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Abstract—Health degradation issues in automotive power 

electronics converter systems (PECs) are present due to repetitive 

thermomechanical stress endured while the vehicle is in real-field 

operation. This stress results from heat generation, a byproduct of 

semiconductor operation within PECs, leading to degradation in 

semiconductor operating life. The best practice in academia and 

industry is to rely on detailed Physics-of-Failure (PoF) based 

models for lifetime estimation. However, the PoF-based model of 

PECs requires substantial computational time and robust devices 

to estimate lifetime accurately. According to literature surveys, the 

computational time of the PoF-based models could be reduced 

further by using a low-fidelity and/or reduced-order model (ROM) 

that may result in unacceptable accuracy. To fulfill this research 

gap, this paper proposes a real-time executable, deep learning-

based virtual sensing method that enables vehicle manufacturers 

to estimate the lifetime of the PECs onboard. This computationally 

efficient virtual sensing method has been integrated into an 

onboard vehicle validator edge (VVE). At the same time, multiple 

DL configurations are being explored, and optimization is 

performed on compositions, hyper-parameters, training, and 

testing datasets to obtain the best DL model.  Finally, to 

demonstrate the feasibility and accuracy of the proposed method 

before its implementation within the complex VVE, an X-in-the-

Loop (XiL) test is performed with vehicle frontloading. 

 

Index Terms—Virtual sensing, electric vehicles, power 

electronics converter, SiC power module, electro-thermal model, 

system-level lifetime, vehicle edge, and X-in-the-loop.   

I. INTRODUCTION 

The need for clean and sustainable energy independence is one 

of the most crucial challenges facing the European Union (EU) 

today. The EU aims to make Europe the world’s first climate-

neutral continent by 2050. To achieve this ambitious aim, the 

EU declared manufacturing 100% zero-emission cars in 2035 

[1]. This goal pushes for more sustainable growth and demand 

for electric vehicles (EVs) and anticipates a Compound Annual 

Growth Rate (CAGR) of >16% in the European vehicle market, 

which is expected to lead to an estimated revenue of $1.3 

Trillion by 2032, compared to $303.6 billion in 2022, according 

to Global Market Insights 2023 report. Two aspects from the 

power electronics perspective are essential for EV industries to 

cope with this faster growth sustainability: (a) firstly, electrical 

energy efficiency enhancement of PECs which can significantly 

improve the overall battery electric vehicle (BEV) range 

utilizing new Wide-Band Gap (WBG) semiconductor materials 

[2], [3]. A recent press release of Infineon [4] highlights that 

PECs utilizing the WBG semiconductor materials exhibit a 

significant 5% reduction in battery capacity consumption. The 

report mentions that while a Si-based PEC requires a battery 

capacity of 91.3 kWh, adopting SiC lowers the energy 

requirement to 87.2 kWh due to the reduced losses associated 

with SiC PECs. To that, WBG-based PECs make it possible to 

achieve energy efficiency; however, PECs with WBG 

technology are not widely available at automotive quality yet 

[5]–[7]; (b) secondly, as the electronics inside BEVs become 

more complex and need to operate within harsh coolant 

temperatures ranges of -450C to 1500C, the likelihood of failure 

in these devices is expected to rise. Therefore, the complexity 

of achieving a zero-failure rate in PECs is heightened by the 

intricate nature of these circuits, involving a multitude of 

electronic chips, active switches, and passive components, 

which may lead to potential safety hazards and significant costs 

associated with recalls.   

Therefore, the PECs that are mounted in BEVs are expected to 

satisfy specific automotive lifetime tests set by AEC Q100, 

Q101, Q200, IEC60749-34, and/or LV324, as any failure or 

malfunction in these converters can have significant 

consequences, ranging from decreased vehicle efficiency and 

performance to potential safety hazards [7], [8]. Considering 

their essential role in enabling the proper functioning of critical 

vehicle systems, automotive PECs are deemed mission-critical 

components that directly affect the overall reliability and safety 

of the vehicle. 

The automotive PEC designs generally assess their reliability 

by employing the Physics-of-Failure (PoF) credible model to 

conform to stringent safety requirements [7], [9]–[11]. 

According to articles [12]–[18], among thermo-mechanical 

stresses such as temperature, threshold voltage, vibration, and 

humidity, instantaneous temperature gradients i.e., junction 

temperature (Tj), and junction temperature swings (ΔTj), are 

the two thermal metrics crucial for estimating the most 

prevalent failure mode in WBG-based PECs. While Tj plays a 

significant role in package-related wear-out, ∆Tj accelerates 

degradation, leading to various damages such as bond wire lift-

off, solder joint damage, bond wire heel-crack, and wire 

rupture. By leveraging repetitive thermomechanical stress data 

alongside lifetime parameters, automotive power electronics 

reliability engineers can estimate either the overall lifetime of 

the PECs or predict the timing of potential failures [7], [15], 

[18]–[22].  

A comprehensive list of multi-scale and multi-physics tools has 

been identified in the literature [7]–[21], [23], [24], [29] for the 

PoF-based reliability assessment. These tools encompass a 

wide array of models, spanning from accurate 1D electro-

thermal simulations using circuit simulator tools such as 



 

 

TABLE 1. PHYSICS-OF FAILURE-BASED LIFETIME ASSESSMENT METHODS FOR AUTOMOTIVE PECS. 

Ref 

Device  

under 

Test 

Advantages and limitations 
Maximum 
Error in Tj 

Maximum 

Error in 

Lifetime 

Execution Time 

Simulation 

Time (s) 

Time in 

model (s) 

[22] 
Discrete 

Si switch 

 Machine learning-based lifetime model; computationally 

efficient to predict the damage progression in solder 

contacts; and optimized hyperparameters   

 Large training dataset required to predict accurately   

Damage prediction: less than 10 % using 350 h training data and 
less than 5 % using 1400 h training data length ~50% of the 

available dataset 

[29] 
3-Phase 

Inverter 

 Digital twin for thermal model comprises finite element 

analysis (FEA) simulation, two neural network models, 

and experimental validation on rated load condition. 

 Junction temperature under diverse operating conditions, 

and in real-world scenarios are not tested, and the merits 

of this method in lifetime estimation are not investigated.  

Under typical working conditions with a rated current load of 

over 150 A, demonstrates that the estimating accuracy of the 

digital twin approach exceeds 95%. The combined operating 
time of two NNs is reported to be 405.9 μs. 

[31], [32] 

HV 

DC/DC 

converter 

 Switched-based accurate model; used in switch fault/short 

circuit  diagnosis 

 High execution time is required; and mission profile 

simulation is not possible 

0.20% MPE 
on 0.10 s 

NA 0.1 90720 

[31] 

HV 

DC/DC 

converter 

 Universal loss-based accurate model; PWM behaviour is 

captured; and used in PoF-based lifetime assessment 

 Not applicable for RT deployment 

0.55%  MPE 
on 0.10 s 

This is a 

benchmark 

model 

1800 45000 

[31] 

HV 

DC/DC 
converter 

 Average power loss model; RT monitor of maximum 

temperature 

 Significant deviation in Tj swing; and less accurate 

lifetime assessment  

0.61%  MPE 

on 0.10 s 

58% at 
reliability 

percentile 

90% 

1800 1725 

[33] 

3-Phase 

traction 
inverter 

 Steady-state model; captured detailed operating mode of 

motor; and suitable for PoF-based lifetime assessment  

 Not applicable for RT deployment 

Less than 3% 3.83% 1800 12600 

[34] 
3-Phase 
traction 

inverter 

 Switching period-based power loss model; effective for 

high dynamic system; and suitable for PoF-based lifetime 

assessment  

 Not applicable for RT deployment 

This is a benchmark model 598 
Not 

available 

[34] 

