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Abstract—Owing to the non-negligible impacts of 
temperature on the safety, performance, and lifespan of 
lithium-ion batteries (LIBs), it is essential to regulate 
battery temperature to an optimal range. Temperature 
monitoring plays a fundamental role in battery thermal 
management, yet it is still challenged by limited onboard 
temperature sensors, particularly in large-scale battery 
applications. As such, developing sensorless temperature 
estimation is of paramount importance to acquiring the 
temperature information of each cell in a battery system. 
This paper proposes an estimation approach to obtain the 
cell temperature by taking advantage of the electro-thermal 
coupling effect of batteries. An electro-thermal coupled 
model, which captures the interactions between the 
electrical and the thermal dynamics, is established, 
parameterized, and experimentally validated. A closed-loop 
observer is then designed based on this coupled model 
and the extended Kalman filter (EKF) to estimate the 
battery temperature by merely using the voltage 
measurement as feedback. The electro-thermal coupling 
effect enables the full observability of batteries’ internal 
states from their voltage, and contributes to an accurate 
and robust temperature estimation. The capability of the 
proposed estimation method has been demonstrated via 

experiments, with RMSE less than 0.7 ℃  in various 

scenarios. 

 
Index Terms—Lithium-ion batteries, temperature 

estimation, thermal management, electro-thermal model, 
Kalman filter. 

I. INTRODUCTION 

LECTRIFICATION is one of the promising 

countermeasures to the ever-rising energy demand and 

greenhouse gas emissions [1]. In this context, LIBs have been 

widely deployed to many large-scale applications such as 
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electrified transportation as well as grid energy storage systems 

[2], [3]. The battery systems in these applications require 

careful management to ensure their safe, efficient, and reliable 

operations. However, the negative impacts of temperature on 

LIBs cannot be ignored. For instance, high temperatures not 

only pose great threats to battery safety with the risk of thermal 

runaway [4], but also accelerate battery degradation by 

activating side reactions [5]. Low temperatures, on the other 

hand, cause sluggish internal electrochemistry and undermine 

the energy/power capabilities of LIBs [6]. 

To mitigate those adverse temperature effects, batteries must 

be thermally managed to an optimal temperature range through 

the thermal management system, where effective monitoring of 

battery temperature becomes a fundamental task. Nevertheless, 

out of cost and hardware complexity considerations, allocating 

a temperature sensor to each cell has not been satisfied in many 

battery systems, particularly in a system consisting of hundreds 

or even thousands of cells, with an average sensor-to-cell ratio 

of about 1/10 [7]. As a result, the amount of temperature 

information that can be obtained via direct sensor measurement 

in a battery system is extremely insufficient [8]. Such 

deficiency in battery temperature information brings great 

challenges to battery management. Possibilities exist when 

temperature abnormality occurs in the cell without the attached 

temperature sensor, while such faults can hardly be detected in 

time by the nearby onboard temperature sensors, which 

increases the safety risks of the entire battery system. Hence, it 

is of paramount importance to develop sensorless temperature 

estimation methods to monitor the state of temperature (SOT) 

of each cell so as to extract more temperature information about 

the battery system. 

Existing literature has reported several sensorless SOT 

estimation methods with the use of electrochemical impedance, 

thermal models, and data-driven methods. The electrochemical 

impedance of the LIB at a certain frequency region can exhibit 

high sensitivity to temperature but low sensitivity to state of 

charge (SOC) [9]–[11]. By measuring such impedance online, 

battery temperature can be estimated via an 

impedance-temperature relationship which is calibrated in 

advance. However, the requirement of additional hardware for 

excitation as well as the need for relaxation before impedance 

measurement limit the real-time implementation of 

impedance-based methods in conventional battery systems [8], 

[12]. Other studies tried to use direct current resistance (DCR) 

instead of impedance to estimate battery temperature by taking 
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advantage of the load changes as an excitation [13], [14], but it 

is difficult to guarantee the same excitation during dynamic 

operations for DCR acquisition. In recent years, data-driven 

methods have shown great success in battery state estimations 

thanks to the nonlinear mapping capabilities of many machine 

learning (ML) algorithms [15]–[18]. When it comes to SOT 

estimations, although existing ML techniques can provide 

flexible solutions with high accuracy and do not need domain 

knowledge [19], [20], it is time-consuming and sometimes 

technically challenging to collect sufficient high-quality data 

used for the training process. Most importantly, the 

generalization capability is always a common concern for many 

ML-based estimations and the trained ML algorithm may fail 

when there is no prior information about battery temperature in 

the input [21], [22]. 

