for characterizing predictive brain regions for cognitive, at-
tentional, and engagement states, in addition to ISC.
We have used three main neural measures, dISC, dFC,

and graph theoretical features, to explore the relationship
between brain activity and perceived engagement to an
audiovisual narrative. ISC measures shared responses
across individuals receiving the same stimulus, and it is
sensitive to engagement levels and shared understanding
(Dmochowski et al., 2012; Nguyen et al., 2019). FC as-
sesses coactivations between brain regions (in our case,
between electrodes). Importantly, FCs may be particular
to a given narrative, as previous research suggests that
patterns of connectivity are content-specific (Vaccaro et
al., 2021). Graph theoretical analysis considers the nodes
and edges of a network to derive network-related features
(e.g., connection patterns, their strength, small-world-
ness; Yamamoto et al., 2022). The three neural measures
could predict perceived engagement with the whole nar-
rative through different perspectives: high similarity in
neural responses (ISC), interactions between certain brain
regions at the electrode level (FC), and specific electrodes
playing the role of hubs in the network (i.e., node; BC).
Therefore, the results support previous research showing
a relationship between ISC and narrative engagement
(Dmochowski et al., 2012; Cohen et al., 2017; Poulsen et
al., 2017; Maffei, 2020; Song et al., 2021a; Grady et al.,
2022) and between FCs and narrative engagement (Song
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and Rosenberg, 2021; Song et al., 2021a; Vaccaro et al.,
2021). In addition, studies characterizing brain networks
involved in audiovisual stimuli processing through graph
analysis demonstrated the relationship between several
graph features and attention (Hong et al., 2013) or emo-
tional moments (Gupta and Falk, 2015; Vorwerk et al.,
2019; Zhang and Liu, 2021). Furthermore, the three meas-
urements revealed the prominent role of the frontal and
central regions in predicting engagement with a narrative
that follows the dramatic arc structure. The three meas-
urements were also able to predict engagement with the
narrative at the narrative phase level. While dISC was suc-
cessful in predicting narrative moments eliciting higher
engagement and low shared understanding, FC and BC
could predict moments eliciting lower engagement and
higher shared understanding. In summary, our results
suggest the three metrics complement each other in the
assessment of narrative cognition focused on engage-
ment levels.
In addition, the results of engagement prediction in the

different phases point to an interesting finding. The dISC
feature predicted the engagement ratings of the highly en-
gaging phases of the narrative arc (i.e., climax and crisis).
These two phases were characterized not only by high en-
gagement scores but also by low dISC values and high
SD of recall similarity. This implies a low shared under-
standing of these two phases across participants. In sum-
mary, in line with other studies, our results from the whole
narrative indicate that dISC is predictive of engagement.
Specifically, in our study, this prediction happened in the
narrative phases where shared understanding is low. In
contrast, the dISC failed to predict the engagement scores
of the last two phases (i.e., falling action and denouement),
where engagement levels were low and shared under-
standing was possibly high (low SD of recall similarities
and high dISC values). Future studies should examine
whether the relationship between dISC and engagement is
a function of shared understanding. Furthermore, dFC and
BC features could significantly predict the last two phases
(i.e., falling and denouement), where the engagement
scores were low, but the shared understanding was high.
These findings could be considered a first step in exploring
the relationship between engagement and shared under-
standing in dISC, dFC, and BC. However, the results sug-
gest that more investigations should be considered to
determine the cognitive processes these features capture.
This is the first study that has characterized the narra-

tive dramatic arc phases at the neural level. Past studies
have investigated narrative phases (Bullmore and Sporns,
2009), but have not explored the neural processes that
underlie the information processing of each phase. Based
on machine-based semantic analysis, Boyd et al. (2020)
reviewed ;40,000 traditional narratives and provided evi-
dence that they consist of a start, which is followed by
plot progression, and they then end with a decrease in
cognitive tension. They claim that their study was the first
that provided empirical support for dramatic arc narrative
structures, and they suggested that future studies should
focus on exploring psychological aspects induced by this
structure. In this study, we used EEG to explore the