3-Phase 

traction 

inverter 

 Output period average power loss model; effective for less 

dynamic system; and faster than RT executable 

 Significant deviation in Tj swing; Less accurate in lifetime 

assessment 

Acceleration 

period: 20% 

Constant 

period: 0.5%  

35.8 time for 

IGBT 
598 

Not 

available 

[35] 
3-Phase 
traction 

inverter 

 Optimized ANN-based thermal equivalent model; 

exported as FMU block set for mission profile test; and 

good accuracy w.r.t Amesim thermal model 

 Absence of RT deployment and HW test  

IGBT and 

diode within 

± 2% error 

Within ± 2% 

error 
1200 1200 

[36] 
Industrial 

inverter 

 Machine learning based thermal model; effective for 

condition monitoring 

 Not optimized for hyperparameters and large execution 

time 6000 parameters for CNN; Accuracy for Tj swing is 

not shown 

MPE in case 
temperature: 

0.94 on 500 

min profile 

NA Training time: 403.84 sec 

Proposed  

model 

HV 

DC/DC 
converter 

 Optimized Deep learning-based thermal equivalent model; 

RT capable and highly accurate virtual sensor; less 

dependent on topology and applicable for any automotive 

PE converters, no additional sensor of edge is required; 

and suitable for PoF-based lifetime assessment  

 Online training and parameter updates are not tested 

RMSE → 

MOSFETs: 
2.57, 3.52  

Diodes: 1.97, 

2.5 on entier 

6700 s profile 

The relative 

error is 

respectively 
0.35% and 

1.52% at the 

reliability 

percentile 

99% and 90% 

6700 6700 

 

SABER, PSpice, PLECS, MATLAB Simulink/Simscape®, and 

LTSpice, to comprehensive 3D finite elements method-based 

(FEM) simulation tools like ANSYS, COMSOL, MagNet 

Infolytica, and JMAG. 

While these 3D finite element models offer high accuracy, they 

often demand significant computational resources, requiring 

days or even weeks to compute simulations [18], [25]–[28]. To 

tackle this issue several methodologies have been adopted. For 

instance, in [29], the 3D high-fidelity thermal models are 

utilized to develop thermal digital twins reduced-order models 

to reduce the simulation time while sacrificing the accuracy of 

the model output. Siemens has introduced the Simcenter 

FLOEFD platform for this purpose, allowing the generation of 

reduced-order models up to 40X times faster than traditional 3D 

FEM models [30]. 

Table 1 presents thermal modeling and simulation techniques 

for PECs in automotive and industrial applications available in 

the literature. It highlights the challenges of accurate estimation 

and computational time, referencing prior research and various 

models. The table also provides quantitative data on simulation 



 

 

time and accuracy of 𝑇𝑗 estimation [7], [15], [33]–[36], [18]–

[22], [30]–[32]. The various types of models namely equation-

based model, switching model, 3D FEM, reduced order model, 

and machine learning-based models offer unique advantages 

and limitations. To achieve online condition monitoring and 

predictive health management, the reduced order model needs 

to be capable of real-time execution on commercially available 

microprocessors while maintaining good accuracy. Therefore, 

the objective of this paper is to address current research gaps 

and contribute to the development of a real-time executable and 

accurate model. This paper aims to achieve this goal through 

five folds results: 

(a) First, experimental characterization of the semiconductor 

power module (i.e., double pulse test) is conducted to 

estimate power loss parameters during operation 

accurately. Often, datasheets offer specifications that are 

narrower than the range required for an automotive 

application, e.g.,  temperature. In this paper, an accurate 

device-level electro-thermal model is developed based on 

these experimental parameters, which encompasses 

switching and conduction losses. Then, a datasheet-driven 

Foster equivalent thermal model is utilized to create 

training data for deep learning-based (DL) models, 

effectively overcoming inaccuracies associated with the 

corresponding training data. 

(b) Secondly, training datasets are required for multiple 

cycles to capture responses for different driving 

conditions to enhance the accuracy of the DL-based 

models. Therefore, as part of the idea, an acceptable 

simulation speed for the universal loss model of the device 

is ensured. This is obtained through a combination of 

parameters from experimental measurements and vendor 

datasheets, combining analytical equations and lookup 

tables (LUTs), effectively eliminating the need for 

differential or recursive equations. This universal loss 

model facilitates seamless integration of the 

semiconductor power module into the PEC model. 

Optimized simulation times enable the analysis of a 

driving cycle within a ballpark of hours, effectively 

supporting accurate estimation of Tj and ΔTj response for 

different driving cycles;  

(c) Thirdly, an edge-deployable and optimal Deep Learning 

(DL) model is proposed that can predict the thermal 

response (i.e., Tj and ΔTj) of power switches in real-time 

with global control signals of PEC as input to the DL 

model. The challenge is to capture the dynamic behavior 

of non-linear systems with useful training data, which can 

replace computationally intensive mathematical models. 

This is an upcoming research area in power electronics for 

black box modelling, system identification, and virtual 

sensor design. In this respect, multiple DL configurations 

are explored, and holistic optimization is performed on 

compositions, hyper-parameters, training, and testing 

datasets to obtain the best RT executable DL model.   

(d) Fourthly, the optimized DL model has been deployed on 

a  dSPACE MicroLabBox to replicate the VVE, and it is 

referred to as the sensor-hardware-in-the-loop (sHiL) 

system. This step is taken to validate the feasibility and 

real-time operation (RTO) of the proposed DL model 

before investing in the effort/expense of physically 

implementing the proposed method. This is accomplished 

by using a heterogeneous strategy called X-in-the-Loop 

(XiL), which combines Software-in-the-Loop (SiL), 

sHiL, and Hardware-in-the-Loop (HiL) with a 

frontloading testbed facility. 

(e) Finally, the accuracy of the proposed method in lifetime 

assessment is demonstrated using a state-of-the-art 

mission-profile-oriented reliability framework. 

II. THE PROPOSED CONCEPT  

In the following section, the main concept and methodology are 

outlined in a stepwise manner. The overall method is 

categorized into six different layers: (a) application definition, 

(b) characterization, (c) device modelling, (d) data-driven 

modelling, (e) X-in-the-Loop (XiL) testing, and (f) system-

level lifetime estimation, as depicted in Figure 1.  

As part of (a) the application layer, the specific device under 

test (DUT) and applied mission profile have been defined. An 

electric vehicle is composed of several power electronics 

converters with different ratings for different classes of EVs, 

namely on-board charger, traction inverter, High Voltage (HV) 

DC/DC converter, and Low Voltage (LV) DC/DC converter. In 

this paper, only pure battery electric light commercial vehicle 

(BEV) is considered. An EU H2020 project, HiFi-Elements, 

identified five different powertrain topologies of BEVs [37]. 

The difference between powertrain topologies arises with the 

presence of an HV DC/DC Converter between the Battery and 

Inverter. There are two possibilities: connect the battery system 

directly to the inverter or place an HV DC/DC booster between 

the battery and inverter. To boost the range of a BEV with the 

same battery size, three solutions are available, i.e., (a) increase 

the size of the e-motor or incorporating an additional motor – 

as seen in the case of Tesla’s dual motor setup, which involves 

optimizing the front-wheel motor for power and the rear-wheel 

motor for extended range [38]; (b) employing a multi-speed 

gearbox in the BEV, that involves adjusting the speed and 

torque distribution to align with the efficient region of the e-

motor. Notably, ZF Friedrichshafen AG has recently introduced 

a multi-speed drivetrain for BEVs [39] and (c) utilizing a 

bidirectional HV DC/DC boost converter between the battery 

and the inverter that controls the DC-link voltage at various 

motor load conditions to operate the inverter and motor 

efficiently, and thereby increasing the range. Therefore, a recent 

trend is to substitute a 400 V powertrain system with an 800 V 

and/or post 800 V powertrain utilizing an HV DC/DC converter 

to supply a stable voltage and to reduce the constraints in the 

electric motor (EM) design and to reduce the charging time 

considerably, e.g., Kia EV6, Porsche Tycan, Lucid Air and 

Hyundai Ioniq 5 [40]–[42]. The advantages of including HV 

DC/DC in BEVs are inevitable. Nonetheless, a noticeable 

absence of long-duration reliability test data for the HV DC/DC 

converter exists. 