To date, thermal model-based estimation is still the most 

prevalent method to achieve SOT estimations with satisfactory 

accuracy and robustness. Thermal models built upon first 

principles allow insights into thermal dynamics such as heat 

generation, heat accumulation, and heat dissipation [23]. To 

facilitate online applications, many control-oriented thermal 

models have been developed to improve computational 

efficiency [24]–[26]. However, merely relying on thermal 

models to estimate battery SOT in an open-loop manner makes 

the estimation susceptible to model uncertainties and inaccurate 

initializations [7]. Moreover, such estimations are subjected to 

slow convergence speed due to the large time constant of 

thermal dynamics [27]. To this end, closed-loop observers need 

to be developed to correct estimations according to the 

feedback of measurement signals and promote the convergence 

speed of the estimation. For sensorless SOT estimations, it is 

impossible to obtain temperature information (e.g., surface 

temperature) as feedback in the absence of the temperature 

sensor, and therefore the feedback must be based on other 

signals. Sajid et al. [28] and Elsergany et al. [29] developed 

closed-loop observers based on empirical battery models and 

EKF, using measured voltage as the feedback. Compared to 

empirical models, electro-thermal coupled models, which 

better describe the electrical and thermal dynamics of LIBs 

with high generalization capability, can also be used to design 

high-performance observers [30]. Apart from the voltage signal, 

the measured impedance and the identified internal resistance 

have been reported to be feedback signals during sensorless 

SOT estimation [27], [31], [32]. 

The use of battery voltage as feedback in SOT observers 

brings challenges to estimations since the battery voltage is 

affected by its temperature indirectly. In addition, the 

observability of battery temperature has not been examined 

thoroughly in the existing literature with a non-temperature 

signal as feedback. To address these issues, this paper leverages 

the electro-thermal coupling effect to develop a closed-loop 

observer to estimate battery temperature merely based on its 

voltage. An electro-thermal coupled model is developed at first 

to capture both the electrical and the thermal behaviors of the 

battery accurately. The interaction between electrical and 

thermal dynamics enables the battery voltage response to be 

affected by its temperature. Then a closed-loop observer is 

designed based on this two-way electro-thermal coupling effect 

to estimate the battery temperature using the measurable 

voltage signal as the feedback to correct the state estimates. 

Moreover, the observability of all the internal states is 

examined and full observability can be guaranteed in the 

proposed observer, which addresses the system observability 

issue brought by limited measured signals. 

The remainder of this paper is organized as follows. Section 

Ⅱ describes the electro-thermal coupled model. Section Ⅲ 

introduces setup and experiments for data acquisition. Section 

Ⅳ elucidates the parameterization of the electro-thermal 

coupled model. The proposed sensorless SOT estimation 

method is presented in Section Ⅴ, followed by the estimation 

results in Section Ⅵ, and the main conclusion in Section Ⅶ. 

II. ELECTRO-THERMAL COUPLED MODEL 

Interactions between the battery’s electrical and thermal 

dynamics exist during battery operations. That is, the electrical 

properties, indicated by the internal resistance and voltage 

response, affect the heat generation of the battery. Meanwhile, 

the battery temperature has an impact on its internal resistance, 

and further changes the voltage response. Therefore, both the 

dynamics, as well as their interactions, should be considered 

during modeling. To characterize such interactions, an 

electro-thermal coupled model, which consists of a first-order 

equivalent circuit model (ECM) and a lumped-mass thermal 

model, is established. 

A. Electrical Model 

ECMs exhibit an excellent trade-off between model 

simplicity and fidelity when characterizing the electrical 

behavior of batteries. A typical ECM can be illustrated in Fig. 1, 

where simple electrical components such as open circuit 

voltage (OCV), resistors, and capacitors can be combined in a 

specific way to mimic the dynamic voltage response of the 

battery. An ECM typically consists of an OCV, an ohmic 

resistance ( 0R ), and a number of RC pairs ( iR  and iC ) 

connected in series. Adding more RC pairs in the ECM can 

increase the model accuracy while the model complexity and 

parameterization difficulty will be increased. Therefore, ECM 

with only one RC pair is adopted in this article. 

The governing equations of the first-order ECM can be 

expressed as, 

 
( )

( ) ( )1

1

1 1 1

1 1dV t
V t I t

dt R C C
= − +  (1) 

 ( ) ( ) ( ) ( )1 0t ocV t V SOC V t I t R= + +  (2) 

where I  is the applied current (positive for charge and 

negative for discharge), 1V  is the polarization voltage, tV  is the 

terminal voltage, ocV  is battery OCV which is a function of 

SOC. The SOC can be calculated through coulomb counting as, 

 
( ) ( )

3600 n

dSOC t I t

dt C
=  (3) 

where nC  denotes the nominal capacity of the battery. 
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It should be noted that the electrical parameters such as 0R , 

1R , and 1C , which represent the internal electrochemistry of the 

battery, are dependent on both battery temperature and SOC. 

The discrete-time model of the first-order ECM can be 

derived by applying zero-order holding (ZOH) and expressed 

as [33], 

 

( )

1 1 1 1

1

1, 1 1, 1

, 1, 0

3600

1

k

k k

n

t t

R C R C

k k k

t k oc k k k

I t
SOC SOC

C

V V e I R e

V V SOC V I R

+

 
− −

+


= +


  

= + −   
  


= + +



 (4)  

where t  is the sampling interval.  