neuropsychological underpinnings of engagement states
for each phase. The results show that dISC, dFC and BC
could predict engagement for the rising action, crisis, cli-
max (dISC; Fig. 5), falling action and denouement phase
(dFC and BC; Fig. 6C,D). Importantly, being able to pre-
dict engagement in a certain narrative phase does not
necessarily requires a high engagement level for the
phase. As with the prediction of the whole narrative, the
frontal and central electrodes were the most influential.
However, the most prominent predictive FCs for the last
two phases, which differed from the predictive FCs of the
whole narrative, were negative FCs. The last two phases
were the least complex in the excerpt used for this study:
they only featured one scene with only two characters
who had already been introduced, and they did not con-
tain any background action. The higher levels (and low
SDs) of the participants’ recall similarity for these phases
supported the idea that these phases conveyed more
straightforward and less information (Fig. 1B). Previous lit-
erature on situation models (Zwaan, 1999; Huff et al.,
2014; Lin et al., 2019) state that past individual experien-
ces and the information provided by the narrative shape
the construction of situation models used for narrative in-
terpretation. Moreover, multiversional thinking proposes
the idea that multiple versions of the same narrative can
coexist in the audience’s mind as the narrative progresses
(Hiskes et al., 2022). We argue that, in our excerpt, the
last two phases created much less opportunity for multi-
versional thinking and complex situation models, which
might have been reflected in the pattern of brain activa-
tion. This type of brain activation (FC and BC) was able to
predict the engagement level, but the activation when fac-
ing higher levels of complexity in the narrative (i.e., in-
creased amount of information) could not. dISC, which
does not assess connections between regions, could pre-
dict engagement levels of the rising action, crisis, and cli-
max phases, which are more complex phases. However,
for the exposition phase, none of the three features was
able to predict engagement levels. This could be due the
characteristics of this phase: it conveys large amounts of
information without a particular story line, as it is when the
main characters and their relationships, as well as the set-
tings and context are first presented. In summary, out of
the five phases of the narrative arc besides the exposition
phase, dISC could predict engagement levels of the first
three (i.e., rising action, crisis, and climax), and dFC and
BC could predict engagement levels of the last two (i.e.,
falling and denouement). This suggests that the metrics
may be sensitive to other factors than only engagement.
All of this allows for the exploration of which EEG features
and conditions (e.g., higher number of participants, longer
periods of stimuli, exposure to several stimuli, type of nar-
rative) could predict phase engagement.
This study contributes to the fields of cognitive narratol-

ogy and neuroscience by extending our (still limited)
knowledge on how brains respond to narratives and how
these responses are linked to perceived engagement. In
addition, we extended the knowledge on using narratives
not only as a means but also as objects of research by
analyzing brain responses, perceived engagement, and
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dramatic arc structure relationships. The movie excerpt se-
lected in this study acted as a fraction of a dramatic arc
within the complete narrative (the whole movie). Although
the excerpt was perceived as possessing a dramatic arc
structure, it did not allow us to make links between the
phases and more complex narrative features, such as ex-
pectancy and closure. Thus, future studies can advance the
study of brain responses to narrative features by presenting
a complete narrative to participants. Moreover, given the
unique nature of each narrative, there is a need for more
studies that use different narratives before our findings can
be generalized (Vaccaro et al., 2021). Furthermore, an ambi-
tious step would be investigating how brain responses differ
between linear and nonlinear narratives, which opens the
door for the exploration of cognitive processes in interactive
and immersive narratives (Bruni et al., 2022).

Limitation and future studies

1. Previous studies have introduced several criteria for
calculating intersubject correlation, for example, CCA-
based intersubject correlation (Dmochowski et al.,
2012). In the current study, a relatively simple method
was used to calculate dISC because the main focus
was to explore the cognitive processes behind the nar-
rative arc and its phases. However, in the future, other
types of intersubject correlation calculation could be
used for this purpose.

2. In this study, to calculate the functional connectivity,
we used interdependency between electrodes within a
single subject as suggested by Song et al. (2021a).
However, there is another method called intersubject
functional connectivity that is potentially robust to en-
dogenous FC patterns (Simony et al., 2016; Lee et al.,
2020), as it calculates interdependency between elec-
trodes of multiple subjects. Future studies are encour-
aged to use this method and compare the findings.

3. In this study, we used three graph theoretical features
(i.e., ND, CC, and BC). However, studies in different
fields have used other interesting features to evaluate
node centrality and network small worldness (Maffei
and Sessa, 2021a, b; Duma et al., 2022). Future studies
are encouraged to use these metrics and evaluate how
they change within each phase.

4. The video used in this study had narrative phases of
various lengths (i.e., shorter length for falling action and
denouement phases and longer length for the exposi-
tion phase). Further studies are encouraged to choose
stimuli with narrative phases of comparable lengths.
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