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Abstract— Emerging cross-device artificial intelligence (AI)
applications require a transition from conventional centralized
learning systems toward large-scale distributed AI systems that
can collaboratively perform complex learning tasks. In this
regard, democratized learning (Dem-AI) lays out a holistic
philosophy with underlying principles for building large-scale
distributed and democratized machine learning systems. The
outlined principles are meant to study a generalization in
distributed learning systems that go beyond existing mechanisms
such as federated learning (FL). Moreover, such learning systems
rely on hierarchical self-organization of well-connected distrib-
uted learning agents who have limited and highly personalized
data and can evolve and regulate themselves based on the
underlying duality of specialized and generalized processes.
Inspired by Dem-AI philosophy, a novel distributed learning
approach is proposed in this article. The approach consists
of a self-organizing hierarchical structuring mechanism based
on agglomerative clustering, hierarchical generalization, and
corresponding learning mechanism. Subsequently, hierarchical
generalized learning problems in recursive forms are formulated
and shown to be approximately solved using the solutions
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of distributed personalized learning problems and hierarchical
update mechanisms. To that end, a distributed learning algo-
rithm, namely DemLearn, is proposed. Extensive experiments on
benchmark MNIST, Fashion-MNIST, FE-MNIST, and CIFAR-10
datasets show that the proposed algorithm demonstrates better
results in the generalization performance of learning models in
agents compared to the conventional FL algorithms. The detailed
analysis provides useful observations to further handle both the
generalization and specialization performance of the learning
models in Dem-AI systems.

Index Terms— Democratized learning, distributed artificial
intelligences (AIs), hierarchical learning, self-organization.

I. INTRODUCTION

NOWADAYS, artificial intelligence (AI) has grown to
be successful in solving complex real-life problems

such as decision support in healthcare systems, advanced
control in automation systems, robotics, and telecommunica-
tions. Numerous existing mobile applications incorporate AI
modules that leverage users’ data for personalized services
such as Gboard mobile keyboard on Android, the Quick-
Type keyboard, and the vocal classifier for Siri on iOS [1].
By exploiting the unique features and personalized character-
istics of users, these applications not only improve the personal
experience of the users, but also helps to better control
their devices. Moreover, the rising concern of data privacy
in existing machine learning frameworks fueled a growing
interest in developing distributed machine-learning paradigms
such as federated learning (FL) frameworks [1]–[11]. FL was
first introduced in [2], where the learning agents coordinate via
a central server to train a global learning model in a distributed
manner. These agents receive the global learning model from
the central server and perform local learning based on their
available datasets. Then, they send back the updated learning
models to the server for updating the global model via an
aggregation operation without revealing the private training
data to the others.

In practice, the private dataset collected at each agent
is unbalanced, highly personalized for some applications
such as handwriting and voice recognition, and exhibits
non-independent and non-identically distributed (i.i.d.) charac-
teristics. Therefore, the iterative process of updating the global
model improves the generalization of the model, but also
hurts the personalized performance of the agents [1]. Hence,
existing FL algorithms cannot efficiently handle the underlying
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Fig. 1. Analogy of a hierarchical distributed learning system.

cohesive relation between generalization and personalization
(or specialization) abilities of the trained learning model [1].
To the best of our knowledge, the work in [9] was the first
attempt to study and improve the personalized performance
of FL using a personalized federated averaging (Per-FedAvg)
algorithm based on a meta-learning framework (MLF). Fur-
thermore, in a recent work [10], the authors propose an
adaptive personalized FL framework where a mixture of the
local and global models was adopted to reduce the general-
ization error. However, similar to [9], the cohesive relation
between generalization and personalization was not adequately
analyzed. Recently, [12] proposed a pFedMe algorithm by
studying a bi-level learning optimization problem such as
global problem and personalized problems.

