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Abstract: Estimation of states in stochastic differential equations with state dependent
diffusion is known to be difficult. Previous research recommend the higher order extended
Kalman filter or the Lamperti transform method for this case. This paper shows that a new
developed method, based on the unscented Kalman filter, is superior for two simulated stochastic
differential equation systems.
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1. INTRODUCTION

Stochastic state space models are extensively used for state
and parameter estimation for forecasting or control. For
Gaussian linear systems the Kalman filter (KF) is used.
This method has a strong theoretical base and is known
to be the mean square state error optimal estimator (May-
beck, 1982). This holds for both discrete and continuous
state space models. Here we shall focus on the latter which
is called a stochastic differential equation (SDE). If the
drift term in a SDE is nonlinear in the state, approxi-
mation to the optimal state estimator must be used. The
most well known is the extended KF (EKF). However, even
this filter has a poor performance if the model has state
dependent diffusion (SDD) according to Baadsgaard et al.
(1997); Nielsen and Madsen (2001); Møller and Madsen
(2010). In the case of SDD Jazwinski (1970); Maybeck
(1982) suggest to use higher order EKF filters (HOEKF).
Unfortunately, Møller and Madsen (2010) report that
HOEKF tend to have numerical and stability issues for
SDD SDEs. For this case Baadsgaard et al. (1997); Nielsen
and Madsen (2001); Møller and Madsen (2010) instead
suggest to use the Lamperti transform to provide a state
transformation that turns the SDD SDE into a non SDD
SDE. However, this is only possible for a limited class of
SDDs. The unscented KF (UKF) has a good performance
for SDEs with highly nonlinear drift (Knudsen and Leth,
2019).

The main contribution in this paper is the new UKF
method for SDD SDEs based on the unscented transform.
And how this performance compares to the Lamperti and
HOEKF solution. The brief conclusion is that the new
UKF method is the superior choice.

The state estimation is divided in a time update and a
measurement update(Knudsen and Leth, 2019; Maybeck,
1982). The time update amounts to updating the condi-
tional state mean and covariance from one time to another.

The measurement update can differ between the methods
depending on the specific measurement equation. However,
for the chosen two example systems the measurement
equation is common for all methods, and it will not be
further discussed in this paper. All the problems discussed
above stems from the time update part which is therefore
in focus for the rest of the paper.

The remaining part of the paper starts with the mathe-
matical formulation of the model, and some basic theory
which is used in the paper. Section 3 and 4 presents the
approaches from the literature for the time update, and
section 5 presents the new UKF based approach. Section 6
shows examples of the methods ability to calculate long
term mean and variance for one dimensional SDEs with
known solutions. Section 7 compares the methods perfor-
mance when used for state estimation based on sampled
measurements. A conclusion is drawn in section 8.

2. STOCHASTIC DIFFERENTIAL EQUATIONS AND
BASIC THEORY

The SDE is written in the common way (1)

dx = f(x, t)dt+ g(x, t)dw , (1)

where x ∈ Rn, w ∈ Rl is a Wiener process with incre-
mental covariance I and f, g are functions of appropriate
dimensions. The SDE is in the sense of Ito.

As x is a Markov process, the complete description is given
by the transition probability φ(x, t|x0, t0), which is related
to the SDE (1) by the forward Kolmogorov equation (2),
which is also called the Fokker-Planck equation. In (2) [·]ij
means component i, j.

∂φ(x, t|x0, t0)

∂t
= −

n∑
i=1

∂φ(x, t|x0, t0)[f(x, t)]i
∂xi

+ 1
2

n∑
i=1

n∑
j=1

∂2φ(x, t|x0, t0)[g(x, t)g(x, t)
T]ij

∂xi ∂xj

(2)
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1. INTRODUCTION

Stochastic state space models are extensively used for state
and parameter estimation for forecasting or control. For
Gaussian linear systems the Kalman filter (KF) is used.
This method has a strong theoretical base and is known
to be the mean square state error optimal estimator (May-
beck, 1982). This holds for both discrete and continuous
state space models. Here we shall focus on the latter which
is called a stochastic differential equation (SDE). If the
drift term in a SDE is nonlinear in the state, approxi-
mation to the optimal state estimator must be used. The
most well known is the extended KF (EKF). However, even
this filter has a poor performance if the model has state
dependent diffusion (SDD) according to Baadsgaard et al.
(1997); Nielsen and Madsen (2001); Møller and Madsen
(2010). In the case of SDD Jazwinski (1970); Maybeck
(1982) suggest to use higher order EKF filters (HOEKF).
Unfortunately, Møller and Madsen (2010) report that
HOEKF tend to have numerical and stability issues for
SDD SDEs. For this case Baadsgaard et al. (1997); Nielsen
and Madsen (2001); Møller and Madsen (2010) instead
suggest to use the Lamperti transform to provide a state
transformation that turns the SDD SDE into a non SDD
SDE. However, this is only possible for a limited class of
SDDs. The unscented KF (UKF) has a good performance
for SDEs with highly nonlinear drift (Knudsen and Leth,
2019).