 

 

 
Figure 1. Stepwise concept overview of the proposed data-driven virtual sensing for lifetime estimation of an automotive power electronics converter system: (a) 
application layer is responsible for providing data regarding vehicle functional loads and mission profile; (b) characterization is responsible for providing accurate 

parameters for (c) detailed device-level modelling;(d) data-driven modeling executes deep-learning (DL) based temperature estimation and deploys the DL model 

on an RT processor; (e) XiL illustrates the feasibility of the proposed method in the automotive sector using a frontloading testbed, and (f) System-level lifetime 

assessment aims to evaluate the lifetime of the PEC. 

Furthermore, the harsh operating conditions that automotive 

PECs may face, such as high ambient temperatures, electrical 

transients, noise, vibration and mechanical stress, and high road 

elevations, make it imperative to establish a comprehensive and 

credible lifetime benchmark when introducing a new 

component to the existing powertrain, as suggested in 

references [43]–[45]. As a result, in this paper, the HV DC/DC 

converter is considered as the device under test (DUT), as 

shown in Figure 2; however, the proposed methodology can be 

applicable to all automotive PECs and extendable for stationary 

PEC applications.  

 
Figure 2. Considered BEV powertrain topology with a bidirectional HV DC/DC 

converter (device under test) 

According to the handbook for robustness validation [46], 

“Mission Profile is a representation of all relevant conditions 

an electrical/electronic module will be exposed to in all of its 

intended applications throughout its entire life cycle.”  

The main purpose of specifying a mission profile is not just to 

provide a test description but instead to establish functional 

boundaries, define boundary parameters, simulation, and 

modeling approaches, which involves determining how to 

accurately model both environmental and operational load-

based stress factors to assess the total lifetime of a DUT. This 

paper has applied five dynamic mission profile datasets from an 

OEM's chassis measurement test bench. These profiles were 

used to conduct consumption testing of the vehicle, taking into 

account the new powertrain component, as shown in Table 2. 

TABLE 2. KEY PARAMETERS OF THE CONSIDERED BEV MISSION PROFILE. 

 Speed Profile Characteristics 

Worldwide Harmonized Light 

Vehicle Test Procedure (WLTC) 

Distance= 23.1 km, duration= 

1800 s, max speed= 36.47 m/s,  

average speed= 12.9 m/s 

New European Driving  Cycle 

(NEDC) 

Distance= 11.03 km, duration= 

1180 s, max speed= 33.33 m/s, 

average speed= 9.33 m/s 

Extra-Urban  
Driving Cycle (EUDC) 

Distance= 20.6 km, duration= 
4845 s, max speed= 14.58 m/s, 

average speed= 4.24 m/s 

Urban Driving 
Cycle (UDC) 

Distance= 20.3 km, duration= 
1500 s, max speed= 23.47 m/s, 

average speed= 13.55 m/s 

Subsequently, the mission profile is translated into device-level 

loading factors using a map-based analytical forward-type 

model of the BEV’s powertrain. This powertrain model 

encompasses various components, including the vehicle, gears, 

Electric Motor (EM) and inverter, bidirectional HV DC/DC 

converter, and the Energy Storage System (ESS) in the traction 



 

 

system. The analysis of the vehicle powertrain consumption is 

conducted based on the targeted mission profile (as in Table 2) 

under which the vehicle operates. A parameterized EV 

simulation tool [47] is utilized, where the targeted mission 

profile is fed as an input into the driver model that generates 

desired torque and brake commands. The torque command is 

then directed to the motor model, while the brake command 

initially enters the vehicle dynamics model. Based on the 

requested torque demand, the HV DC/DC load current is 

applied, and supplied by the ESS. Hence, load current request 

(iLoad), battery voltage provided (VBAT), and DC-link voltage 

reference (VDC) are considered as device-level loading. 

Typically, a cooling system based on a radiator fan is employed 

to circulate the inlet coolant and effectively dissipate the heat 

generated from the powertrain components, i.e., HV DC/DC 

converter, inverter, and EM. This system works to ensure that 

the junction temperature of the powertrain converter and EM 

remain significantly below its maximum temperature, as the 

mission profile affects the powertrain's coolant temperature 

primarily due to its impact on heat generation, cooling system 

efficiency, airflow, and coolant circulation. While higher 

speeds lead to better cooling due to increased airflow, lower 

speeds potentially result in higher coolant temperatures due to 

reduced airflow and lower cooling system efficiency. To that, 

the inlet coolant temperature (Tcool) of the cooling system is also 

considered as device-level loading.  

Based on the device-level loading factors, (b) characterization 

parameters for the SiC power module have been identified, e.g., 

DC-link voltage, operating current levels, and temperature. The 

standard Double Pulse Test (DPT) accurately determines the 

loss parameters. While the resulting parameters will be used to 

estimate power losses consecutively Tj and ∆Tj, any 

uncertainties related to the accuracy of the universal loss model 

during actual operating conditions are considered negligible. 

Afterward, based on obtained DPT parameters, (c) a universal-

loss-based device level modelling can be prepared. The 

universal loss model separates the conduction and the switching 

characteristics of the SiC-based semiconductor. It models the 

switching behavior focusing on power loss estimation within a 

single simulation step [48]. To accurately calculate power 

losses and junction temperature, modeling the MOSFET's static 

and dynamic behavior is vital. An accurate physical model 

replicates real-world behavior, addressing electricity, heat, and 

mechanical aspects in loss and temperature calculation. Since 

the device-level model needs to capture turn-on and turn-off 

switching events on a µsec scale, the entire simulation takes 

several hours to simulate a half-hour profile, as mentioned in 

the above section. Therefore, the highly accurate and 

considerably fast universal loss-based device model is not 

suitable for virtual sensing as the response of this type of model 

is not real-time (RT). Hence, this paper suggests designing a (d) 

deep-learning-based (DL) virtual sensor to estimate 𝑇𝑗 for diode 

and SiC MOSFET from device-level loading factors mentioned 

in the application layer. For the RT, the virtual sensor is 

embedded into a processor that enables power-in-the-loop tests. 

To validate the applicability of the overall method, a (e) 

streamlined X-in-the-loop (XiL) test has been executed through 

a co-simulation between the HiL and PiL test as part of a 

complete vehicle simulation conducted under real-life 

conditions. The impact of the virtual sensor on the (f) system-

level lifetime estimation concerning the universal loss-based 

device model is depicted, where a state-of-the-art 

Scheuermann’s lifetime model [51] for system-level lifetime 

estimation is applied. 

III. CHARACTERIZATION AND DEVICE MODELLING 

The universal losses model has been developed in this work for 

modelling the electrical behavior of the semiconductors. In this 

level of modeling, switching losses are simulated within a 

singular computational step, which accelerates the simulation 

speed. This category of models achieves an acceptable accuracy 

and helps to model the electrical and thermal behavior of the 

semiconductors without affecting simulation speed. Figure 3 

illustrates the characterization testbench and fundamental 

process of estimating power loss during switching transitions. 

 
(a) 

 
(b) 

Figure 3. (a) Double pulse test setup, and (b) typical switching waveforms of a 

SiC MOSFET and gate driver voltage.  

Figure 3 depicts the turn-on and turn-off phases, along with the 

plateau voltage (VpI) and gate-source voltage (Vth), which are 

presented in the gate-source voltage (VGS) waveform. These 

factors determine how the switch voltage (Vds) and current (Ids) 

appear during transitions. These dynamic behaviors are closely 

tied to the underlying principles of semiconductor physics. 

