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Abstract. We present a method to convert motion capture data and anthropometric 
statistics into parametric biomechanical models of cyclic motions, such as walking, 
cycling and running. The motivation is ease of modelling and the desire to make 
models prospective. We have developed a data processing pipeline, which pre-
compiles a large amount of motion capture trials into a parametric model relying on 
the correlations between the input variables. The compilation converts optical 
motion capture data into anatomical joint angle variations and anatomical body 
dimensions. Finally, a quadratic programming method with a closed-form solution 
is developed to predict motion patterns meeting subject-specific requirements. The 
method is demonstrated on running models, and we conclude that the method can 
facilitate new uses of biomechanical models. 
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1. Introduction 

One of the trends in biomechanics from the past two decades is individualization of 
model to specific subjects or patients. The importance of this topic was illustrated by the 
“Grand Challenge Competition to Predict in Vivo Knee Loads”: a blinded conference 
competition to predict measured forces in knee implants [1]. Such carefully implemented 
subject-specific models typically require advanced medical imaging input to obtain 
correct geometries of internal anatomical structures. Despite recent advances in 
automatic processing of medical image data [2], this process tends to be cumbersome 
and not tractable for clinical workflows.  

In terms of movement, such models typically require subject-specific motion capture 
data. The prior collection of motion data means that subject-specific models can only be 
retrospective, in the sense that they represent movements that happened in the past in a 
laboratory. This contradicts the purpose of many models, which is to predict what will 
happen if a prospective intervention is performed. 

There are many applications of human models which do not require accurate 
representations of single individuals but rather statistical representations of populations; 
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in terms of anthropometry, digital human models for ergonomics and product design 
have successfully relied on population statistics for decades [3].  

While skilled and repetitive movements, such as walking, running and cycling, differ 
between people, they do seem to show more similarity than difference, and there may be 
notable connections between movement patterns and anthropometry. For instance, a 
positive correlation between leg length and step length seems plausible. Such 
correlations are important to recover, because they can potentially reduce the need for 
subject-specific model input and thereby facilitate the development of truly predictive 
models. The idea of investigating skilled movements based on many motion capture 
trials was pursued successfully in the HUMOSIM framework from the University of 
Michigan [4]. In this paper, we report on the development of a unified statistical model 
for anthropometry and movement patterns for cyclic motions exemplified by running. 

2. Methods 

Kinematics of a total of 285 treadmill running trials were collected from 80 subjects 
using an optical motion capture system (Qualisys AB, Gothenburg, Sweden).  180 trials 
were from male subjects, and 105 trials were from female subjects. The subjects were 
recreational and skilled runners. Informed consent was obtained, and the data were 
handled in accordance with the GDPR regulations. Statistical summaries are presented 
in Table 1. 
 

Table 1. Summary of data of running trials. 

Property Mean Standard deviation Range 
Velocity [km/h] 12.48 2.79 6-20 

Subject age [years] 35.8 12.0 19-65 
Body Mass [kg] 73.0 10.7 51-105 

Stature [m] 1.77 0.0807 1.58-1.95 
 
The marker trajectories were imported into the AnyBody Modelling System ver. 7.2 
(AnyBody Technology, Aalborg, Denmark) [5] for the initial compilation. Using an 
algorithm for identification of model kinematics and segment parameters [6], each trial 
was converted into an individualized, full-body musculoskeletal model. The model 
comprises 67 anatomical segments and 52 anatomical joints with a total of 104 joint 
degrees-of-freedom. The variation of each joint degree-of-freedom over a typical 
running cycle was recovered from the model, and these time functions are parameterized 
with Fourier series truncated to 11 terms. 

Each running trial is now represented by parameters, which are the Fourier 
coefficients for each degree-of-freedom, subject-specific segment lengths identified 
from the motion capture data, and meta data, such as gender, age, body weight, stature 
and running speed. This comprises a total of 1224 parameters from which each trial can 
be recreated. Parameters from all trials are collected into a standard-scaled matrix, X, 
where each row represents a trial, and each column is a parameter. The matrix is 
subjected to principal component analysis (PCA): 

 (1) 
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where A is the PCA transformation matrix, x is a set of running parameters, μ is the 
vector of mean values of X. 

The orthonormal properties of A enable the opposite transformation: 

 (2) 

The principal components can be ordered in terms of variance, thus offering an 
opportunity to investigate which generic features of the running style and anthropometry 
primarily distinguish runners from each other. 

Performing PCA leads to a convenient parametric running model, because the 
components of y, unlike the primal parameters in x, are orthogonal and therefore can be 
varied independently to create new running patterns. The procedure is to select a set of 
transformed parameters, y, within a reasonable statistical range, transform them back to 
primal space, x, through (2), feed x back into the biomechanical simulation model and 
recreate the running style. 

However, the transformed parameters, y, are linear combinations of x and may or 
may not lend themselves to physical interpretation. From a user’s perspective, it would 
be more practical to be able to specify primal parameters, x, with a physical or 
physiological interpretation, for instance running speed, step length, leg length, gender 
or BMI. However, changing a single parameter in x is not immediately possible because 
the parameters in x are statistically correlated, i.e. changing a single primal parameter 
will lead to unrealistic combinations. To combine the benefits of the primal and 
transformed space, we formulate parameter identification as an optimization problem. 
We first observe that the average runner corresponds to y = 0. Minimizing a weighted 
norm of y given one or more constraints on the primal parameters will therefore lead to 
a running pattern that is as probable as possible, given the constraints on primal variables: 

 
Minimize 

 (3) 

 
Subject to 

 (4) 

 
where C is a diagonal matrix of eigenvalues of X, fj is a prescribed value of primal 
parameter xj and J is the set of primal variables that are constrained. We express xj in 
terms of y using (2) and obtain a quadratic optimization problem with linear constraints 
in the transformed variables: 
 
Minimize 

 (5) 

 
Subject to 
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 (6) 

where aij is the ijth entry in A. Defining B as the subset of A corresponding to the indices 
J, this mathematical program has a closed form solution: 

 (7) 

where λ is a vector of Lagrange multipliers corresponding to the constraints on primal 
parameters. Equation (7) makes it possible to specify constraints on primal parameters 
in the transformed, orthogonal space. 