The main contribution in this paper is the new UKF
method for SDD SDEs based on the unscented transform.
And how this performance compares to the Lamperti and
HOEKF solution. The brief conclusion is that the new
UKF method is the superior choice.

The state estimation is divided in a time update and a
measurement update(Knudsen and Leth, 2019; Maybeck,
1982). The time update amounts to updating the condi-
tional state mean and covariance from one time to another.

The measurement update can differ between the methods
depending on the specific measurement equation. However,
for the chosen two example systems the measurement
equation is common for all methods, and it will not be
further discussed in this paper. All the problems discussed
above stems from the time update part which is therefore
in focus for the rest of the paper.

The remaining part of the paper starts with the mathe-
matical formulation of the model, and some basic theory
which is used in the paper. Section 3 and 4 presents the
approaches from the literature for the time update, and
section 5 presents the new UKF based approach. Section 6
shows examples of the methods ability to calculate long
term mean and variance for one dimensional SDEs with
known solutions. Section 7 compares the methods perfor-
mance when used for state estimation based on sampled
measurements. A conclusion is drawn in section 8.

2. STOCHASTIC DIFFERENTIAL EQUATIONS AND
BASIC THEORY

The SDE is written in the common way (1)

dx = f(x, t)dt+ g(x, t)dw , (1)

where x ∈ Rn, w ∈ Rl is a Wiener process with incre-
mental covariance I and f, g are functions of appropriate
dimensions. The SDE is in the sense of Ito.

As x is a Markov process, the complete description is given
by the transition probability φ(x, t|x0, t0), which is related
to the SDE (1) by the forward Kolmogorov equation (2),
which is also called the Fokker-Planck equation. In (2) [·]ij
means component i, j.
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A simpler second order description of x given by the
mean m(t) and covariance P (t), can be derived from
the forward Kolmogorov equation, which results in the
moment ordinary differential equations (MODE) below
(Maybeck, 1982).

ṁ(t) = E(f(x(t), t)) (3a)

Ṗ (t) = E((f(x(t), t)x(t)T))− E(f(x(t), t))m(t)T

+
(
E((f(x(t), t)x(t)T))− E(f(x(t), t))m(t)T

)T
+ E(g(x(t), t)g(x(t), t)T)

(3b)

Both equations (2) and (3) only have a closed form solution
in rare cases as e.g. the linear model, but the latter (3) is
used to derive the HOEKF.

A straight forward discrete time approximation to the SDE
(1), is given by the Euler-Maruyama (EM) method (4),
where the version (4b) uses the ∆ operator.

κ(ti+1)− κ(ti) =f(κ(ti), ti)(ti+1 − ti)

+ g(κ(ti), ti)(w(ti+1)− w(ti))
⇔ (4a)

∆κ(ti) = f(κ(ti), ti)∆ti + g(κ(ti), ti)∆w(ti) (4b)

As ∆w(ti) are independent increments κ(ti) is a discrete
time Markov process. According to Kloeden and Platen
(1992) the time discrete approximation (4) converges to
the continuous time solution (1) as given by (5), where
δ = ti+1 − ti is the time step and h is any function where
the expected value exists.

∃K, δ0 > 0 : δ < δ0 ⇒
E(|x(ti)− κ(ti)|) ≤ Kδγ , γ = 1

2

(5a)

∃K, δ0 > 0 : δ < δ0 ⇒
|E(h(x(ti)))− E(h(κ(ti)))| ≤ Kδγ , γ = 1

(5b)

The EM method converges slowly path wise (5a), and
faster moment wise (5b).

The last important theory component is the Ito differ-
entiation rule (IDR). Introduce a function z(x, t), which
is continuously differentiable in t, and twice continuously
differentiable in x. If x is given by the SDE (1), and z
is assumed scalar for simplicity, it will be given by the
following SDE (Åström, 1970).

dz =

(
∂z

∂t
+

(
∂z

∂x

)T

f(x, t)+ (6)

1
2 trace

(
∂2z

∂x ∂xT
g(x, t)g(x, t)T

))
dt+

(
∂z

∂x

)T

g(x, t)dw

3. THE LAMPERTI TRANSFORM APPROACH

The key idea in the Lamperti approach, is to exploit the
IDR (6) to obtain a state independent diffusion term. In
the scalar case this is obtained by using the transform

z(x, t) =

∫
1

g(v, t)
dv

∣∣∣∣
v=x

(7)

The Lamperti approach consist of the following steps:

(1) Using (7), find a transformation that turns the SDD
SDE into a non SDD SDE.

(2) Transform the initial state mean and covariance using
this transformation.