B. Thermal Model 

In order to characterize the battery's thermal behavior, heat 

generation, heat accumulation, and heat dissipation should be 

modeled properly. Among various control-oriented thermal 

models, the lumped-mass thermal model is the most 

computationally efficient one, which regards the battery cell as 

a particle and uses its bulk temperature to represent the 

temperature status [24]. In this way, the governing equation for 

thermal dynamics can be expressed as, 

( )
( ) ( ) ( )

1
f

p p p

dT t hA hA
T t Q t T t

dt mC mC mC
= − + +  (5) 

in which T  is the time-varying bulk temperature, h  is the 

equivalent convective heat transfer coefficient, A  is the cell 

surface area, m  is the cell mass, pC  is the specific heat 

capacity, Q  is the heat generation rate, and fT  is the 

temperature of the heat transfer fluid. 

The heat generation inside the battery consists of several heat 

sources, and a simplified model derived by Bernardi et al. [34] 

can be used to calculate heat generation, which is given by, 

( ) ( ) ( ) ( ) ( ) ( ) ( )oc

t oc

V
Q t I t V t V SOC I t T t SOC

T


= − +   

 (6) 

in which the first term on the right-hand side denotes the 

irreversible heat of the cell and the second term represents the 

reversible heat due to entropy change, where ocV T   is the 

entropic heat coefficient and is a function of battery SOC. 

According to the ECM, the voltage drop inside the cell, which 

contributes to the irreversible heat, is caused by the ohmic 

resistance and the RC pair. Therefore, Eq. (6) can be further 

derived as, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

0 1

ocV
Q t I t R I t V t I t T t SOC

T


= + +


 (7) 

The discrete-time thermal model can also be derived by 

applying the ZOH and is expressed as [24],  

 ( )2

0 1,

oc

k k k k k k k

V
Q I R I V I T SOC

T


= + +


 (8) 

 1 ,1p p

hA hA
t t

mC mC k

k k f k

Q
T T e e T

hA

−  − 

+

  
 = + − +    

 (9) 

C. Electro-thermal Coupling  

Since the electrical behavior and thermal behavior of LIBs 

have interactions, a two-way coupling relationship proposed by 

Lin et al. can be used to capture such interactions [35], as 

illustrated in Fig. 2. The terminal voltage and the SOC of the 

battery will be calculated by the electrical model at first 

according to the applied current I  and the electrical 

parameters 0R , 1R , and 1C . Then heat generation can be 

obtained based on the difference between the calculated 

terminal voltage and OCV, as well as the current I . This heat 

generation is fed into the thermal model to calculate the bulk 

temperature. The calculated bulk temperature can then be used 

to determine the value of electrical parameters in the electrical 

model. In this way, with the electrical parameters changed by 

the battery temperature, the impact of the thermal behavior on 

battery voltage can be characterized. 

According to the two-way coupling relationship, the change 

in battery temperature will ultimately influence the way of its 

voltage response, though in an indirect manner. As such, it is 

possible to infer battery temperature merely based on how its 

voltage responds to the applied current if both the electrical and 

thermal dynamics are known in advance. In light of this, the 

 
Fig. 1.  Schematic of first-order ECM. 
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Fig. 2.  Two-way coupling relationship between the electrical and the 
thermal models. 

TABLE I 
SPECIFICATION OF THE TESTED CELL 

Cathode NMC 

Anode Graphite 

Nominal voltage 3.66 V 
Nominal capacity 50 Ah 

Upper cut-off voltage 4.3 V 

Lower cut-off voltage 2.75 V 

Battery mass 865 g 

Battery surface area 4.364×10−2 m2 
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two-way coupling effect can be leveraged to develop a 

closed-loop sensorless SOT observer in this article. 

III. EXPERIMENTAL 

Experiments were conducted with a 50-Ah prismatic cell 

(CALB Model L148N50B) to parameterize the electro-thermal 

model and generate the validation data. The specification of the 

cell is shown in Table I and the experimental setup used in this 

study is illustrated in Fig. 3. The test platform includes a 

Neware BTS-8000 battery tester, a thermal chamber, a host 

computer, and a Neware temperature acquisition module. 

The tested cell was placed in a thermal chamber where the 

ambient temperature was adjustable. The coolant in this study 

is air so that fT  in the thermal model refers to the ambient 

temperature. In real-world applications, different coolant (e.g., 

liquid) might be used in the thermal management system and 

the temperature of the coolant temperature can usually be 

measured. As for the measurement of the cell temperature, it is 

technically difficult to measure its bulk temperature, which 

brings challenges to model validation. Considering this, the 

tested cell is thermally insulated with the method in ref. [31], 

[36] to reduce the internal thermal gradient of the cell. In this 

way, the temperature measured by a T-type thermocouple at the 

center of the cell surface can be regarded as the bulk 

temperature due to the small temperature gradient 1. 