To better analyze the personalized and generalized learning
performance for learning models in the FL framework, the
Dem-AI philosophy, discussed in [13], introduces a holis-
tic approach and general guidelines to develop distributed
and democratized learning systems. The approach refers to
observations about the generalization and specialization capa-
bilities of biological intelligence, the hierarchical structure
of society, and swarm intelligence in large-scale distributed
learning systems. Fig. 1 illustrates the analogy of the Dem-AI
system and the hierarchical structure in an organization. The
specialists from different domain knowledge are grouped into
teams to perform common products or targets. These groups
in an organization need to collaborate toward the common
goals under the supervision of a board of directors. Simi-
larly, learning agents in different groups perform collaborative
learning for group models. The outputs of these groups in a
Dem-AI system are the specialized learning models that are
created by group members. In this article, inspired by Dem-AI
guidelines, we develop a novel distributed learning framework
that can directly extend the conventional FL scheme for
collectively solving a common learning task at learning agents.
Different from existing FL algorithms for building a single
generalized model (a.k.a global model), we maintain self-
organizing hierarchical group models. Accordingly, we adopt
the agglomerative hierarchical clustering [14] and periodically
update the hierarchical structure based on the similarity in
the learning characteristic of users. In particular, we propose
the hierarchical generalization and learning problems for each

generalized level in a recursive form. To solve the complex
formulated problem due to its recursive structure, we develop
a distributed learning algorithm, DemLearn. The proposed
algorithm uses the bottom-up scheme to iteratively performs
the local learning by solving personalized learning problems
and hierarchical updating the generalized models for groups
at higher levels. With extensive experiments, we validate both
specialization and generalization performance of all learning
models on benchmark MNIST, Fashion-MNIST, federated
extended MNIST (FE-MNIST), and CIFAR-10 datasets.

To that end, we discuss the preliminaries of democratized
learning in Section II. Based on the Dem-AI guidelines,
we formulate hierarchical generalized, personalized learning
problems, and propose a novel distributed learning algorithm
in Section III. We validate the efficacy of our proposed algo-
rithm for both specialization and generalization performance
of clients, groups, and global models compared to the con-
ventional FL algorithms in Section IV. Finally, Section V
concludes the article.

II. DEMOCRATIZED LEARNING: PRELIMINARIES

Different from FL, the Dem-AI framework [13] introduces
a self-organizing hierarchical structure for solving common
single/multiple complex learning tasks by mediating
contributions from a large number of learning agents in
collaborative learning. Moreover, it unlocks the following
features of democracy in the future distributed learning
systems. According to the differences in their characteristics,
learning agents form appropriate groups that can be
specialized for similar agents to deal with the learning tasks.
These specialized groups are self-organized in a hierarchical
structure and collectively construct the shared generalized
learning knowledge to improve their learning performance
by reducing individual biases due to the unbalanced, highly
personalized local data. In particular, the learning system
allows new group members to 1) speed up their learning
process with the existing group knowledge and 2) incorporate
their new learning knowledge in expanding the generalization
capability of the whole group. In Dem-AI systems, learning
agents are free to join any of the appropriate groups and exhibit
equal power in the construction of their groups’ generalized
learning model. Here, the power of each group can be
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Fig. 2. Three general mechanisms for designing Dem-AI systems.

represented by the number of its members which varies over
the training time. We introduce a brief summary of Dem-AI
concepts and principles [13] in the following discussion.

A. Definition and Goal

Democratized learning (Dem-AI in short) studies dual (cou-
pled and working together) specialized–generalized processes
in a self-organizing hierarchical structure of large-scale dis-
tributed learning systems. The specialized and generalized
processes must operate jointly toward an ultimate learning goal
identified as performing collective learning from biased learn-
ing agents, who are committed to learning from their own data
using their limited learning capabilities. As such, the ultimate
learning goal of the Dem-AI system is to establish a mech-
anism for collectively solving common (single or multiple)
complex learning tasks from a large number of learning agents.

B. Specialized Process

This process is used to leverage the specialized learning
capabilities of the learning agents and specialized groups by
exploiting their collected data. By incorporating the general-
ized knowledge of higher-level groups created by the general-
ization mechanism, the learning agents can update their model
parameters to reduce biases in their personalized learning.
Thus, the personalized learning objective has two goals: 1)
to perform specialized learning and 2) to reuse the available
hierarchical generalized knowledge.

C. Generalized Process

The generalization mechanism encourages group members
to share knowledge when performing learning tasks with
similar characteristics and construct hierarchical levels of gen-
eralized knowledge. The hierarchical generalized knowledge
helps the Dem-AI system maintain the generalization ability
for reducing biases of learning agents and efficiently deal-
ing with environmental changes or performing new learning
tasks.