Subsequently, as the voltage and current coexist during 

switching transitions, it becomes possible to compute the losses 

during the switching (i.e., Psw,on_loss and Psw,off_loss). Furthermore, 

multiplying Ids with the switch on-state voltage (Vds,on) makes 

it feasible to calculate conduction losses (Pcond_loss) too.  



 

 

A. Standard Double Pulse Test 

Standard Double Pulse Test (DPT) has been utilized to estimate 

switching loss parameters. The DPT test has been carried out 

using absolute gate-source voltage and gate resistance values at 

different voltage levels, current levels, and junction temperature 

levels to estimate these losses accurately. The results of the 

DPT are organized into a 3D Look-up table (LuT) comprising 

three inputs: voltage, current, and the previous junction 

temperature value. A similar approach is taken to determine the 

reverse recovery energy of the DUT's body diode. Figure 4 

shows the waveforms representing the gate pulse (Vgs), drain-

source current (Ids), and drain-source voltage (Vds) which are 

applied to the semiconductor as part of the double-pulse test 

procedure.  

 
Figure 4. Measured double pulse test waveform at 800 V, 40 A, and 250C 

ambient. 

This characterization method is employed to analyze the 

switching characteristics and thermal performance of power 

semiconductor devices. Several tests have been executed: (a) 

switching characteristics at different load currents, (b) 

switching characteristics at different junction temperatures.  For 

switching characteristics at different load currents, the DPT is 

conducted utilizing two source voltages (VDD), 400 V and 800 

V, under three discrete current levels (20 A, 40 A, and 60 A). 

The experiments have been carried out at ambient temperature 

condition of 250C. The variance between the values reported in 

this study and those outlined in the datasheet is attributed to 

parasitic capacitance, leading to overshooting during switching 

transitions. The results are illustrated in Figure 5, where Eon and 

Eoff correspond to the turn-on energy and turn-off energy, 

respectively.  

 
Figure 5. Measured device switching energy loss through DPT: Eon, Eoff 

dependence on load current and source voltage.  

 
Figure 6. Measured device switching energy loss through DPT: Eon, Eoff 

dependence on junction temperature at 40 A. 

For switching characteristics at different junction temperatures, 

the DUT is deliberately heated from 40°C to 100°C in a step of 

10°C. This is achieved by applying external heat through 

heating resistors to the heatsink. Two source voltages (VDD) are 

utilized, namely 400 V and 800 V, while maintaining a load 

current of 40 A. Subsequently, switching energy loss (i.e., Eon 

and Eoff) parameters are precisely derived from the waveforms 

for the range of temperatures. Figure 6 illustrates the switching 

losses observed at different junction temperatures and source 

voltages.  

B. Universal loss Modeling 

The subsequent step entails the universal losses modelling upon 

obtaining the model parameters. The calculation of the 

switching losses estimation is given below: 

𝑃𝑠𝑤_𝑙𝑜𝑠𝑠 = 𝑓𝑠𝑤 × (𝐸𝑜𝑛(𝑇𝑗) + 𝐸𝑜𝑓𝑓(𝑇𝑗)) ×
2√2

𝜋
×

𝐼𝑅𝑀𝑆

𝐼𝑅𝑒𝑓

×
𝑉𝐷𝐷

𝑉𝑅𝑒𝑓

 (1) 

Equation (1) establishes the relationship for the switching 

losses (Psw_loss), which depends on several parameters. These 

parameters include the switching frequency (fsw), the turn-on 

energy (Eon), and the turn-off energy (Eoff) associated with the 

junction temperature (Tj). These energies are scaled concerning 

the test load current (IRef) and the bus voltage (VRef). 

Additionally, the DC bus voltage (VDD) and RMS value of 

switch current (IRMS) play a role in influencing the switching 

loss magnitude. Notably, VDD corresponds to VBAT, and IRMS 

corresponds to iLOAD at the system level. As mentioned above, 

the values for the parameters Eon, Eoff, IRef, and VRef have been 

obtained through the DPT. 

Furthermore, the conduction losses of the SiC MOSFET can be 

calculated as: 

𝑃𝑐𝑜𝑛𝑑_𝑙𝑜𝑠𝑠 = 𝑅𝑑𝑠,𝑜𝑛(𝑇𝑗) × 𝐼𝑅𝑀𝑆
2  (2) 

Equation (2) highlights the three primary factors influencing 

conduction losses calculation, Pcond_loss: (a) the RMS values of 

the switch current IRMS, (b) the on-resistance of the MOSFETs 

Rds,on, and (c) the junction temperature Tj. Initially, the RMS 

value of the switch current for each cycle is determined. 

Subsequently, the conduction losses are computed by utilizing 

the product of on-resistance of the MOSFETs and the square of 

the RMS current, yielding 𝑅𝑑𝑠,𝑜𝑛 × 𝐼𝑅𝑀𝑆
2 . In addition, the 

datasheet-driven Foster thermal model is utilized to compute 

the instantaneous junction temperature, as mentioned in sub-

section C. Consequently, the on-state resistance 𝑅𝑑𝑠,𝑜𝑛(𝑇𝑗) is 

adjusted to align with the computed junction temperature. It's 



 

 

important to note that the gate voltage remains constant at 18V 

throughout the analysis. 

Both conduction and switching losses are estimated 

concurrently using equations (1)-(2), considering time-based 

DPT parameters as waveforms directly retrieved from the 

oscilloscope, and the instantaneous current conducting through 

the MOSFET or its body diode. These power losses are coupled 

to the thermal models of the semiconductors and the resulting 

junction temperatures are fed back again to complete the 

electro-thermal coupling, being able to achieve a high degree of 

accuracy with a reduced computational cost. 

C. Thermal model 

To estimate the junction temperature that is synchronized with 

the real-time power losses, it is important to incorporate the 

thermal model for each semiconductor module. The Foster 

model, which is utilized in this paper, comprises three distinct 

layers: Layer 1: the junction-to-case thermal impedance 

(Zth(JC)), Layer 2: the case-to-heatsink thermal impedance 

(Zth(CH)), and Layer 3: the heatsink-to-coolant thermal 

impedance (Zth(HCool)). Integration of these components is 

imperative to attain an accurate understanding of the 

semiconductor's thermal behavior. The thermal model is 

represented by (3)-(6) below: 

𝑇𝑗𝑛 =  𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 + 𝛥𝑇𝐽𝐶 + 𝛥𝑇𝐶𝐻  + 𝛥𝑇𝐻𝐶𝑜𝑜𝑙  (3) 

𝛥𝑇𝐻𝐶 =  𝑍𝑡ℎ(𝐻𝐶𝑜𝑜𝑙) ∑ 𝑃𝑛 (4) 

𝛥𝑇𝑆𝐻 =  𝑃𝑛𝑍𝑡ℎ(𝐶𝐻)𝑛 (5) 

𝛥𝑇𝐽𝐶 =  𝑃𝑛𝑍𝑡ℎ(𝐽𝐶)𝑛 (6) 

Where Tjn is the junction temperature of nth MOSFET, Tcoolant is 

temperature of coolant unit, 𝛥𝑇𝐽𝑆  is junction to case 

temperature, 𝛥𝑇𝐶𝐻  is case to heatsink temperature, ΔT𝐻𝐶𝑜𝑜𝑙  is 

heatsink to coolant temperature. Pn is the power losses of nth 

MOSFET or diodes.   