In order to parameterize the electrical model, several 

characterization tests were carried out, including the OCV test 

and hybrid pulse power characterization (HPPC) tests. During 

the OCV test, the cell was cycled at 1/20 C at room temperature, 

with a 2-h rest between the charge and discharge phase. 

Afterward, HPPC tests were conducted to extract other 

parameters of the ECM. Specifically, a discharge current of 1 C 

was used to adjust the battery SOC, followed by a 2-h rest and 

the subsequent HPPC profile. Each HPPC profile consists of a 

10-s discharge pulse, a 40-s rest period, a 10-s charge pulse, and 

a 3-min rest period. The current during the charge and 

discharge pulse was also 1C. The HPPC tests were conducted at 

0.9, 0.7, 0.5, 0.3, and 0.1 SOCs, which were repeated at 

different ambient temperatures (i.e., 25 ℃, 3  ℃, 35 ℃, 4  ℃, 

45 ℃, and 5  ℃). 

 
1 Note that this thermal boundary condition was created deliberately to help the 

validation of the proposed method. Under normal operations where thermal 
gradient inside the cell is larger, the proposed method can be used to estimate 

the volume-averaged temperature after re-calibrating the convective heat 

transfer coefficient h . 

Some thermal parameters, including the specific heat 

capacity pC , the convective heat transfer coefficient h , and 

the entropic heat coefficient ocV T  , need to be determined 

through experiments. The entropic heat coefficient can be 

determined through HPPC tests, while other parameters can be 

identified under dynamic tests where the current profiles were 

derived from real-world driving cycles. In this study, the 

federal urban driving schedule (FUDS), worldwide harmonized 

light vehicles test procedure (WLTP), Artemis driving cycles, 

and federal test procedure (FTP)-75 were conducted, with some 

cycles used for thermal model parameterization, and the others 

for the validation of the electro-thermal coupled model and the 

proposed SOT observer. Each dynamic test started from the 

fully charged state after 1C constant current-constant voltage 

(CC-CV) charging and ended when the terminal voltage 

reached the lower cut-off voltage. 

IV. MODEL PARAMETERIZATION AND VALIDATION 

Parameterization is of great importance to the fidelity of the 

coupled model and further impacts the estimation accuracy. To 

reduce the parameterization difficulty, the electrical and 

thermal sub-models should be decoupled and parameterized 

individually [35]. 

A. Parameterization of the Electrical Model 

When parameterizing the electrical model, battery 

temperature should remain constant to avoid the change of 

electrical parameters with temperatures. During the OCV test, 

the battery temperature was maintained constant at room 

temperature and the cell was cycled at a close-to-equilibrium 

state under a small current. Therefore, the terminal voltage has 

a small deviation from the OCV. The voltage during charging 

and discharging were quite close to each other, as shown in Fig. 

4, and their average was treated as the battery OCV. 

Then the current and voltage data in HPPC tests are used to 

extract the parameters of the ECM. Due to the short excitation 

period and low current rate, battery SOC and temperature 

remain basically unchanged so that ECM parameters can be 

treated as constants during each HPPC profile. Then the 

identification of the ECM parameters becomes an optimization 

problem where the optimal parameters are determined by 

minimizing the Euclidean distance between the ECM output 

and the measured voltage during an HPPC profile, as given by 

 ( )
2

*

, ,

1

ˆarg min
el

N

el t k t k

k

V V
=

= −
θ

θ  (10) 

where elθ  is the optimization variable and in this case 

 0 1 1, ,
T

el R R C=θ , N  is the length of the voltage sequence of a 

 
Fig. 3.  Experimental setup for parameterization and validation. 

 
Fig. 4.  Terminal voltage vs. SOC when the cell is cycled under 1/20 C. 
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HPPC test, ,
ˆ
t kV  and ,t kV  denote the estimated voltage by ECM 

and the measured voltage, respectively. Particle swarm 

optimization (PSO) is applied to find the optimal ECM 

parameters because of its gradient-free search pattern, which 

increases the possibility of finding the global optimum. In this 

study, the number of particles is set to 30 and the maximum 

number is 600. 

The identified ECM parameters at different SOCs and 

temperatures can be illustrated as the black dots in Fig. 5. Since 

these parameters vary with both SOC and temperature, 

polynomials models in Eq. (11) are built to describe such 

dependencies, where ( ), , 0,1, ,8i i ia b c i =  are fitting 

coefficients. The fitting results can also be illustrated in Fig. 5, 

where the 
2R  of fitting are 0.9962, 0.9449, and 0.9418, 

respectively. 