(3) Use IDR to find the non SDD SDE for the trans-
formed process.

(4) Based on the transformed SDE, use linearization
i.e. EKF, to calculate future conditional mean and
covariance given present values.

(5) Use the inverse transformation to calculate the con-
ditional mean and covariance for the original process.

The Lamperti transformation approach are only possible
for a limited class of SDEs (Møller and Madsen, 2010). In
the scalar case the integral (7) is well defined and can have
an analytical solution. As seen in the examples in section 6,
it is necessary to derive the inverse of the transform
z(x, t) i.e. x(z, t), which is not always possible (Møller and
Madsen, 2010, Example 4). Also time dependent diffusion
gives rise to very complicated transform SDEs (Møller
and Madsen, 2010). For vector valued SDEs the Lamperti
approach does not work for the general SDE (1). However,
if the diffusion term can be factorized as (8) there is a
solution (Møller and Madsen, 2010). Notice that d is a
diagonal matrix where element i dii only depend on state
element i xi.

g(x, t) = d(x, t)r(t) , d, r ∈ Rn×n ,

d(x, t) = diag (d11(x1, t) , · · · , dnn(xn, t))
(8)

4. THE EKF AND HOEKF APPROACH

There are a number of different HOEKF methods. They
can be interpreted as choosing simplifying assumptions,
and using the MODE (3).

For the linear time invariant SDE where f(x, t) = Fx and
g(x, t) = G in (1) the MODE (3) reduces to

ṁ(t) = Fm(t) (9a)

Ṗ (t) = FP (t) + P (t)F T +GGT (9b)

The normal convention for what is called the EKF is to as-
sume a non linear f(x, t) but at most time varying diffusion
g(t), i.e. a non SDD SDE (Maybeck, 1982, Section 9.5),
(Jazwinski, 1970, Theorem 8.1), (Grewal and Andrews,
2001, Chapter 5), (Kulikova and Kulikov, 2022). The EKF
is obtained by (3) using the following first order Taylor ap-
proximation for f and a zero order Taylor approximation
for g

f(x(t), t) ∼ f(m(t), t) + F (x(t)−m(t)) ,

F =
∂f(m(t), t)

∂x
, g(x, t) ∼ g(m(t), t) = G(m(t), t)

(10)

which gives

ṁ(t) = f(m(t), t) (11a)

Ṗ (t) =F (m(t), t)P (t)

+ P (t)F (m(t), t)T +G(m(t), t)G(m(t), t)T
(11b)

The reason to avoid SDD, is probably that g is already a
matrix, so the linearization becomes complicated.

If instead a scalar SDD SDE is assumed, and a first order
Taylor linearization is used for both drift f and diffusion
g, the following truncated first order EKF (TFOEKF) is
obtained

ṁ(t) = f(m(t)) (12a)

Ṗ (t) =2F (m(t), t)P (t) +G(m(t), t)2

+

(
∂g(m)

∂x

)2

P (t)
(12b)

There are different assumptions and corresponding ver-
sions of HOEKFs. Here the truncated second order filter
(TSOEKF) by Maybeck (1982, Section 12.3) is used. This
is also the choice made by Baadsgaard et al. (1997).

For the TSOEKF, the Taylor approximation of both f and
g is expanded to second order, and moments above second
order are neglected in (3). For the scalar case this gives
(Maybeck, 1982, Section 12.3)

ṁ(t) = f(m(t), t) + 1
2

∂2f(m(t))

∂x2
P (t) (13a)

Ṗ (t) =

(
2
∂f(m(t))

∂x
+

(
∂g(m(t))

∂x

)2

+g(m(t))
∂2g(m(t))

∂x2

)
P (t) + g(m(t), t)2

(13b)

5. THE UKF APPROACH

The motivation for the UKF approach start with the
EM discretization (4), and the convergence results (5).
Introduce the function ϕ by

ϕ(κ(ti),∆w(ti)) =κ(ti) + f(κ(ti), ti)(ti+1 − ti)

+ g(κ(ti), ti)∆w(ti)
(14)

then the EM discretization can be written

κ(ti+1) = ϕ(κ(ti),∆w(ti)) (15)

where the dependence on ti+1 and ti has been omitted.
Applying the mean and covariance in (15), gives the below
recursion.

E(κ(ti+1)) = E(ϕ(κ(ti),∆w(ti))) , (16a)

Cov(κ(ti+1)) = Cov(ϕ(κ(ti),∆w(ti))) (16b)

Again, there is no analytical solution to this. However, if
there was, the mean and covariance for κ would converge
to the mean and covariance for x as ∆t → 0 according to
(5b).

The point of introducing the function ϕ (14), is the recur-
sion (16), but also to emphasize that the right hand side
involves a function of two stochastic variables whose sec-
ond order description is known for ∆w(ti), and calculated
at the previous step for κ(ti).