D. Self-Organizing Hierarchical Structure

The hierarchical structure of specialized groups and the
relevant generalized knowledge are constructed and regulated
following a self-organization principle based on the similarity
of learning agents. In particular, this principle governs the
union of small groups to form a bigger group that eventually
enhances the generalization capabilities of all members. Thus,
specialized groups at higher levels in the hierarchical structure
have more members and can construct more generalized (less
biased) knowledge faster adaptation to new environments
in [15].

E. Transition in the Dual Specialized–Generalized Process

The specialized process becomes increasingly important
compared to the generalized process during the training time.
As a result, the learning system not only evolves to gain
specialization capabilities from the learned tasks, but also
loses the capabilities to deal with environmental changes such
as new learning agents and new learning tasks. Meanwhile,
the hierarchical structure of the Dem-AI system is self-
organized and evolved from a high level of plasticity to a
high level of stability, that is, from unstable specialized groups
to well-organized specialized groups. The transition of the
Dem-AI learning system is illustrated in Fig. 2 with three
iterative sub-mechanisms such as generalization, specialized
learning, and hierarchical structuring mechanism. Accordingly,
the transition of the dual specialized–generalized process rep-
resents the steps in a typical democratized learning frame-
work [13]. In that transition, the learning agents are grouped
according to the similarities of their learning tasks at the early
stage. Then, the generalized process helps in the construction
of a hierarchical generalized knowledge for the specialized
groups from the bottom-up and encourages the group mem-
bers to be close together. In the meantime, the specialized
learning processes leverage personalized learning to exploit
their biased datasets by incorporating higher-level general-
ized group knowledge from top-level to lower-level groups.
In doing so, the group members deviate from the common
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generalized knowledge. After that, the hierarchical structure
will be updated according to the new learning models.

In the next section, we develop a democratized learning
design that results in a hierarchical generalized learning prob-
lem. To that end, we propose a novel democratized learning
algorithm, DemLearn, to realize as an initial implementation
of Dem-AI philosophy.

III. DEMOCRATIZED LEARNING DESIGN

Dem-AI philosophy and guidelines in [13] envision different
designs for a variety of applications and learning tasks. In this
work, we focus on developing a novel distributed learning
algorithm that consists of the following hierarchical clustering,
hierarchical generalization, and learning mechanisms with a
common learning task for all learning agents.

A. Hierarchical Clustering Mechanism

To construct the hierarchical structure of the Dem-AI system
with relevant specialized learning groups, we adopt the com-
monly used agglomerative hierarchical clustering algorithm
(i.e., dendrogram implementation from scikit-learn [14], [16]),
based on the similarity or dissimilarity of all learning agents.
The dendrogram method is used to examine the similarity
relationships among individuals and is often used for cluster
analysis in many fields of research. During implementation,
the dendrogram tree topology is built-up by merging the pairs
of agents or clusters having the smallest distance between
them, following the bottom-up scheme. Accordingly, the mea-
sured distance is considered as the differences in the char-
acteristics of learning agents (e.g., local model parameters or
gradients of the learning objective function). Since we obtain a
similar performance implementing clustering based on model
parameters or gradients, in what follows, we only present
a clustering mechanism using the local model parameters.
Additional discussion for gradient-based clustering is provided
in the supplementary material.

Given the local model parameters wn = (wn,1, . . . ,wn,M ) of
learning agent n, where M is the number of learning parame-
ters, the measure distance between two agents φn,l is derived
based on the Euclidean distance such as φn,l = ‖wn − wl‖.
In addition, we consider the average-linkage method [17] for
distance calculation between an agent and a cluster using the
Euclidean distance between the model parameters of the agent
and the average model parameters of the cluster members.
Accordingly, the hierarchical tree structure is in the form of a
binary tree with many levels. In consequence, it will require
unnecessarily high storage and computational cost to maintain
and be also an inefficient way to maintain a large number
of low-level generalized models for small groups. As a result,
we keep only the top K levels in the tree structure and discard
the lower-level structure. Therefore, at the top-level K , the
system could have two big groups that have a large number
of learning agents.

B. Hierarchical Generalization and Learning Mechanism

The K level hierarchical structure emerges via agglomera-
tive clustering. Accordingly, the system constructs K levels

of the generalization, as in Fig. 2. As such, we propose
hierarchical generalized learning problems (HGLPs) to build
these generalized models for specialized groups in a recursive
form, starting from the global model w(K ) construction at the
top-level K as follows.