( )

( )

( )

2 2

0 0 1 2 3 4 5

3 2 2

6 7 8

2 2

1 0 1 2 3 4 5

3 2 2

6 7 8

2 2

1 0 1 2 3 4 5

3 2 2

6 7 8

,

,

,

R SOC T a a SOC a T a SOC a SOC T a T

a SOC a SOC T a SOC T

R SOC T b b SOC b T b SOC b SOC T b T

b SOC b SOC T b SOC T

C SOC T c c SOC c T c SOC c SOC T c T

c SOC c SOC T c SOC T







= + + + +  +

+ + + 

= + + + +  +

+ + + 

= + + + +  +

+ 




++









 (11) 

B. Parameterization of the Thermal Model 

To parameterize the thermal model, the experimental data 

from the HPPC tests and WLTP profile are used in this study. 

ocV T  can be calculated by linearly fitting the 2-h relaxation 

voltage and temperatures at certain SOC in HPPC tests, and the 

slope of the linear fitting can be taken as the entropic heat 

coefficient at this SOC [37]. In this way, the value of ocV T   

at 0.9, 0.7, 0.5, 0.3, and 0.1 SOCs can be obtained. Similar to 

the parameter identification in the electrical model, the optimal 

parameters of the thermal model can be determined by 

minimizing the Euclidean distance between the model output 

and the measured temperature, which can be described as, 

 ( )
2

*

1

ˆarg min
th

N

th k k

k

T T
=

= −
θ

θ  (12) 

where ,
T

th pC h =  θ , ˆ
kT  and kT  are the estimated and 

measured temperatures at the time step k , respectively. The 

heat generation rate, as one of the inputs to the thermal model, 

is calculated based on Eq. (6). PSO can also be leveraged here 

to find the optimal thermal parameters and the identified pC  

and h  are 0.8519 J/(g∙K) and 6.353 W/(m2∙K), respectively. 

With the identified thermal model parameters, the 

comparison between the thermal model output and the 

measured surface temperature in the parameterization profile 

(i.e., WLTP) can be illustrated in Fig. 6. The parameterized 

thermal model has good accuracy in capturing the surface 

temperature of the cell, with the root mean square error (RMSE) 

of  .25 ℃. 

C. Validation of the Coupled Model 

After the parameterization, the coupled model is then 

validated against the FTP-75 driving profile to demonstrate its 

capability of capturing both the electrical and thermal dynamics 

of the cell. The validation results can be shown in Fig. 7. The 

RMSEs of the voltage estimation and temperature estimation 

are 25.3 mV and 0.42 ℃, respectively. It can be seen from Fig. 

7 that the coupled model only has increased estimation error at 

a very low SOC region, while the model performance is 

 
Fig. 5.  Dependency of ECM parameters on SOC and temperature. The black dots are the identified value at the certain SOC and temperatures. 

 
Fig. 6.  Comparison between the measured temperature and estimated 
temperature during model parameterization. 

 
Fig. 7.  Validation of the electro-thermal coupled model in terms its 
voltage and temperature accuracy under FTP-75 driving cycle. 
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satisfactory in a wide SOC region. The reason for the increased 

estimation error at low SOC region is that the polynomials 

models in Eq. (11), parameterized using parameter data above 

0.1 SOC, cannot capture the significant change in electrical 

parameters when SOC is lower than 0.1, causing increased 

errors for both the electrical model and the thermal model. To 

better capture the variation of electrical parameters, more 

HPPC tests can be conducted in this low SOC range to extract 

electrical parameters so that the model accuracy can be 

improved. Generally, considering other factors such as 

charge/discharge difference [38], load and rest difference [36], 

as well as rate dependence of ECM parameters [39], can also 

improve the model accuracy and contribute to better estimation 

accuracy of the observer. These factors should be carefully 

selected according to the battery characteristics during the 

modeling process so as to balance the model fidelity, 

complexity, and parameterization difficulty. 

V. ONLINE SENSORLESS TEMPERATURE ESTIMATION 

A general framework for sensorless SOT estimation in this 

paper can be illustrated in Fig. 8. With the measured current and 

ambient temperature as input, the electro-thermal model 

produces a voltage estimation based on the initial states. Then 

the estimated voltage is compared with the measured one, and 

the error feeds back to the electro-thermal model with a gain 

factor K  to correct the estimations of internal states. To 

develop this closed-loop sensorless temperature observer, the 

system input, states, and output must be defined in the first 

place. A general discrete-time model of a nonlinear system can 

be applied to describe the coupled electro-thermal behavior of 

the battery as 

 
( )

( )
1 ,

,

k k k k

k k k k

f

y g v

+ = +


= +

x x u w

x u
 (13) 

where the system input, states, and output are ,,
T

k k f kI T =  u , 

1,, ,
T

k k k kSOC V T =  x , and ,k t ky V= , respectively. kw  and kv  

are the noise of the system states and measurement, with 

covariance matrix wR  and vR , respectively. ( ),k kf x u  and 

( ),k kg x u  are the nonlinear system state equation and output 

equation respectively, and can be expressed as, 

( )

( ) ( ) ( ) ( )1 1 1 1, , , ,

1, 1

,

,

3600
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1

k k k k k k k k

p p
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k

k

n

t t

R SOC T C SOC T R SOC T C SOC T

k k

hA hA
t t

mC mC k

k f k

f

I t
SOC

C

V e I R e

Q
T e e T

hA

 
− −

−  − 

=

 
 +

 
 
  

  + −
   

 
   
 + − +       

x u

 (14) 

 ( ) ( ) ( )1, 0, ,k k oc k k k k kg V SOC V I R SOC T= + +x u

 (15) 

It should be noted from Eq. (14) and Eq. (15) that this 

electro-thermal coupled model is a highly nonlinear system. 