The unscented transform is generally a good approximator
for mean and covariance of non linear functions. The UKF
approach suggested here is simply to approximate the
right hand side of (16) using the unscented transform. In
other words, the unscented transform is used for the EM
discretization of the SDD SDE. To the authors knowledge
this is not found in the present literature.

6. MEAN AND COVARIANCE TIME EVOLUTION
BY EXAMPLES

This section investigates the methods ability to calculate
the long term time evolution of the state mean and
covariance given initial values. To access and compare the
different approaches, the correct solution must be known.
One way to obtain the solution would be to simulate the
SDE many times using EM and calculate the average
and covariance estimates. It is however easier, and more
precise, to use examples with known solutions.

One way to obtain this, is to use a transformation of a
linear process. Here the most simple linear process, the
Ornstein-Uhlenbeck (OU) process (17a) is used.

dx = axdt+ sdw ⇒ (17a)

ṁx(t) = amx(t) ⇒ mx(t) = mx(0)e
at (17b)

ṗx(t) = 2apx(t) + s2 ⇒

px(t) = e2at
(
px(0) +

s2

2a

)
− s2

2a

(17c)

6.1 Squared OU

A non central Chi squared distributed process is obtained
by z = x2 where x is given by (17a).

z = x2 ⇒ (18a)

E(z(t)) = mx(t)
2 + px(t) (18b)

V(z(t)) = 2px(t)(px(t) + 2mx(t)
2) (18c)

The SDD SDE for z is derived from the IDR (6) to

dz = (2az + s2)dt+ 2
√
zsdw (19)

The Lamperti transform will be

x(z) =

∫
1

2
√
zs

dz =

√
z

s
(20)

Notice that the s part is only a matter of scaling.

The SDE for x in (20) can be calculated by the IDR to

dx =

(
1
2z

− 1
2 s−1(2az + s2)− 1

8
z−

3
2 s−14zs2

)
dt

+ 1
2z

− 1
2 s−12

√
zsdw

=axdt+ dw

(21)

If for example s is to be estimated it should be avoided in
the Lamperti transform which then could be

x(z) =

∫
1

2
√
z
dz =

√
z (22)

which would give

dx = axdt+ sdw (23)

This is exactly the OU process (17).

The relation (18) going from mean and covariance for x
to z can be inverted to give (24) where only the squared
mean for x is obtained.

px(t0) = E(z(t0))−
√
E(z(t0))2 − 1

2 V(z(t0)) (24a)

mx(t0)
2 =

√
E(z(t0))2 − 1

2 V(z(t0)) (24b)

The Lamperti approach will then start by inserting initial
values E(z(t0)), V(z(t0)) into (24) to get values for x,
and then the exact KF algorithm can calculate the time
evolution of the mean for x, which then can be transformed
into mean and covariance for z by (18). Notice that
the result of this is unchanged, whether the positive or
negative solution for mx(t0) from (24b) is used.

For the truncated filtering approaches, the first and second
order derivatives for f and g are needed. They are therefore
listed below.

f(z) = 2az + s2 ⇒ ∂f(z)

∂z
= 2a ,

∂2f(z)

∂z2
= 0 , (25)

g(z) = 2
√
zs ⇒ ∂g(z)

∂z
= sz−

1
2 ,

∂2g(z)

∂z2
= − 1

2sz
− 3

2 (26)
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There are different assumptions and corresponding ver-
sions of HOEKFs. Here the truncated second order filter
(TSOEKF) by Maybeck (1982, Section 12.3) is used. This
is also the choice made by Baadsgaard et al. (1997).

For the TSOEKF, the Taylor approximation of both f and
g is expanded to second order, and moments above second
order are neglected in (3). For the scalar case this gives
(Maybeck, 1982, Section 12.3)

ṁ(t) = f(m(t), t) + 1
2

∂2f(m(t))

∂x2
P (t) (13a)

Ṗ (t) =

(
2
∂f(m(t))

∂x
+

(
∂g(m(t))

∂x

)2

+g(m(t))
∂2g(m(t))

∂x2

)
P (t) + g(m(t), t)2

(13b)

5. THE UKF APPROACH

The motivation for the UKF approach start with the
EM discretization (4), and the convergence results (5).
Introduce the function ϕ by

ϕ(κ(ti),∆w(ti)) =κ(ti) + f(κ(ti), ti)(ti+1 − ti)

+ g(κ(ti), ti)∆w(ti)
(14)

then the EM discretization can be written

κ(ti+1) = ϕ(κ(ti),∆w(ti)) (15)

where the dependence on ti+1 and ti has been omitted.
Applying the mean and covariance in (15), gives the below
recursion.

E(κ(ti+1)) = E(ϕ(κ(ti),∆w(ti))) , (16a)

Cov(κ(ti+1)) = Cov(ϕ(κ(ti),∆w(ti))) (16b)

Again, there is no analytical solution to this. However, if
there was, the mean and covariance for κ would converge
to the mean and covariance for x as ∆t → 0 according to
(5b).