HGLP problem at level K

min
W (K )

L(K ) =
∑
i∈SK

N (K−1)
g,i

N (K )
g

L(K−1)
i

(
w

(K−1)
i

∣∣∣D(K−1)
i

)
(1)

s.t . w(K ) = w
(K−1)
i , ∀i ∈ SK (2)

where W (K ) = (w(K ),w
(K−1)
1 , . . . ,w

(K−1)
|SK | ), SK is the set

of subgroups of the top-level group, and L(K−1)
i is the loss

function of subgroup i given its collective dataset Di . The
objective function is weighted by a fraction of the number of
learning agents N (K−1)

g of the subgroup i , and the total number
of learning agents N (K )

g in the system. Hence, the subgroups
which have more learning agents have higher impact to the
generalized model at level K . The hard constraints in (2)
enforce these subgroups to share a common learning model
(i.e., a global variable w(K )). To preserve the specialization
capabilities of each subgroup, these constraints (2) could be
relaxed by using additional proximal terms in the objective.
In this way, the problem encourages the subgroup learning
models to become close to the global model but not necessarily
equal. Thus, the relaxed problem HGLP’ is defined as follows.

HGLP’ problem at level K

min
W (K )

∑
i∈SK

N (K−1)
g,i

N (K )
g

(
L(K−1)

i

(
w

(K−1)
i

∣∣∣D(K−1)
i

)

+ μK

2

∥∥∥w(K ) − w
(K−1)
i

∥∥∥2
)

(3)

where μK denotes the tradeoff between the learning loss
and the generalization constraint enforcing the group learning
models to be close to the global model w(K ). Since the dataset
is distributed and only available at the learning agents, the
problem (3) at the top-level K can be solved starting from
its members’ problem first. Accordingly, the hierarchical gen-
eralized structure emerged naturally following the bottom-up
scheme where the learning models at lower levels are updated
before solving the higher-level generalized problems of its
upper group. Specifically, the problem (3) can be decentralized
and solved by the following problem of each subgroup i at the
level K − 1.

HGLP problem for each group i at level K − 1

min
W (K−1)

∑
j∈Si,K−1

N (K−2)
g, j

N (K )
g

(
L(K−2)

j

(
w

(K−2)
j

∣∣∣D(K−2)
j

)

+ μK−1

2

∥∥∥w
(K−2)
j − w

(K−1)
i

∥∥∥2
)

+ μK N (K−1)
g,i

2N (K )
g

∥∥∥w(K ) − w
(K−1)
i

∥∥∥2

where W (K−1) = (w(K−1)
i ,w(K−2)

1 , . . . ,w(K−2)
|Si,K−1|). Therefore,

we make a general approximation form of the generalized
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learning problem for the group i at the level k given the prior
higher generalized model w(k+1) as follows.

HGLP problem for each group i at level k

min
W (k)

∑
j∈Si,k

N (k−1)
g, j

N (K )
g

(
L(k−1)

j

(
w

(k−1)
j

∣∣∣D(k−1)
j

)

+ μk

2

∥∥∥w
(k−1)
j − w

(k)
i

∥∥∥2
)

+ μk+1 N (k)
g,i

2N (K )
g

∥∥∥w(k+1) − w
(k)
i

∥∥∥2
(4)

where W (k) = (w
(k)
i ,w

(k−1)
1 , . . . ,w

(k−1)
|Si,k | ), N (k)

g,i is the number
of learning agents of group i , and w(k+1) is the learning
model of the upper group at level k + 1 in which group i
belongs. Since there exists coupling between the upper and
lower levels, and the training dataset is decentralized, the
learning problem (4) of the group i at level k cannot be solved
directly. Therein, similar to FL, the learning loss of the group
can be distributed amongst the group members [2]. As a result,
the objective of the group problem has the remaining proximal
terms forcing the learning models in different levels to be close
to each other. Therefore, the learning model is constructed with
the model of upper group at level k + 1 and group members
at level k − 1 models by solving the following problem:

min
w

∑
j∈Si,k

μk N (k−1)
g, j

N (K )
g

∥∥∥w
(k−1)
j − w

∥∥∥2

+ μk+1 N (k)
g,i

N (K )
g

∥∥w(k+1) − w
∥∥2

. (5)

The closed-form of the optimal solution of the problem (5)
can be handily derived by setting the gradient to zero as
follows:∑

j∈Si,k

μk N (k−1)
g, j

(
w

(k−1)
j − w∗

)
= μk+1 N (k)

g,i

(
w∗ − w(k+1)

)
.