D. DC-link Voltage Modeling 

By conducting DPT testing over a temperature range, as shown 

in Figure 6, a temperature-dependent DC-link voltage model is 

obtained that accurately captures temperature effects. This 

modeling approach is crucial for achieving precise output 

predictions, particularly in environments with extreme 

temperatures and for critical output voltage converters. The 

equation below defines the voltage equation, which varies 

corresponding to junction temperature and current: 
𝑉𝑀𝑃 = 𝑉𝐷𝐶 − 𝑣𝐷(𝑇𝑗 , 𝐼) 𝑜𝑟 𝑉𝑀𝑃 = 0 − 𝑣𝐷(𝑇𝑗, 𝐼)    

The classical definition of the Mid-Point Voltage (VMP), is 

typically assigned as either 0 V or VDC based on the switching 

pattern. However, in this paper,  VMP is redefined in equation 

(7) to replicate dependencies on both current and junction 

temperature. It's worth noting that this critical dependency is 

often overlooked in many existing electrical simulation tools. 

IV. DATA-DRIVEN MODELLING FOR VIRTUAL SENSING 

This section outlines the method and design technique of data-

driven virtual sensing to estimate the junction temperature (𝑇𝑗) 

in the SiC-based HV DC/DC converter. Virtual sensing is built 

upon the available sensor data, and  eliminating the need for 

additional sensors. For this purpose, virtual sensing techniques 

consider device-level loading factors as input signals, as sensors 

for these signals are already installed. This initiates a black-

box-oriented modeling problem, where a correlation is created 

between an available set of input data and the desired output 

data of a dynamical system.  The problem of black-box 

modeling and system identification has been a long-researched 

topic for PECs. PECs are inherently time-invariant dynamic 

non-linear systems. Generalized State Space Averaging 

(GSSA) [49] and Discrete Time Modelling [50] are two popular 

methods that use mathematical equations to create models. 

Polytopic is also a popular large-signal modelling paradigm, 

which uses multiple state-space models at different operating 

points connected via weighting functions [51]. The equation-

based models become very complex and heavy in 

computational requirements when designing for complex 

PECs.  

Deep learning (DL) based black-box modelling suits the 

application's need. DL models are easily deployable in low-cost 

embedded hardware from leading chip manufacturers like 

Texas Instruments, STMicroelectronics, and single-board 

computers (SBCs). Much recent work has been done on black 

box modelling of PECs using DL. The authors in  [52] show the 

development of the Long-Short Term Memory (LSTM) 

network-based model from the switching model of a buck 

converter. Furthermore, it compares the result from a developed 

model with a Feed Forward Artificial Neural Network (FF-

ANN). In [53], a Non-Linear Autoregressive Network with 

Exogenous Input (NARX) is used to model DC/DC buck 

converters. A comparison between LSTM and NARX has been 

performed on a 48V-12V bidirectional DC/DC converter used 

in mild hybrid electric vehicles [54]. The following subsection 

details the development and comparison of different DL-based 

models, i.e., FF-ANN, LSTM, and multiple configurations of 

the NARX network to obtain the most optimal virtual sensor 

design.  

A. Dataset preparation for Deep-Learning (DL) models  

The device-level modelling is updated and calibrated using 

characterization parameters (e.g., Eon, Eoff) retrieved from 

DPT waveforms. Then, the long-term simulation data are 

obtained using device-level modelling, where the accurate 

electro-thermal model of the DC/DC converter is used to 

estimate losses, Tj and ∆Tj concerning the mission profile. 

Afterward, the datasets from the device model are fed as input 

for DL model development. As mentioned above, the device-

level model is simulated for four dynamic standard driving 

cycles to generate enough data to capture the dynamics of the 

simulation model.  

TABLE 3. TRAINING-TESTING DATASET FROM SIMULATION OUTPUT BASED ON 

SIMULATED DRIVING CYCLES 

Training Dataset Testing Dataset Configuration  

EUDC, NEDC UDC, WLTP Config-1 

EUDC, UDC  WLTP, NEDC Config-2 
EUDC, WLTP UDC, NEDC Config-3 

NEDC, UDC WLTP, EUDC Config-4 

NEDC, WLTP UDC, EUDC Config-5 
UDC, WLTP NEDC, EUDC Config-6 

Number of different models: 5 Σ30 Variants 

Figure 7 shows the developed simulation data plots. The data 

and its nomenclature are also shown.  



 

 

   
Figure 7. Device-level model simulation output used for the development of deep learning model. Model inputs are: VBAT, iLoad, Tcoolant, and VDC (Left) and Model 

Outputs are: Tj1, Tj2, TjD1, TjD2 (Right) for Extra Urban, NEDC, Urban, and WLTP cycles (Only one leg of the inverter is used in the illustration). 

 

 

 
Figure 8: Structure of a FF-ANN model. 

The left plot shows the input and the right plot shows the output 

𝑇𝑗   from the simulation model. A crucial optimization choice in 

DL model design involves dataset selection for training and 

testing purposes. In this context, two cycles are allocated for 

training, and the other two cycles are used for testing. Six 

training-testing configurations are employed using five 

different models; thus, 30 variants are used to identify the 

optimal model. The driving cycle variants are listed in Table 3.  

B. Modelling context  

Multiple DL models are explored to find the most suitable 

model for 𝑇𝑗  estimation. Along with complex DL models, a 

simpler linear regression model is also evaluated to compare the 

performance of the different DL models.  

a. Feed-Forward Artificial Neural Network (FF-ANN)  

The FF-ANN is the most conventional and straightforward 

neural network. The basic application of FF-ANN is to find a 

non-linear correlation between inputs and outputs by passing 

the input through a series of calculation layers. Figure 8 shows 

the three distinct layer structs of FF-ANN, viz., input Layer, 

output layer, and hidden layers. The output of each layer can be 

expressed in the following equation. 

 

𝑦 = 𝛾(𝑤𝑇𝑥 + 𝑏) 

 
(7) 

Where 𝛾  is the activation function, which introduces a non-

linearity to the FF-ANN output, 𝑤 is the weight matrix,𝑥 is the 

input vector, and 𝑦  is the output vector. A piecewise linear 

function called the Rectified linear activation function (ReLU) 

is used for training and comparison purposes. 

 

𝛾(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (8) 

 

The FF-ANN training aims to reduce the error between 

predicted output (𝑦𝑝) and true output (𝑦) by changing the 𝑤 

and 𝑏 matrix. The root Mean Square Error (RMSE) method is 

used to evaluate the loss function for optimization, which is 

defined as equation 9.   

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑦𝑖 − 𝑦𝑝𝑖)

2
𝑚

1

 (9) 

The unavailability of the memory block in the FF-ANN limits 

its capability to learn time-dependent patterns and capture 

short/long dependencies, restricting it’s applicability to the 

modelling of dynamic systems [55].  

b. LSTM based RNN 

Recurrent Neural Network (RNN) can solve the limitation 

posed by FF-ANN by storing and passing the state of a neuron 

to the next step in the computation while processing sequential 

data. The structure of an LSTM unit is shown in Figure 9, which 

learns both the short-term and long-term dependencies of 

sequential data. The 𝑥𝑡  is the input vector, 𝑐𝑡  is the cell state 

storing long-term dependencies, and ℎ𝑡  is the hidden state 

storing short-term dependencies at time step t. It should be 

noted that the cell state does not pass through any of the fully 

connected layers and is updated through each time step. There 

are four gates (fully connected layers) viz. forget gate (𝑓𝑡), input 

gate (𝑖𝑡  𝑎𝑛𝑑 �̂�𝑡), and output gate (𝑜𝑡).  The working of LSTM 

can be divided into three main parts. The forget gate discards a 

few features and keeps the rest of the features from the cell 

state, using the sigmoid function, whose output is from 0-1, 

implying the importance of features in the cell state [56]. The 

�̂�𝑡 adds or subtracts to the cell state, using the tanh function, 

whose output varies from -1 to 1. An additional  gate (𝑖𝑡 ) 

similar to (𝑓𝑡) is used so that �̂�𝑡 only adds relevant features to 



 

 

cell state (𝑐𝑡−1).  The ℎ𝑡 gets updated from ℎ𝑡−1 by passing it 

through 𝑜𝑡 and a tanh function on the 𝑐𝑡  [56].  