The point of introducing the function ϕ (14), is the recur-
sion (16), but also to emphasize that the right hand side
involves a function of two stochastic variables whose sec-
ond order description is known for ∆w(ti), and calculated
at the previous step for κ(ti).

The unscented transform is generally a good approximator
for mean and covariance of non linear functions. The UKF
approach suggested here is simply to approximate the
right hand side of (16) using the unscented transform. In
other words, the unscented transform is used for the EM
discretization of the SDD SDE. To the authors knowledge
this is not found in the present literature.

6. MEAN AND COVARIANCE TIME EVOLUTION
BY EXAMPLES

This section investigates the methods ability to calculate
the long term time evolution of the state mean and
covariance given initial values. To access and compare the
different approaches, the correct solution must be known.
One way to obtain the solution would be to simulate the
SDE many times using EM and calculate the average
and covariance estimates. It is however easier, and more
precise, to use examples with known solutions.

One way to obtain this, is to use a transformation of a
linear process. Here the most simple linear process, the
Ornstein-Uhlenbeck (OU) process (17a) is used.

dx = axdt+ sdw ⇒ (17a)

ṁx(t) = amx(t) ⇒ mx(t) = mx(0)e
at (17b)

ṗx(t) = 2apx(t) + s2 ⇒

px(t) = e2at
(
px(0) +

s2

2a

)
− s2

2a

(17c)

6.1 Squared OU

A non central Chi squared distributed process is obtained
by z = x2 where x is given by (17a).

z = x2 ⇒ (18a)

E(z(t)) = mx(t)
2 + px(t) (18b)

V(z(t)) = 2px(t)(px(t) + 2mx(t)
2) (18c)

The SDD SDE for z is derived from the IDR (6) to

dz = (2az + s2)dt+ 2
√
zsdw (19)

The Lamperti transform will be

x(z) =

∫
1

2
√
zs

dz =

√
z

s
(20)

Notice that the s part is only a matter of scaling.

The SDE for x in (20) can be calculated by the IDR to

dx =

(
1
2z

− 1
2 s−1(2az + s2)− 1

8
z−

3
2 s−14zs2

)
dt

+ 1
2z

− 1
2 s−12

√
zsdw

=axdt+ dw

(21)

If for example s is to be estimated it should be avoided in
the Lamperti transform which then could be

x(z) =

∫
1

2
√
z
dz =

√
z (22)

which would give

dx = axdt+ sdw (23)

This is exactly the OU process (17).

The relation (18) going from mean and covariance for x
to z can be inverted to give (24) where only the squared
mean for x is obtained.

px(t0) = E(z(t0))−
√
E(z(t0))2 − 1

2 V(z(t0)) (24a)

mx(t0)
2 =

√
E(z(t0))2 − 1

2 V(z(t0)) (24b)

The Lamperti approach will then start by inserting initial
values E(z(t0)), V(z(t0)) into (24) to get values for x,
and then the exact KF algorithm can calculate the time
evolution of the mean for x, which then can be transformed
into mean and covariance for z by (18). Notice that
the result of this is unchanged, whether the positive or
negative solution for mx(t0) from (24b) is used.

For the truncated filtering approaches, the first and second
order derivatives for f and g are needed. They are therefore
listed below.

f(z) = 2az + s2 ⇒ ∂f(z)

∂z
= 2a ,

∂2f(z)

∂z2
= 0 , (25)

g(z) = 2
√
zs ⇒ ∂g(z)

∂z
= sz−

1
2 ,

∂2g(z)

∂z2
= − 1

2sz
− 3

2 (26)
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This leads to the following MODE for EKF, FOEKF and
TSOEKF respectively

ṁ(t) = 2am(t) + s2 , (27a)

Ṗ (t) = 4aP (t) + 4s2m(t) (27b)

ṁ(t) = 2am(t) + s2 , (28a)

Ṗ (t) = (4a+ s2m(t)−1)P (t) + 4s2m(t) (28b)

ṁ(t) = 2am(t) + s2 , (29a)

Ṗ (t) = 4aP (t) + 4s2m(t) (29b)

In this squared OU example, all the mean value MODEs
are the same. Also, the exact mean value is obtained if
started in the correct initial value i.e. m(0) = mx(0)

2 +
px(0) where the sub script x refers to the OU process in
(17). The variance is the same for EKF and TSOEKF, and
for these it is easily verified that the asymptotic variance
obtains the correct value s4/2a2. The FOEKF turns out to
have a asymptotic variance which is twice as large as the
correct value i.e. s4/a2.