Thus, the learning model of group i can be updated as

w
(k)
i = αw(k+1) + (1 − α)

∑
j∈Si,k

N (k−1)
g, j

N (k)
g,i

w
(k−1)
j (6)

where α = μk+1/(μk + μk+1). The tradeoff parameter α can
be tuned later in the experiments to control the contribution
from the learning models of upper-group and group members.

Given the closed-form solution (6), the coupling between
different levels can be approximated by splitting the model
updates at each level via the bottom-top, and then, top-
bottom scheme. In Fig. 3, we show the illustration of the
proposed hierarchical updates. In particular, the lower groups
and members are updated first before the upper groups. And
then, the updated upper groups broadcast the parameters to
their group members to finish one update cycle.

At the lowest level, each learning agent n can actually
perform the local training process to fit its private data with
the personalized learning problem using the latest hierarchical
generalized models as follows.

PLP at level 0

w(0)
n = arg min

w∈W
L(0)

n

(
w|D(0)

n

) + μ
2

∥∥w − w(1)
n

∥∥2
(7)

Fig. 3. Hierarchical update of the generalized models.

where L(0)
n is the personalized learning loss function for the

learning task (e.g., cross entropy loss for classification [18])
given its personalized dataset D(0)

n , N (k)
n,g is the number of learn-

ing agents of the level-k group in which the agent n belongs.
Solving the PLP problem, the learning agent can update their
personalized model w(0)

n belonging to the parameterized deep
learning model set W . In this personalized level, the number
of group member is 1.

C. Democratized Learning Algorithm

Inspired by the FedAvg [2] and FedProx [19] algorithms,
we adopt the aforementioned recursive analysis and hierar-
chical clustering mechanism to develop a novel democratized
learning algorithm, namely DemLearn. The details of our
proposed algorithm are presented in Algorithm 1. Each agent
n uses the upper-group model at level 1 (i.e., w

(1)
n,t ) as the

initial learning model. Thereafer, the agent iteratively solves
the PLP problem in equation (8) based on the gradient method.
The updated client model will be sent to the central server to
perform hierarchical clustering and update from the general-
ized level 1 to the level K . After every τ global round, the
hierarchical structure is reconstructed according to the changes
in the personalized learning model of agents. The generalized
learning models of groups are updated, respectively, in bottom-
top, and then top-bottom fashion, following (9) and (10)
as the approximation of the closed-form solution (6). This
allows the lower-level subgroups to contribute their knowledge
for updating the group model. In return, they receive (and
incorporate) the better generalized knowledge from the upper
groups that enhances the generalization capacity of their local
learning models. Additionally, we introduce an amplification
trick in the bottom-top update for the first five rounds to speed
up the initial stage of the learning process. Accordingly, the
update from group members [i.e., w

(k)
t+1 in (9)] is multiplied

with a scaling constant 1.15 in the first five rounds.

IV. EXPERIMENTS

A. Setting

In this section, we validate the efficacy of the Dem-
Learn algorithm with the MNIST [20], Fashion-MNIST [21],



NGUYEN et al.: SELF-ORGANIZING DEMOCRATIZED LEARNING: TOWARD LARGE-SCALE DISTRIBUTED LEARNING SYSTEMS 10703

Algorithm 1 Democratized Learning (DemLearn)
1: Input: K , T, τ.
2: for t = 0, . . . , T − 1 do
3: for learning agent n = 1, . . . , N do
4: Agent n uses the upper-group model w

(1)
n,t as the

initial model;
5:

Agent n iteratively updates the personalized learning
model w

(0)
n,t+1 as an in-exact minimizer (i.e., gradient

based) of the following problem:
min
w∈W

L(0)
n (w|Dn) + μ

2 ‖w − w
(1)
n,t‖2; (8)

6: Agent n sends updated learning model to the server;
7: end for
8: if (t mod τ = 0) then
9: Server reconstructs the hierarchical structure by the

clustering algorithm;
10: end if
11:

Hierarchical Update: Each group i at each level
k performs an update for its learning model from
bottom to top for updating the contribution of group
members

w
(k)
i,t+1 =

∑
j∈Si,k

N (k−1)
g, j

N (k)
g,i

w
(k−1)
j,t+1 . (9)

After the top-level model is updated, the lower-levels
starts updating top to bottom for the contribution of
the upper group as follows:

w
(k)
i,t+1 = αw

(k+1)
t+1 + (1 − α)w

(k)
i,t+1. (10)

The updated learning models at level 1 (i.e., w
(1)
t+1)

are then broadcast to all agents to update their local
models following equation (10).