The equations for the LSTM unit are given below   

𝑓𝑡 = 𝜎(𝑊𝑓  . [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑓) (10) 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (11) 

�̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (12) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 . 𝑐�̂�  (13) 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (14) 

ℎ𝑡 = 𝑜𝑡 . 𝑡𝑎𝑛ℎ (𝑐𝑡) (15) 

Where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑜 are weight matrices and 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜 are 

bias vectors for the fully connected layers [57].  

 
Figure 9: Structure of an LSTM unit, each gate ft, it, ĉt, ot is fully connected 

layers with activation function σ  = sigmoid function,  tanh  = hyperbolic 

tangent function, ⊕: element-wise addition,  ⊗: element-wise 
multiplication. 

c. NARX with FF-ANN and LSTM-ANN 

The NARX is a recurrent neural network that uses a specific 

number of past input ( [𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, 𝑥𝑛−3 … 𝑥𝑛−𝑘]) and a 

specific number of past outputs ([𝑦𝑛−1,   𝑦𝑛−2, 𝑦𝑛−3 … 𝑦𝑛−𝑚]) 

for the prediction of the current output (𝑦𝑛) [58]. The output of 

the NARX can be written by:  

𝑦𝑛 = 𝑓(𝑦𝑛−1, 𝑦𝑛−2, . . 𝑦𝑛−𝑚 , 𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥𝑛−𝑘 ) (16) 

𝑦𝑛 = 𝑓(�̂�𝑛−1, �̂�𝑛−2, . . �̂�𝑛−𝑚 , 𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥𝑛−𝑘 ) (17) 

Here 𝑦 is the actual network input and  �̂� is the input from a 

training data set of output. Based on the equation two different 

NARX architectures can be created which are shown in Figure 

10 and Figure 11.  

 
Figure 10:  Series-Parallel architecture, only 1 delayed output is used in the 

paper with G=0.3 

 
Figure 11: Parallel architecture, only 1 delayed output is used in the paper with 

G=0.3 

The series-parallel architecture is used for training the NARX 

model while the parallel architecture is used for deployment of 

the NARX model. A particular issue that was found during 

deployment of NARX is that an initial condition is required on 

the 𝑥 and 𝑦 during the start of the model, as initial past values 

of 𝑥, 𝑦, are not available during a real-time deployment. This 

led to the parameter G optimization, which was found that a 

higher value of G (> 0.5) makes the NARX model unstable 

during the deployment leading to an output very different from 

training outputs. An optimal value of G=0.3 is chosen. The 

value of 0.3 is chosen based on trial and error for stable 

deployment output. The training is done to find the function 𝑓 

in equation (7) and (8). Two types of ANN are used to estimate 

the function 𝑓 , viz FF-ANN and LSTM-based RNN. The 

former one is referred to as only NARX and the latter one is 

referred to as NARX-LSTM in the later sections of articles.  

Four different models, namely FF-ANN, LSTM-RNN, NARX, 

and NARX-LSTM, are trained using the simulation dataset. To 

provide a comprehensive overview of the research findings, a 

linear regression is also tested using the same input and output 

variables, and the results have been compared with the listed 

four deep learning models. These results are elaborated upon 

in the following subsections. 

C. Model training and DL model generation 

The models are trained in Python using sci-kit-learn [59] for 

linear regression and TensorFlow [60] for DL models. The 

methodology of the parameter estimation for model evaluation, 

dataset preparation, training the deep learning (DL) models, and 

performance evaluation is shown in Figure 12. The datasets for 

training and testing the DL models are generated within a 

Python environment by simulating the universal loss-based 

device-level model for the specified mission profiles given in 

Table 2. The DL model is initialized, trained, and then 

transferred to MATLAB for evaluation. This is an important 

step, as NARX models could be evaluated in a parallel 

architecture with zero initial conditions, resembling real-life 

deployment. 

 

Figure 12: DL model generation methodology: the accurate universal loss 

model (i.e., Device Modelling) is used to generate a full training dataset, 

incorporating DPT characterization data (Eon, Eoff). The obtained full training 
dataset is used for deep learning model training and validation using Python 

and MATLAB. 

To have a homogeneity between the DL models, DL models are 

configured as follows:  



 

 

 

Figure 13:  RMSE comparison on the test data of all the trained models with respect to all training-testing datasets (Refer to Table 3. ), the most accurate model is 

NARX-LSTM with RMSE on the test data 2.67 trained on ‘WLTP’ and ‘NEDC’ cycle. The second best model is NARX-LSTM (RMSE 2.79)  trained on ‘EUDC’ 

and ‘NEDC’. 

i. FF-ANNs: Input Layer – Hidden Layer (4 fully connected 

layers with 256 neurons) – Output Layer 

ii. LSTM-RNNs: Input Layer, - Hidden Layer (2 LSTM 

Layers with 256 units, 2 fully connected layers with 256 

neurons) – output layer 

iii. NARXs: FF-ANN with inputs (𝑥𝑛 , 𝑥𝑛−1,𝑥𝑛−2, . . 𝑥𝑛−10) 

and one sample delay from output with a gain of 0.3. 

iv. NARX-LSTMs: LSTM-RNN with inputs 

(𝑥𝑛 , 𝑥𝑛−1,𝑥𝑛−2, . . 𝑥𝑛−10)  and one sample delay from 

output with a gain of 0.3. 

Comparative results of the 35 variants in terms of accuracy are 

depicted in Figure 13 and it shows the RMSE on the test data 

concerning the trained model. As observed from Table 4, 

Config-5 (Training data: NEDC and WLTP cycle) and Config-

1 (Training Data: EUDC and NEDC cycle), which employ the 

NARX-LSTM model, outperform the rest of the 33 variants. 

TABLE 4. BEST MODELS FROM MODEL SELECTION TRAINING. 

D. DL model optimization 

The model presented in Table 4 needs further optimization for 

final testing and deployment in HiL scenarios. The key 

objective of this optimization is to avoid overfitting the DL 

models during the training phase. Overfitting happens when the 

model learns excessively from the training data, leading to poor 

performance on the validation and/or testing data  [61]. 

Overfitting becomes evident during training when the training 

loss decreases with each iteration (epoch), while the validation 

loss does not exhibit a corresponding decrease with each epoch. 

To solve the issue with overfitting and to find an accurate DL 

model a grid search is performed by doing the following 

variation in the model configuration. 

i. Number of neurons on each layer: The variation matrix is 

[16, 32, 64, 128, 256]. 

ii. Drop-out layer configuration: The dropout parameter is 

the percentage of neurons randomly dropped out from 

LSTM layers to control overfitting. The variation matrix 

is [0.1, 0.2, 0.3]. 

iii. Batch size: Batch size is a training parameter, which 

indicates the number of samples the training algorithm 

takes at a time and propagates through the network to train 

the model. The variation matrix is [8, 16].  

TABLE 5. BEST PERFORMED DL MODEL STRUCTURE.  

Model 
ID 

Neurons-

Batch size - 

dropout 

RMSE 
Execution 
Time (ms) 

Training 

Data 

Testing 

Data 

Full 

Data 

M
o
d

el
-I

 

256-16-0  

Original 

Model 

0.98 2.71 2.3 193 

16-16-0.2 3.32 2.7 2.91 1.9 

16-16-0.1 2.66 2.74 2.71 1.9 

32-8-0.3 4.72 2.9 3.58 4.8 

M
o
d

el
-I

I 

256-16-0  

Original 
Model 

0.86 2.78 2.39 192 

256-16-0.2 1.31 2.59 2.29 323 

128-16-0.2 1.53 2.61 2.35 63 

32-16-0.1 2.75 2.64 2.67 4.8 

A total of 30 unique combinations are prepared corresponding 

to Model-I and Model-II using the variables mentioned above. 