It is surprising that the EKF and TSOEKF MODE is
exactly the same. The mean value part are equal because

the second derivative ∂2f(z)
∂z2 in (13a) is zero, and the

variance part are equal because the g parts in (13b) cancel
out each other. As seen in section 6.2 this is not the case
in general.

Mean and variance for the process resulting from the
UKF method (section 5) and the MODE methods EKF,
TFOEKF and TSOEKF (27)-(29) are shown in the top
of figure 1. Notice that only the UKF mean and variance
and the variance for TFOEKF is not exactly correct, and
the legends for the correct results are hidden behind the
last plotted which is TSOEKF. The bottom figure shows
the relative error, which for the UKF method are less than
20% within the time constant at 10 seconds. Results, not
shown here, reveals that the relative error is the same,
even though the variance on the OU process increases to
at least 102.

6.2 Exponential OU

A log normal distributed process is obtained by z = ex

z = ex ⇒ (30a)

E(z) = emx(t)+
px(t)

2 (30b)

V(z) = (epx(t) − 1)E(z)2 (30c)

The SDD SDE for z is derived from the IDR (6) to

dz = z
(
a log(z) + 1

2s
2
)
dt+ zsdw (31)

The Lamperti transform will be

x(z) =

∫
1

zs
dz = s−1 log(z) (32)

As for the first example the s can be removed, which results
in x having the original OU SDE (17).

The necessary derivatives of f and g are
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Fig. 1. Mean and variance calculated by the methods
compared to the correct values for the squared OU
process. The OU system (17) has the parameters
a = −1/τ , τ = 10 , σ2

x = −s2/2a = 1 , mx(0) =
0 , σ2

x(0) = 0.01.

f(z) = z
(
a log(z) + 1

2s
2
)
⇒

∂f(z)

∂z
=

(
a log(z) + 1

2s
2
)
+ a

= a(log(z) + 1) + 1
2s

2 ,
∂2f(z)

∂z2
=

a

z

(33)

g(z) = zs ⇒ ∂g(z)

∂z
= s ,

∂2g(z)

∂z2
= 0 (34)

This leads to the following EKF, FOEKF and TSOEKF
respectively

ṁ(t) = m(t)
(
a log(m(t)) + 1

2s
2
)
, (35a)

Ṗ (t) = (2a(log(m(t)) + 1) + s2)P (t) +m(t)2s2 (35b)

ṁ(t) = m(t)
(
a log(m(t)) + 1

2s
2
)
, (36a)

Ṗ (t) = 2(a(log(m(t)) + 1) + s2)P (t) +m(t)2s2 (36b)

ṁ(t) = m(t)
(
a log(m(t)) + 1

2s
2
)
+ 1

2

a

m(t)
P (t) , (37a)

Ṗ (t) = 2(a(log(m(t)) + 1) + s2)P (t) +m(t)2s2 (37b)

The asymptotic mean and variance for the exponential OU
process are

mz = e
px
2 = e−

s2

4a , (38a)

pz = (epx − 1)m2
z = (e−

s2

2a − 1)e−
s2

2a (38b)

Some results on the asymptotic values for the MODE can
be derived, but are left out here to save space.

Graphical results for the four different methods, similar
to figure 1, are seen in figure 2. The TFOEKF and The
TSOEKF diverges, the former slower than the latter,
where the mean even goes negative shortly after the time
constant. The EKF and the UKF converges, and the latter
has the least error.

The above example based analysis of the methods perfor-
mance for doing mean and covariance calculations on the
“long run” gives the following main results:
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Fig. 2. Mean and variance calculated by the methods
compared to the correct values for the exponential
OU process. The corresponding OU system (17) has
the parameters seen in figure 1. Notice that the y-axis
is truncated at 8 and 2 respectively.

• By construction of the examples, the Lamperti
method works perfectly.

• For the squared OU process, the EKF and TSOEKF
are superior, as they are correct, but the relative
errors for the UKF is modest.

• For the exponential OU process, the UKF are supe-
rior, as it works for large variances and have mod-
est relative errors. The EKF works better than the
TFOEKF and TSOEKF.

• From these two examples the safe choice is the UKF.

7. STATE ESTIMATION BY EXAMPLES

The state mean and covariance time update methods in
section 3, 4 and 5, can be used for the time update step,
and combined with a measurement update step, they form
a collection of state estimation methods. These methods
will be compared based on a number of performance
measures.

To define the performance measures, the following vari-
ables are needed.

yn ≜ y(tn) , xn ≜ x(tn) , Yn ≜ (yn yn−1 · · · y1) (39a)

ŷn|n−1 ≜ Ê(yn|Yn−1) , ỹn|n−1 ≜ yn − ŷn|n−1 ,

Py,n ≜ V̂(ỹn|n−1)
(39b)

x̂n|n−1 ≜ Ê(xn|Yn−1) , x̃n|n−1 ≜ xn − x̂n|n−1 ,

Pn|n−1 ≜ V̂(x̃n|n−1)
(39c)

x̂n|n ≜ Ê(xn|Yn) , x̃n|n ≜ xn − x̂n|n ,

Pn|n ≜ V̂(x̃n|n)
(39d)

In (39) Ê, V̂ are the mean and variance estimates provided
by the estimation algorithms.