12: end for

Federated Extended MNIST [22], and CIFAR-10 [23] datasets
for handwritten digits and fashion images recognition, and
objects recognition, respectively. We conduct the experiments
with 50 clients, where each client has median numbers of
data samples at 64, 70, and 785 with MNIST, Fashion-
MNIST dataset, and CIFAR-10, respectively. Different from
these three datasets, we also experiment with the FE-MNIST
dataset which has more number of classes such as 10 digits
and 25 lowercase and 25 uppercase. Accordingly, we select
50 clients from 3559 users who have at least 50 data samples
in the FE-MNIST dataset. Using these datasets, 20% of data
samples on each client are used for evaluating the model
testing performance. We divide the total dataset such that
each client has a small amount of data from two specific
labels among the overall ten in both datasets. In doing so,
we replicate a scenario of biased personal datasets, that
is, highly unbalanced data and a small number of training
samples can be collected at agents. The learning models
consist of two convolution layers followed by two pooling
and two fully connected layers, whereas three convolution
layers are used in the CIFAR-10 dataset. We set the update
period τ = 1 and validate the performance of the proposed

algorithm with K = 4 generalized levels. Our implementation
is developed based on the available code of FedProx in [19].
DemLearn, FedAvg, and FedProx use the common learning
rate η = 0.05, local epoch E = 2, batch size B = 10.
For FedProx, we set the parameter μ = 0.5. Meanwhile,
pFedMe needs detailed tuning to obtain a competitive accuracy
for different datasets. The Python implementation of our
proposed algorithm using Pytorch and datasets are available
at https://github.com/nhatminh/Dem-AI.

B. Results

Existing FL approaches such as FedProx and FedAvg
focus more on the learning performance of the global model
rather than the learning performance of clients. Therefore, for
forthcoming personalized applications, we implement Dem-
Learn and measure the learning performance of all clients
and the group models. In particular, we conduct evaluations
for specialization (C-SPE) and generalization (C-GEN) of
learning models at agents on average that are defined as the
performance in their local test data only, and the collective test
data from all agents in the region, respectively. Accordingly,
we denote Global as global model performance; and G-GEN
and G-SPE are the average generalization and specialization
performance of group models, respectively. In addition to the
standard C-SPE performance for local models, the introduced
C-GEN performance is an important metric that shows the
generalized capabilities of local models. Even though the
biased local models can achieve high C-SPE values from
very early, particularly due to their small local datasets,
they still have very low generalized capabilities which can
help to produce good predictions according to the frequent
changes of users. Meanwhile, the global and group models
have the highest generalized capabilities, but lower specialized
capabilities during deployment to the clients.

In Figs. 4 and 5, we conducted performance compar-
isons of our proposed methods, DemLearn with the three
FL methods, FedAvg [2], FedProx [19], and pFedMe [12]
as baselines on four benchmark datasets, MNIST, Fashion-
MNIST, FE-MNIST and CIFAR-10. Fig. 4(a) depicts the per-
formance comparison of DemLearn with FedProx and FedAvg
with the MNIST dataset. Experimental evaluations show that
the proposed approach outperforms the baselines in terms
of the convergence speed, especially to obtain better client
generalization performance. We observe that the local model
requires only 40 rounds to reach the C-GEN performance level
of 80% using the proposed algorithm, whereas existing FL
algorithms such as FedProx, FedAvg, and pFedMe take more
than 80 global rounds to achieve a near-competitive level of
performance as ours. Furthermore, after 100 rounds, Dem-
Learn obtains better average client generalization performance
(i.e., 88.77%) across client models and comparable C-SPE and
Global performance as of FedAvg and pFedMe.