In total, 60 models are prepared to obtain the optimal 

deployment model. Table 5, depicts the performance of the 

original model from Table 4 and the 3 best-performing 

structures out of the 30 models. It can be observed from Table 

5 that for Model-1, the original model with 256 neurons, a batch 

size of 16, and no dropout layer configuration, outperforms the 

Model ID Test data: 

RMSE 

Full data: 

RMSE 

Training 

Data 

NARX-LSTM, Model-I 2.71 2.3 Config-5 

NARX-LSTM, Model-II 2.78 2.39 Config-1 



 

 

 

other 30 configurations. In the best configuration for Model-I, 

RMSE values of 0.98, 2.71, and 2.3 are obtained for the training 

data, testing data, and the full dataset, respectively. For Model-

II, which has a configuration of 256 neurons, a batch size of 16, 

and a 0.2 dropout layer, the best RMSE values of 1.31, 2.59, 

and 2.29 are achieved for the training data, testing data, and the 

full dataset, respectively. Execution time is a key parameter for 

the selection of the final model, for deployment and testing. The 

execution time is also shown in Table 5. The execution time 

given in the table is the time required for the model for single 

inference on a dSPACE MicroLabBox, using a 32-bit NXP 

processor. The sampling rate of junction temperature sensing is 

100 ms, so the best model with real-time capability is Model-II 

with 128 neurons, with a 20% dropout rate and trained with a 

16 batch size. The training results on EUDC and NEDC are 

shown in Figure 15. The junction temperature comparison 

between the training data and predicted data for 2 MOSFETs 

and 2 diodes is given in Figure 15. The RMSE between the true 

value and predicted value is 1.26°C, 1.66°C, 1.45°C, 1.97°C for 

𝑇𝑗𝐷1, 𝑇𝑗1, 𝑇𝑗𝐷2, 𝑇𝑗2 respectively.   

V. X-IN-THE-LOOP TESTING  

To validate the feasibility of the proposed method, three distinct 

test environments have been streamlined following the standard 

V-scheme and ISO 26262 X-in-the-Loop (XiL) methodology 

[62]. These include (a) Software-in-the-Loop (SiL), (b) Sensor-

Hardware-in-the-Loop (sHiL), and (d) Hardware-in-the-Loop 

(HiL), as shown in Figure 14. The XiL tests were performed for 

standard Urban and WLTP driving cycles which represent one 

complete lap of the OEM’s dynamic track with highly varying 

slopes and altitudes. As part of the SiL, a map-based forward-

facing powertrain dynamic model, 1D powertrain thermal 

model, vehicle control unit (VCU) model, and driver model are 

being utilized in MATLAB 2019b environment. 

 
Figure 14. A detailed schematic overview of the XiL test execution: (a) SiL: the 
software model of the powertrain and the thermal simulator MATLAB model 

are considered (shown as a gray dashed box), (b) sHiL: the dSPACE 

MicroLabBox is utilized as the virtual sensor for the DUT (shown as a red 

dashed box), and the HiL test bench facility is shown as a blue dashed box. 

On one hand, the SiL is responsible for generating several 

signals for sHiL and HiL, i.e., DC-link voltage (VDC), battery 

pack voltage (VBAT), inlet coolant temperature (Tcool), torque 

request (Mreq, TM) and base speed (ƞmech). On the other hand, SiL 

also receives several output signals from the sHiL and HiL, 

notably the Junction temperature of DUT’s MOSFET and diode 

(TJ(M/D)), actual torque (TMea) and load current (iLoad).  

The sHiL is embedded into the dSPACE MicroLabBox, which 

computes the DL-based thermal response of the DUT for 

targeted mission profiles, and automotive OEMs prefer to use 

dSPACE MicroLabBox as a VVE prototype. sHiL is configured 

based on the I/O of the DL model. Input signals are: DC-link 

voltage (VDC), battery pack voltage (VBAT), inlet coolant 

temperature (Tcool), and load current (iLoad), whereas the output 

is Junction temperature of DUT’s MOSFET and diode (TJ(M/D)). 

The HiL frontloading testbench comprises a back-to-back 

motor-inverter setup and both inverters are powered via a DC 

power supply.  The communication between SiL, sHiL, and 

HiL has been established using EtherCAT.  

The main challenge in this paper is to deploy the DL-based 

equivalent thermal model onto the hardware. The dSPACE 

MicroLabBox is being utilized for hardware deployment, 

thanks to its high computational power combined with very low 

I/O latencies, which provide excellent real-time performance 

[62]. Checking for real-time compatibility is one of the 

fundamental processes. The main characteristic is to determine 

whether the model is capable of actually running in real-time 

on the simulator.  

The workflow of the RT test is carried out as follows: First, the 

DL-based equivalent thermal model is created and checked so 

that no errors are seen in the offline simulation (MATLAB). 

Afterward, the sHiL is programmed in dSPACE through the 

MATLAB/Simulink interface, which is capable of deploying 

the deep learning model into the RT platform. Finally, the input 

data to dSPACE is passed and the output of the model is 

received through Ethernet communication.  

For analyzing the correct real-time execution of the different 

models, three task information are considered: (a) Task Call 

Counter, (b) Task Turnaround Time, and (c) Overrun Count. 

The real-time (RT) model in dSPACE is executed at fixed 

discrete points with Ts = 100 ms. The maximum task 

Turnaround Time Measurement indicates a maximum task 

turnaround time of 63 ms for a periodic task of 100 ms. The 

Overrun Count Measurement shows that the overrun count 

value is null, signifying that the timing performance is 

acceptable. The computational effort shows that the 

performance of the DL model is satisfactory, with no task 

turnarounds or overruns occurring during the execution of the 

RT block. Both compilation and performance stages are carried 

out successfully. In conclusion, it can be stated that the DL-

based thermal model is capable of running on an RT platform 

without any issues. 

VI. RESULTS AND DISCUSSIONS  

The accuracy of the universal loss-based device-level 

modelling is confirmed through validation using a 30 kW 

interleaved DC/DC converter prototype test bench equipped 

with all SiC power modules.  



 

 

 

 
Figure 15: Predicted Junction temperature via Model-II (128-16-0.2) on training data, where the temperatures are depicted for a SiC half-bridge power module’s 

Diodes and MOSFETs, and all predicted values remained within  ±1.5% error zone. 

 
Figure 16:  Result of HiL testing of Model-II (128-16-0.2) on unknown testing data (i.e., Urban and WLTP), where the predicted Junction temperature values of 

the Diodes and MOSFETs remained within  ±1.5% error. The RMSE in MOSFET1, MOSFET2, Diode 1, and Diode 2  is respectively 2.57,  3.52, 1.97, and 2.5.



 

 

 

 
Figure 17: Error distribution plot for each temperature prediction during HiL 

testing. 

DPT parameters are inputted into the universal loss model to 

estimate converter efficiency and junction temperature 

responses, imposing the validation of the device-level 

modelling. The accuracy of the device-level modelling is 

pivotal as the data it generates is utilized for training DL 

models. The specification of the converter testbench is depicted 

in Table 6.  

The validation of the device-level model for the DC/DC 

converter has been carried out across load variations ranging 

from 10% to 100%, covering both buck and boost modes of 

operation. Figure 18 depicts the experimental test bench for the 

30 kW DC/DC converter prototype. 

TABLE 6. SPECIFICATION OF THE 30 KW ALL SIC HV DC/DC CONVERTER 

PROTOTYPE. 