The following performance measures are used for the
evaluation of methods:

RY : RMS for ỹn|n−1, which should be small.
RYN : RMS for ỹn|n−1/

√
Py,n, which should be close to

one, indicating that Py,n matches the uncertainty for
the method.

PV : Portmanteau test p value, which should be in the
“likely” range e.g. 0.05 to 0.95.

RXM : RMS for x̃n|n−1, which should be small.
RXMN : RMS for x̃n|n−1/

√
Pn|n−1, which should be close

to one, indicating that Pn|n−1 matches the uncertainty
for the method.

RXP : RMS for x̃n|n, which should be small.
RXPN : RMS for x̃n|n/

√
Pn|n, which should be close to

one, indicating that Pn|n−1 matches the uncertainty for
the method.

NAFF : Flag indicating the algorithm had a run error,
and could not finish normally due to invalid operations
as

√
z or log z, where the state z has turned negative.

This can happen in the time update part of the algo-
rithm.

The state estimation is split in time and measurement
update (Maybeck, 1982, p225-227), (Madsen, 2008, p293).
The time update is explained above in section 3-5. All the
approaches, except UKF, uses integration of the MODE
equations. For this the Runge-Kutta 4th order (RK4)
method is used. As shown in section 6, some of the
methods can produce non positive state covariance and
mean, which will give a run time error, and a premature
program termination which is caught by setting a flag
(Not-all-finite-flag (NAAF)), and then proceeding to the
next simulation run.

For non Lamperti methods, the (transformed) state z
is estimated, while for the Lamperti method the state
estimated is x i.e. the OU process state. To be comparable
with the other methods, this state mean and variance
estimate is transformed to mean and variance estimate of
z using the proper transformation.

For the general non linear estimation problem, a non linear
measurement model is allowed

y(n) = h(x(n)) + v(n) , v(n) ∼ IID(0, R) (40)

where IID means independent identical distributed i.e.
white noise.

The measurement model assumed here is the simple addi-
tive noise model

y(n) = z(n) + v(n) (41)

where z is the squared (19) or exponential (31) OU process.

The TSOEKF has extra terms in the measurement update
which does not come into play with the chosen examples

as it disappears for ∂2h
∂z2 = 0 (Maybeck, 1982, eqn. (12-28)-

(12-30)). With this identity measurement function, the non
Lamperti methods has virtually equivalent measurement
update steps (see e.g. the interpretation in Knudsen and
Leth (2019, sec. V)). The Lamperti method will give the
measurement models

y(n) = x(n)2 + v(n) , (42)

y(n) = ex(n) + v(n) (43)

for the squared and exponential OU process respectively.
Recall that x is the OU process. The convention for the
Lamperti method, is to use the EKF for the transformed
problem, so this is what is done here.

The following methods are tested:

Lamp-EKF : The EKF is used on the Lamperti trans-
formed model.
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Fig. 2. Mean and variance calculated by the methods
compared to the correct values for the exponential
OU process. The corresponding OU system (17) has
the parameters seen in figure 1. Notice that the y-axis
is truncated at 8 and 2 respectively.

• By construction of the examples, the Lamperti
method works perfectly.

• For the squared OU process, the EKF and TSOEKF
are superior, as they are correct, but the relative
errors for the UKF is modest.

• For the exponential OU process, the UKF are supe-
rior, as it works for large variances and have mod-
est relative errors. The EKF works better than the
TFOEKF and TSOEKF.

• From these two examples the safe choice is the UKF.

7. STATE ESTIMATION BY EXAMPLES

The state mean and covariance time update methods in
section 3, 4 and 5, can be used for the time update step,
and combined with a measurement update step, they form
a collection of state estimation methods. These methods
will be compared based on a number of performance
measures.

To define the performance measures, the following vari-
ables are needed.

yn ≜ y(tn) , xn ≜ x(tn) , Yn ≜ (yn yn−1 · · · y1) (39a)

ŷn|n−1 ≜ Ê(yn|Yn−1) , ỹn|n−1 ≜ yn − ŷn|n−1 ,

Py,n ≜ V̂(ỹn|n−1)
(39b)

x̂n|n−1 ≜ Ê(xn|Yn−1) , x̃n|n−1 ≜ xn − x̂n|n−1 ,

Pn|n−1 ≜ V̂(x̃n|n−1)
(39c)

x̂n|n ≜ Ê(xn|Yn) , x̃n|n ≜ xn − x̂n|n ,

Pn|n ≜ V̂(x̃n|n)
(39d)

In (39) Ê, V̂ are the mean and variance estimates provided
by the estimation algorithms.