Following similar trends, Figs. 4(b) and (c), and 5 depict
that the DemLearn algorithm performs better than FedProx and
FedAvg with the Fashion-MNIST, FE-MNIST, and CIFAR-10
datasets in terms of the client generalization performance.
In Fig. 4(c), the pFedMe algorithm found difficulties in
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Fig. 4. Performance comparison of DemLearn versus FedAvg, FedProx, and pFedMe. (a) Experiment with MNIST dataset. (b) Experiment with Fashion-
MNIST dataset. (c) Experiment with Federated Extended MNIST dataset.

tuning parameters to obtain a comparable performance and
showed lower performance and more fluctuated rather than
that of the other algorithms for the FE-MNIST dataset. Thus,
pFedMe obtains a slow improvement of the client models
in both specialization and generalization. Meanwhile, our
proposed algorithm exhibits stable convergence speed and
efficiency to achieve consistently high performance of learn-
ing models at all levels. In Fig. 5, we observe DemLearn
suffers a slight degradation in C-SPE and Global perfor-
mance to gain high C-GEN performance. After 100 rounds,
DemLearn demonstrates good tradeoff learning capabili-
ties of client models with high C-SPE (79.09%) and

C-GEN (57%) performance, while other baseline algorithms
only produce biased local models with low generalized
capabilities.

In Fig. 6, we evaluate and compare the performance of
the proposed algorithm for a fixed and self-organizing hier-
archical structure via periodic reconstruction (i.e., τ = 1).
We observe that DemLearn benefits from the self-organizing
mechanism and can provide slightly better generalization
capability of client models. In addition, the amplifica-
tion in the first five rounds helps the proposed algorithm
can speed up the initial performance of the DemLearn
algorithm.
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Fig. 5. Performance comparison of DemLearn versus FedAvg and FedProx with the CIFAR-10 dataset.

Fig. 6. Comparison of algorithms for a fixed and a self-organizing hierarchical structure. (a) Experiment with the MNIST dataset. (b) Experiment with the
Fashion-MNIST dataset.

C. Tuning Parameters of the Proposed Algorithm
In this section, we show the impact of parameter α in

the testing accuracy of MNIST and Fashion-MNIST datasets,
as shown in Fig. 7. As can be seen in the results, when α
is large, we obtain high performance of the client generaliza-
tion while slight degradation in their specialized capabilities.
As such, increasing the value of α enhances generalization,
but also reduces the specialization performance of client
models to a marginal extent. Since α = μk+1/(μk + μk+1)

controls the contribution from the learning models of the upper
group and group members, tuning α produces the impact on
disseminating the generalized knowledge from upper groups
to the lower-level groups and clients. At each level k, the
higher value of α signifies the objective is more focused on
minimizing the gap with the upper-group model at k + 1 than
the lower-group models at k − 1. Furthermore, we evaluate
the impact of other parameters, such as μ, K , τ , but they do
not show any clear effects on the performance of DemLearn,
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Fig. 7. Performance of DemLearn by varying α with MNIST and Fashion-MNIST datasets. (a) Experiment with the MNIST dataset. (b) Experiment with
the Fashion-MNIST dataset.

likely due to the small-scale simulation settings. In addition to
this, reducing the frequency of cluster updates by increasing
the parameter τ can help the algorithm obtain comparable
performance with a lower reorganizing cost of the hierarchical
structure. However, due to the limited scope of the simulated
datasets and settings, we advocate the impact of defined
parameters on the performance of the proposed algorithm
is better realized when evaluating the algorithm with more
practical/experimental data. In particular, we keep it as our
future work to evaluate our algorithm on the dataset that
has a hierarchical structure based on groups of similar users,
or exceedingly large and different users.

D. Clustering Approach

In addition to the Euclidean distance between learning
parameters in the hierarchical clustering algorithm, we can also
evaluate the measured distance φ

(cos)
n,l between two learning

models based on the cosine similarity as follows:

φ
(cos)
n,l = cos(wn,wl) =

∑M
m=1 wn,mwl,m√∑M

m=1 w2
n,m

√∑M
m=1 w2

l,m

. (11)

Our experimental results demonstrate that the clients and
group models show almost similar learning performance (see
Fig. 8) and different trends of cluster topology (see Fig. 9)
using the DemLearn algorithm. As shown in the Client-GEN

subfigure, some outliers contribute to the drop in client-GEN
performance throughout the training. At the same time, most
clients have comparable generalized capacities with the global
model. Accordingly, the illustration further helps us figure
out the exceedingly different clients with low C-GEN perfor-
mance. That means, in each round, the outliers are detected
(and classified) by a clustering mechanism that is exceed-
ingly different from other client model parameters. However,
we note that the outliers are not always the same and change
throughout their local model updates. But some appear several
times that provide meaningful information for the learning
system. Furthermore, as shown in Fig. 9, the difference in
cluster topology does not affect much on the overall learning
performance.