Converter Parameters Values 

Interleaved phases 3 

Semiconductor power module SiC: CAS120M12BM2  

Phase Inductance ~175 µH 

o Inductor Core material AMCC50 Metglas 

DC-link Capacitance  ~160 µF 

Switching frequency [fsw] 55 kHz 

Battery emulator as input Digatron: 1000V, 2×80 kW  

Dynamic resistive load 3.3 kW to 30 kW 

 
Figure 18. The experimental setup consists of a 30 kW bidirectional DC/DC 

converter prototype with all SiC components. Power is supplied by the Digatron 

EVT module (1000V, 2×80kW), and liquid-cooling thermal management is 
facilitated by a chiller. Thermal distribution is monitored using a FLIR thermal 

camera, while efficiency measurements are conducted with a YOKOGAWA 

WT1804E power analyzer, and load changes using a dynamic load matrix. 

A. Experimental Verification of the Device-Level Model 

Figure 19 presents a comparison of efficiencies between the 

measurement and device modeling at different load powers. 

The measurements have been conducted using a highly precise 

power analyzer, i.e., Yokogawa WT1804E (with a power 

accuracy of 0.02%). A high goodness of fit is achieved between 

the device model and measurements, confirming the accuracy 

of the model. The highest mean percentage error (MPE) is only 

0.40%, and a deviation of 20 W occurs at maximum load. 

 

Figure 19. Comparative efficiency between RT measurement (blue curve) and 

device model estimation (red curves). The efficiency characteristics of the HV 

DC/DC converter are measured as follows: in Buck mode (negative current 

region), with Vin = 395 V, Vo = 200 V, and fsw = 60 kHz. The test is conducted 

at different load power levels ranging from 3.6 kW to 26 kW, and in Boost 

mode (positive current region), with Vin = 220 V, Vo = 395 V, and fsw = 60 kHz, 

the test is carried out at various load power levels ranging from 3.6 kW to 27.2 

kW. The obtained efficiency at max load is shown during boost mode operation.  

B. Verification of the proposed methodology in HiL testbench   

The result of the HiL testing of the best-designed model is 

shown in Figure 16. The training data are almost half the size 

and unknown testing data. The model is seen to be able to 

capture the dynamic behavioral pattern and successfully make 

the prediction on unseen Urban and WLTP data during HiL 

testing. Figure 16 shows the real-time predicted junction 

temperature data and its comparison to device-level model true 

value, for two SiC MOSFETs and two Diodes. The RMSE 

between the true value and the predicted value is 1.97°C, 

2.57°C, 2.5°C, 3.52°C for 𝑇𝑗𝐷1, 𝑇𝑗1, 𝑇𝑗𝐷2, 𝑇𝑗2 respectively.  

Figure 17 also shows the error distribution for four different 

temperatures. The model performance is better with Urban than 

with WLTP data. The RMSE on Urban is 2.2°C, while with 

WLTP data is 3.72°C. The decrease in the performance of the 

model WLTP data occurs during highly dynamic and step 

change areas, as seen in Figure 16. 

C. Performance of the proposed methodology in Lifetime 

estimation   

To evaluate the performance of the proposed methodology 

LESIT parameters-based state-of-the-art Scheuermann’s 

lifetime model is being utilized. For the lifetime estimation of 

the SiC power module, the state-of-the-art mission-profile-

oriented lifetime assessment tool is used. In addition, not only 

package-related wear-outs are considered but also the intrinsic 

effect of dielectric breakdown of the SiC power module is 

considered, and detailed equations and parameters are referred 

to [18].  

Based on the Junction temperature profile from XiL testbench 

using a DL-based thermal model and universal loss-based 

model, as depicted in Figure 15, the corresponding number of 

cycles and accumulated lifetime of the individual components 

for the subjected mission profiles are calculated using a 

rainflow cycle counting algorithm.



 

 

 

 
Figure 20. Weibull system reliability calculation using both device-level model (red color) and DL-based model (dotted blue color) for the DUT (i.e., HV DC/DC) 

while considering Urban and WLTP mission profiles, where only series combination of MOSFETs and Diodes is taken into consideration R (𝑠𝑦𝑠) =

𝑅𝐷1
3. 𝑅𝑀1

3. 𝑅𝐷2
3. 𝑅𝑀2

3. A zoomed-in view of the reliability percentiles at 99% and 90% is provided, and a 2% error zone is marked to observe the response up 

to the 75% reliability percentile. And both lifetime models have been developed using state-of-the-art Scheuermann’s lifetime model and  LESIT parameters [18]. 

For a more realistic estimation, uncertainties in the lifetime 

parameters of the SiC power module have been introduced 

using Monte Carlo simulations. Afterward, the system-level 

lifetime and reliability percentile of the PE converter are 

estimated concerning mileage using the Weibull function. In 

automotive applications, a high probability of failure, i.e., a 

90% reliability percentile, is not realistic, and the more 

interesting point is expected high-reliability rates in the parts 

per million (ppm) range—specifically, the 99% reliability level. 

Therefore, in this paper, the accuracy of reliability percentiles 

at 99% and 90% between the DL-based model and the device-

level model is investigated. In both cases, the relative 

percentage error is 0.35% and 1.52%, and the error does not 

exceed 2% until the reliability percentile reaches 75%, as 

shown in Figure 20. Based on the obtained results, it can be 

concluded that using the RT DL model allows for the estimation 

of system-level reliability with a high degree of accuracy, 

especially when compared to a physics-based loss model. 

VII. CONCLUSION 

This paper introduces and validates an optimal deep-learning-

based thermal equivalent modelling approach for an automotive 

power electronics converter, designed to estimate the junction 

temperature and junction temperature swings of MOSFETs and 

diodes. The main findings and limitations of this study are 

presented here: 

a. The characterization test of a SiC module is depicted, 

which retrieve key power loss parameters and enables a 

highly accurate and fast mission profile-oriented long-

term electro-thermal simulation model having an MPE 

of 0.40% and a maximum deviation of 20W. 

b. A highly accurate virtual sensor is proposed which 

achieves a maximum RMSE of 2.57 for MOSFETs Tj 

and 1.97 for diodes Tj when applied to two entirely 

unknown profiles (Urban and WLTP), using only 

existing sensor data. This virtual sensor is both scalable 

and adaptable for use with any automotive power 

electronics converter.  

c. A computationally efficient virtual sensor model is 

deployed in an RT hardware, i.e., dSPACE 

MicroLabBox and it is replicable as a VVE. It provides 

automotive OEMs with RT thermal monitoring of drive 

systems and reduces costs through eliminating physical 

sensors in the drives. 

d. High accuracy is maintained up to crucial reliability 

points, specifically up to the 90% reliability percentile, 

where the relative error is found to be 1.52% compared 

to the highly computational demanding Physics-based 

degradation model. Hence, this highly accurate RT 

virtual sensor is capable of maintaining a high level of 

safety and reliability for mission-critical PE systems, 

especially in harsh operation conditions and during end-

of-life management.  

e. Following exhaustive XiL validation, it is evident that 

all functionalities of the virtual sensor align with its 

design description and they are valid. The heterogeneous 

co-simulation stages, including SiL (Software-in-the-

Loop), sHiL (sensor-hardware-in-the-loop), and HiL 



 

 

 

(Hardware-in-the-Loop), are successfully executed. 

This streamlined strategy can further benefit automotive 

OEMs through a reduction in real testing efforts. 

This study also has some limitations and future aims, which are: 

• The parameters of the switch, e.g., Rdson, may drift 

during operation. Consequently, the device-level 

model parameters may change over time. However, 

this paper does not discuss the requirement to update 

both the device-level model and the DL model as these 

parameters change; 

• The data collected from sensors may experience 

malfunctions, leading to values that do not align with 

the training data. This study does not include testing 

or analysis of sensor malfunctions. Also, continuous 

learning is not investigated with new data that are 

acquired during operation by the sensors.  
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