The terminal voltage of the cell has an implicit relationship 

with the battery bulk temperature. To develop the closed-loop 

SOT observer, EKF is leveraged in this article, which applies 

linear approximations to the nonlinear state and output 

equations, making it suitable for online applications. 

Generally, EKF includes two update processes after the 

initialization, namely the time update process and the 

measurement update process. In the time update process, both 

the state and the error covariances will be updated as follows 

 ( )1 1
ˆ ˆ ,k k kf− +

− −=x x u  (16) 

 
11 1 k

T

k k k w−

− +

− −= +P F P F R  (17) 

where ˆ k

−x  and 1
ˆ

k

+

−x  are the priori and posteriori estimation of 

the states, and k

−P  and 1k

+

−P  are the corresponding error 

covariances, 1k −F  is the Jacobian matrix of the partial 

derivatives of f  to x  
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 (18) 

Elements in the Jacobian matrix are expressed in Eqs. (19)-(21). 

It should be noted that due to the existence of electro-thermal 

coupling, the ECM parameters are a function of two internal 

states, namely the SOC and T . Therefore, chain rules are 

applied when deriving the Jacobian matrix. 

 
1 1 1

1,

1, 0, 0
k k k
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= = =
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Fig. 8.  Framework for sensorless SOT estimation using the measured 
voltage as feedback. 
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The measurement update process includes the calculation of 

the Kalman gain matrix, measurement update of the state 

estimation, and measurement update of the error covariance, 

which can be expressed as 

 ( )
1

1

T T

k k k k k k vR
−

− −

−= +K P G G P G  (22) 

 ( )( )ˆ ˆ ˆ ,k k k k k ky g+ − −= + −x x K x u  (23) 

 ( )k k k k

+ −= −P I K G P  (24) 

where kK  is the Kalman gain for the states, and kG  is the 

partial derivatives of g  to x  
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k k
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k k k
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x x u

x u
G

x
 (25) 

The elements in the Jacobian matrix kG  is calculated in Eq. 

(26). Similarly, since the measurement ,t kV  is not an explicit 

function of battery SOC and temperature, the chain rule needs 

to be applied again when calculating the partial derivatives of 
g  with respect to SOC and T . 
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 (26) 

By implementing Eqs. (16)-(17) and Eqs. (22)-(24) iteratively, 

the states of the electro-thermal system can be estimated. 

For many nonlinear systems with limited measurement 

feedback, observability could be a major issue that brings 

challenges to tracking the real system states via the system 

input and output [40], [41]. In our case, since battery voltage is 

not an explicit function of temperature, the bulk temperature 

may not be estimated via terminal voltage using conventional 

observers [30], [42]. With the electro-thermal coupling effect, 

the impact of battery temperature on the terminal voltage can be 

characterized through ECM parameters, and this coupling 

effect helps guarantee the observability of the battery states. To 

examine the observability, the Gramian observability matrix is 

calculated numerically at each time step k  [28], [41], i.e., 

 
1, , ,

T
n

k k k k k k

− =  O G G F G F  (27) 

where kG  and 
kF  are calculated based on Eq. (25) and (18), 

respectively. The size of our system n  is 3. In order to 

guarantee full observability, the Gramian observability matrix 

should have full rank (i.e., ( )Rank n=Ο ). 

VI. RESULTS AND DISCUSSION 

In this section, the proposed sensorless SOT observer will be 

evaluated from different aspects. We first investigate the 

performance of this observer under different driving profiles. 

Then the robustness of the observer is verified with different 

initial state estimates as well as measurement noises of current 

and voltage. Finally, this SOT observer is compared with 

different estimation methods, including open-loop estimations 

and closed-loop estimations based on empirical electro-thermal 

models [28]. 

A. SOT estimation under various driving cycles 
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To validate the effectiveness of the proposed sensorless SOT 

observer, two driving profiles, namely the Artemis driving 

cycle and FUDS cycle, have been applied to evaluate its 

performance. One of the main advantages of the closed-loop 

observer is that the estimated states will converge to the real 

values quickly, even with inaccurate initialization of the states. 