E. Discussion

Compared to the FedAvg and FedProx, we have a sim-
ilar on-device computational cost for solving PLP problem
using the gradient descent method. Different from the others,
pFedMe requires extra steps for the θ approximation and hence
requires more computation time on the client device. On the
other hand, for the computation time requirement at the server,
the DemLearn algorithm requires extra computation cost for
hierarchical clustering and a negligible cost for hierarchical
updates. We note that the cost of the hierarchical cluster-
ing depends on the model size and the number of learning
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Fig. 8. Comparison of different metrics using hierarchical clustering. (a) Experiment with the MNIST dataset. (b) Experiment with the Fashion-MNIST
dataset.

agents. In principle, the standard algorithm for hierarchical
agglomerative clustering has a time complexity of O(n3) and
requires O(n2) memory [24]. In this work, we evaluate the
algorithm with n = 50 users and obtain a running time of
0.0015 second per step on average when using a computer
with CPU i7-7700K and a memory of 32 GB. For the
communication cost, all algorithms require similar costs to
send the model parameters.

In practice, to deploy a typical hierarchical structure, the
Dem-AI systems can include three entities.

1) A cloud server that handles the global model (root node)
and its sublevel generalized groups.

2) Distributed regional servers, which are edge servers
deployed within each region and whose role is to manage
the subgroups and learning agents.

3) Learning agents.
Our implementation for hierarchical clustering is in a cen-

tralized manner in this article. However, the agglomerative
hierarchical clustering mechanism merges the learning agents
and groups in a bottom-up manner, and then it is possi-
ble to implement it in a decentralized manner. Therefore,
we can operate the hierarchical clustering in the cloud server
for top levels and decentralized implementation for regions

at edge servers for lower-level groups. Also, this grouping
mechanism can mitigate the negative effects of the aggre-
gation of exceedingly different learning agents to construct
hierarchical generalized models. In that way, we maintain
three or more levels of generalized models instead of a
single global model. To the best of our knowledge, this
design has not been considered yet in recent studies of
personalized FL.

V. CONCLUSION AND FUTURE WORKS

The novel Dem-AI philosophy has provided general guide-
lines for specialized, generalized, and self-organizing hier-
archical structuring mechanisms in large-scale distributed
machine learning systems. Inspired by these guidelines,
we have formulated the hierarchical generalized learning
problems and developed a novel distributed learning algo-
rithm, DemLearn. In this work, based on the similarity
in the learning characteristics, the agglomerative clustering
enables the self-organization of learning agents in a hier-
archical structure, which gets updated periodically. Detailed
analysis of experimental evaluations has shown the advan-
tages and disadvantages of the proposed algorithm. Compared
to conventional FL, we show that DemLearn significantly
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Fig. 9. Topology changes via hierarchical clustering in the DemLearn algorithm with the MNIST dataset. (a) Hierarchical clustering based on Euclidean
distance. (b) Hierarchical clustering based on Cosine similarity distance.

improves the generalization performance of client models
without largely compromising the specialization performance
of clients’ models. As a result, DemLearn enables good
tradeoff learning capabilities of client models with high C-SPE
and C-GEN performance, while other algorithms can only
produce biased local models with low generalized capabilities.
These observations benefit a better understanding and
improvement in specialization and generalization per-
formance of the learning models in future Dem-AI
systems.

Democratized learning provides unique ingredients to
develop future distributed personalized intelligent systems.
To that end, the learning design could be further studied
with personalized datasets, extended for multi-task learn-
ing capabilities, and validated with actual generalization

capabilities in practice for new users and environmental
changes. We advocate that our current design has not coped
with multiple learning tasks [3] and the adaptability of the
system due to environmental changes as general intelligent
systems. Turning the general distributed learning systems into
reality, we need to profoundly analyze the Dem-AI from
a variety of perspectives such as the robustness and diver-
sity of the learning models and novel knowledge transfer
and distillation mechanisms [25], [26]. Also, it is possible to
incorporate our flexible design with current approaches such
as meta-learning and optimization-based methods, to further
improve the personalization in FL. We consider our work
as an orthogonal contribution to the design architecture of
distributed AIs with recent approaches. Besides, we believe
it is necessary to experiment with these design approaches
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in common personalized settings using realistic datasets for
personalized learning tasks.
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