2.1. Software implementation 

For the purpose of demonstration, the technology has been encapsulated into a 
demonstrator app, Runover, working as a front end to the AnyBody Modeling System. 
Runover is programmed in Python using the cross-platform user interface framework  
kivy [7], so it is theoretically deployable on mobile devices running Android or iOS. 
Runover collects user input, executes the biomechanical analysis, displays the running 
animation, and reports key figures for the running pattern biomechanics, for instance 
ground reaction forces, Achilles tendon forces or patella ligament forces.  

3. Results 

3.1. Data processing 

The processed running trials show differences as well as similarities. Figure 1 illustrates 
these differences with selected joint angle variations resulting from the compilation 
process. 
 

 
Figure 1. Populations of selected anatomical angles. 

 
The explained variance from the principal components is illustrated in Figure 2, which 
shows that 40 principal components explain 90% of the total variance of the 1224 primal 
parameters. Although the figure is truncated after 40 parameters, PCA was not used to 
reduce the dimensionality of the system. There is no practical reason to do so since the 
PCA analysis is easily manageable on an ordinary desktop computer. 
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Figure 2. Explained variance ratio from the principal component analysis. 

 
The average runner corresponding to the mean values listed in Table 1, and the runner’s 
biomechanics output are depicted in Figure 3. Please notice that the computed parameters 
are slightly asymmetric because the runners compiled into the model were also 
asymmetric to some extent. 
 

 
Figure 3. Average runner and computed biomechanical parameters. 

 

3.2. Interpretation of principal components 

Direct variation of each parameter in transformed space reveals, by visual inspection of 
the model animations, that the first principal component is primarily associated with 
running speed, while the second appears to be related mostly to the stature of the runner. 
Subsequent parameters are more difficult to interpret visually but seem to concentrate 
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their influence on movements of specific body regions: core movements for the third 
principal component, shoulder and arm movements for the fourth component and leg 
movements—specifically knee extension—for the fifth component. 

3.3. Control of primal parameters 

Any subset of the primal parameters, x, i.e. the 1224 parameters for each runner, can be 
specified as constraints in (6). Constraining the running speed to 6 and 30 km/h 
respectively for the otherwise average runner leads to the running styles depicted in 
Figure 4. 

 

Figure 4. Synthesized running patterns for speeds of 6 km/h (left) and 30 km/h (right). 

 
A debated issue in running biomechanics is whether forefoot running might entail 
biomechanical advantages with respect to running with heel strike [8]. During the 
processing of the statistical data, the angle of the foot with respect to the ground at foot 
strike is registered and stored as a primal parameter in X. It is therefore subsequently 
possible to constrain the foot strike angle along with the running speed as primal 
parameters and obtain models that are similar, except for the foot strike pattern. Such 
models running at 13 km/h are depicted in Figure 5, and their simulated biomechanical 
parameters are compared in Table 2. The peak ground reaction forces are, perhaps 
surprisingly, a bit higher for forefoot running, while the patella ligament force is reduced 
at the cost of increasing the Achilles tendon load. The running economy in terms of 
metabolism seems to be slightly better for the heel strike running pattern. 
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Figure 5. Synthesized running patterns for heel strike (left) and forefoot running (right) at 13 km/h. 

 
Table 2. Simulated biomechanical parameters of heel strike and forefoot running at 13 km/h. 

Property Heel strike Forefoot 
Peak GRF [BW] 2.03 2.17 

Peak patella lig. force [BW] 6.6 5.84 
Peak Achilles tend. force [BW] 7.38 9.05 

Metabolism [J/(kg km)] 3714.0 3858.0 
 

4. Discussion 

The proposed method can be regarded as a machine learning algorithm, which appears 
to be able to generate a statistical variation of plausible running models. The underlying 
PCA approach is not confined to normally distributed data, but the optimization problem 
formulation relies on an assumption of normality. It is certain that this condition is not 
fulfilled for all of the underlying data in the sense that male and female trials are mixed, 
and the gender variable is categorical. Other gender-dependent variables, such as 
anthropometrical dimensions, probably do not meet the criteria for normal distribution 
in their merged form. 

Despite these reservations, the method seems to work well, even to the extent of 
producing surprisingly good results in some cases. The fastest speed in the empirical data 
is 20 km/h, but the model reproduces notable features of sprint running, such as high heel 
elevation in the forward swing, when the speed is extrapolated to sprint at 30 km/h as 
shown in Figure 4.  

It is obvious that the validity of the synthetically generated running styles is inferior 
to recorded empirical data. However, for comparison of related but different conditions, 
the synthetic approach offers the advantage that selected parameters can be changed 
while keeping other parameters constant, which is rarely possible in empirical studies. 
While doing so, users should observe that the optimization problem in the interest of 
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orthogonality is formulated in the set of transformed parameters, y. The effect of this 
choice is that unconstrained primal variables will change during the solution of the 
optimization problem, so it is necessary to explicitly constrain the variables that must 
remain unchanged between conditions. This should also be done with caution, because 
constraining too many or unlikely combinations of primal variables can lead to 
improbable running patterns. 

The method has the potential to facilitate the use of digital human models for 
prospective purposes because it allows for generation of anthropometry and motion with 
minimal subject-specific input. The method should be directly extensible to other cyclic 
motions, where walking will probably be the more important application. 
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