The initialization of the proposed state observer is set as 

 0 0.5,0,40
T

=x  deliberately, i.e., the initial SOC and 

temperature estimates have an absolute error of 5 % and  5 ℃, 

respectively. The covariance matrix wR  and vR  are set as  

( )6 6 6 53 10 ,1 10 ,1 10 , 2.5 10w vdiag R− − − − =    =  R  

The initial value of the error covariance is set as 

( )3 3

0 1 10 ,1 10 ,1diag − − =   P  

The state estimation results under the Artemis driving cycle 

and FUDS cycle can be illustrated in Fig. 9 and Fig. 10, 

respectively. With the proposed observer, both the SOC and 

temperature estimations converge to the ground truth quickly. 

As for the bulk temperature, it only takes about 300 s to 

converge to the true value in both cycles, and the steady-state 

estimation errors in both cases are generally within the bounds 

of ± .5 ℃, which are marked by the red dashed lines in both 

figures. The estimation performance of the proposed observer 

was evaluated by RMSE and mean absolute error (MAE), 

which can be summarized in Table Ⅱ. After 3   s when the 

estimation converges, both the RMSE and MAE in these two 

driving cycles are lower than  .7 ℃, demonstrating the 

accuracy of the proposed sensorless SOT observer.  

Since observability can be an important issue affecting state 

estimation, the rank of the Gramian observability matrix is also 

calculated timely. Results in both Fig. 9 and Fig. 10 show that 

the rank of the observability matrix is 3 (i.e., full rank) nearly 

over the entire driving profile, indicating the full observability 

of the battery's internal states benefited from the 

electro-thermal coupling effect. This is also the reason for the 

fast convergence of the temperature estimation when merely 

using voltage as feedback in the designed SOT observer.  

B. Robustness Test  

The robustness is another important metric to evaluate the 

performance of an observer. Generally, for a robust observer, 

the estimation of internal states should converge to the ground 

truth even with the presence of perturbation and noise [43]. To 

verify the robustness of the proposed SOT observer, different 

initial temperatures are provided for the observer while the 

initial value of SOC and 1V  remain unchanged in different 

cases (0.5 and 0 V respectively). The estimation results with 

different temperature initializations can be shown in Fig. 11(a), 

with the estimation errors summarized in Table Ⅲ. Even with 

different initial temperature estimates, the proposed SOT 

observer can still track the real battery temperature after about 

500 s. The estimation with different initializations exhibits little 

difference in convergence speed, but at about 1000 s all 

estimations have already converged to the true value. 

Furthermore, despite the large estimation errors at the 

beginning caused by inaccurate initialization, the steady-state 

errors for all the cases after 1000 s can be reduced to lower than 

 .7 ℃. In addition, in real-world applications, larger noise 

exists during both current and voltage measurements compared 

to the lab tests, which would affect the performance of the SOT 

TABLE II 
ESTIMATION ERROR WITH THE PROPOSED SOT OBSERVER UNDER 

DIFFERENT DRIVING PROFILES 

Driving 

profiles 

0 s < t < tend 300 s < t < tend 

RMSE  ℃  MAE  ℃  RMSE  ℃  MAE  ℃  

Artemis 1.94 0.91 0.67 0.62 

FUDS 1.46 0.64 0.59 0.47 

 

TABLE III 
ESTIMATION ERROR WITH DIFFERENT TEMPERATURE INITIALIZATIONS 

Temperature 

initializations 

0 s < t < tend 1000 s < t < tend 

RMSE  ℃  MAE  ℃  RMSE  ℃  MAE  ℃  

1  ℃ 2.02 1.11 0.67 0.53 

15 ℃ 1.50 0.88 0.60 0.47 
2  ℃ 1.07 0.69 0.56 0.43 

3  ℃ 0.85 0.55 0.57 0.45 

35 ℃ 1.29 0.64 0.61 0.53 
4  ℃ 1.94 0.91 0.67 0.61 

 

 
Fig. 9.  Estimation results of battery SOC and temperature under 
Artemis cycle using the proposed observer with inaccurate 
initializations. 

 
Fig. 10.  Estimation results of battery SOC and temperature under 
FUDS cycle using the proposed observer with inaccurate initializations. 
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observer. To test the performance of the observer, zero-mean 

white Gaussian noises with different standard deviations have 

been added to the original current and voltage data, while the 

initialization of battery temperature, SOC and 1V  are kept as 

4  ℃,  .5, and   V in different cases. The temperature 

estimation results under different noise levels are shown in Fig. 

11(b). The estimation can still converge to the ground truth 

even with large noise in both current and voltage measurements. 

However, with larger noise, the convergence speed becomes 

slow, and the accuracy of the estimation also deteriorates. 

When the noise level increases beyond the studied scope in Fig. 

11(b), the observer fails to work, indicating its stability within a 

certain noise level.  

Apart from operating conditions (i.e., battery temperature 

and SOC), battery degradation also has an impact on the 

electrical parameters in the long run and therefore affects the 

SOT estimation. Nevertheless, the change in electrical 

parameters as a result of battery aging is a gradual process and 

such a change is not significant within dozens of cycles [44], 

[45]. To take the effect of aging into account, battery 

parameters can be updated periodically over its life cycle, 

where an aging compensation with offset correction can be 

made [14]. Moreover, online estimation of battery state of 

health (SOH) enables the correction of battery real capacity [46] 

and contributes to the quick convergence of other state 

estimations in the presence of SOH perturbations.  

C. Comparison with different methods  

There are also other sensorless temperature estimation 

methodologies in the existing literature, including open-loop 

estimations based on thermal models [47] and closed-loop 

estimations based on empirical models [28]. In this article, we 

compare the estimation performance of the proposed observer 

with the aforementioned two approaches under the FUDS 

driving cycle. The initialization of the state estimates in the 

proposed SOT observer is  0 0.5,0,40
T

=x . As for open-loop 

estimations based on the electro-thermal model, two cases with 

inaccurate initializations have been investigated, including the 

case with inaccurate initial SOC and temperature estimates and 

the case with only inaccurate temperature estimates. As for the 

closed-loop estimation with the empirical battery model, an 

electro-thermal model is first fitted with the WLTP data using 

the linear model provided in [28]. The obtained relationship is 

expressed as  
7 2

1 0.99989 7.811*10 0.00280221k k kT T I−

+ = + +  (28) 

, 0.0184191 0.718752 0.00151681 3.992363t k k k kV T SOC I= − + + +

 (29) 

The parameters of the closed-loop observer based on the 

empirical model, including the covariance matrix and initial 

state estimates, are set to be the same as the observer proposed 

in this work. The comparison results can be presented in Fig. 12 

and Table Ⅳ. It can be seen from the results that the 

closed-loop estimations converge much faster than the 

open-loop estimations due to the correction of state estimates 

based on the measurement feedback. The closed-loop observer 

with the electro-thermal model exhibits much higher accuracy 

compared with the one with the empirical model, showing 

63.13% reduction of RMSE in the steady state. The reason for 

the large estimation error with the empirical model is that the 

fitted model based on one condition can hardly maintain its 

 
Fig. 12.  Comparison between the proposed closed-loop observer and 
open-loop estimations under FUDS cycle and with inaccurate 
initializations. 

 
(a) 

 
(b) 

Fig. 11.  Robustness test of the proposed SOT observer under Artemis 
driving cycle. (a) With different initial temperatures. (b) With different 
current and voltage measurement noise. 

TABLE IV 
ERROR COMPARISON OF DIFFERENT SOT ESTIMATION METHODS 

Methods 

0 s < t < tend 300 s < t < tend 

RMSE 
 ℃  

MAE 
 ℃  

RMSE 
 ℃  

MAE 
 ℃  

Proposed closed-loop 

observer 

1.46 0.64 0.59 0.47 

Open-loop estimation with 
inaccurate Ts 

5.57 4.03 4.89 3.60 

Closed-loop observer with 

empirical model 

1.58 1.42 1.60 1.46 
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accuracy under other conditions due to the lack of insights into 

battery electrical and thermal dynamics. For open-loop 

estimation with inaccurate SOC and temperature initializations, 

the estimation stops because the calculated terminal voltage 

reaches the lower cut-off voltage. Even with accurate SOC 

initialization, it still takes a lot of time for the open-loop 

estimation to converge to the true value.  

VII. CONCLUSION AND FUTURE WORK 

Sensorless temperature estimation plays a vital role in 

large-scale battery applications as it helps obtain the 

temperature information of many LIBs that lack attached 

temperature sensors in the context of limited onboard 

temperature sensors. This paper demonstrates the feasibility of 

closed-loop estimation of battery SOT merely based on the 

voltage feedback by taking advantage of the electro-thermal 

coupling effect. An electro-thermal coupled model considering 

the interactions between the electrical and the thermal 

dynamics is established, such that the change in battery 

temperature can ultimately be manifested by its voltage 

response. An EKF-based observer is then developed to estimate 

the battery bulk temperature by merely using the measured 

voltage as feedback. Validations against experiments show that 

the proposed observer can estimate battery temperature 

accurately under different driving profiles and inaccurate 

initializations. Furthermore, full observability of the internal 

states can be guaranteed, which contributes to quick 

convergence of the temperature estimation. Finally, the 

comparison with other approaches shows that the proposed 

sensorless SOT observer outperforms other methods in terms of 

accuracy and convergence speed. 

Nevertheless, the proposed SOT estimation methodology is 

based on a single cell with passive cooling where the cooling 

coefficient remains constant. To extend such a methodology to 

real-world applications with multiple cells and active thermal 

management, where the inter-cell heat transfer and the change 

in cooling coefficient exist, a time-varying equivalent 

convective heat transfer coefficient needs to be adopted in 

future work. In this way, the net effect of heat dissipation to the 

ambient and the heat exchange between adjacent cells can be 

described by the heat dissipation term. Dual observers need to 

be developed to estimate the battery temperature and the 

time-varying heat transfer coefficient simultaneously. 
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