The following performance measures are used for the
evaluation of methods:

RY : RMS for ỹn|n−1, which should be small.
RYN : RMS for ỹn|n−1/

√
Py,n, which should be close to

one, indicating that Py,n matches the uncertainty for
the method.

PV : Portmanteau test p value, which should be in the
“likely” range e.g. 0.05 to 0.95.

RXM : RMS for x̃n|n−1, which should be small.
RXMN : RMS for x̃n|n−1/

√
Pn|n−1, which should be close

to one, indicating that Pn|n−1 matches the uncertainty
for the method.

RXP : RMS for x̃n|n, which should be small.
RXPN : RMS for x̃n|n/

√
Pn|n, which should be close to

one, indicating that Pn|n−1 matches the uncertainty for
the method.

NAFF : Flag indicating the algorithm had a run error,
and could not finish normally due to invalid operations
as

√
z or log z, where the state z has turned negative.

This can happen in the time update part of the algo-
rithm.

The state estimation is split in time and measurement
update (Maybeck, 1982, p225-227), (Madsen, 2008, p293).
The time update is explained above in section 3-5. All the
approaches, except UKF, uses integration of the MODE
equations. For this the Runge-Kutta 4th order (RK4)
method is used. As shown in section 6, some of the
methods can produce non positive state covariance and
mean, which will give a run time error, and a premature
program termination which is caught by setting a flag
(Not-all-finite-flag (NAAF)), and then proceeding to the
next simulation run.

For non Lamperti methods, the (transformed) state z
is estimated, while for the Lamperti method the state
estimated is x i.e. the OU process state. To be comparable
with the other methods, this state mean and variance
estimate is transformed to mean and variance estimate of
z using the proper transformation.

For the general non linear estimation problem, a non linear
measurement model is allowed

y(n) = h(x(n)) + v(n) , v(n) ∼ IID(0, R) (40)

where IID means independent identical distributed i.e.
white noise.

The measurement model assumed here is the simple addi-
tive noise model

y(n) = z(n) + v(n) (41)

where z is the squared (19) or exponential (31) OU process.

The TSOEKF has extra terms in the measurement update
which does not come into play with the chosen examples

as it disappears for ∂2h
∂z2 = 0 (Maybeck, 1982, eqn. (12-28)-

(12-30)). With this identity measurement function, the non
Lamperti methods has virtually equivalent measurement
update steps (see e.g. the interpretation in Knudsen and
Leth (2019, sec. V)). The Lamperti method will give the
measurement models

y(n) = x(n)2 + v(n) , (42)

y(n) = ex(n) + v(n) (43)

for the squared and exponential OU process respectively.
Recall that x is the OU process. The convention for the
Lamperti method, is to use the EKF for the transformed
problem, so this is what is done here.

The following methods are tested:

Lamp-EKF : The EKF is used on the Lamperti trans-
formed model.
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EKF : The EKF (11) is used on the original model.
TFOEKF : The TFOEKF (12) is used on the original
model.

TSOEKF : The TSOEKF (13) is used on the original
model.

UKF : The UKF (sec. 5 and Knudsen and Leth (2019))
is used on the original model.

7.1 Squared OU

The methods are compared by generating simulated data
with the same parameters as in figure 1. From each
simulation of 100 seconds, the signals are logged with
a sampling time of 1. Based on this, the performance
measures mentioned above is calculated. This is done for
100 repetitions, which leads to the average statistics seen
in table 1.

Table 1. Estimation performance measures for
the methods used on the squared OU process.
The numbers are averages over 100 runs of each

100 seconds.

Method R
Y

R
Y
N

P
V

R
X
M

R
X
M
N

R
X
P

R
X
P
N

N
A
F
F

LampEKF 1.12 4.32 0.67 1.14 0.95 0.95 3.65 0
EKF 0.77 1.04 0.62 0.76 1.08 0.1 1.04 0
TFOEKF 1.48 NA 0 1.48 NA 1.45 NA 1
TSOEKF 1.47 NA 0 1.46 NA 1.43 NA 1
UKF 0.77 1.03 0.62 0.76 1.07 0.1 1.04 0

Before discussing statistic results from table 1, selected
time series plots from the first run is presented, and differ-
ences between the methods are highlighted. Figure 3 shows
the OU process and its square plus the measurements.
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Fig. 3. Simulated OU process (x), squared process (z) and
measurements. Notice that the states are shown with
the simulation sample time step 0.01 as a connected
line, whereas the measurements are shown with the
measurement sampling time step 1 as dots.

Figure 4 shows the results for the Lamp-EKF algorithm.
Recall that here the Lamperti transform is

√
z with the

result, that the SDE for z is turned into the OU process,

and the measurement equations is y = x2 + v. This
means the sign of x can not be determined. This is
why the top sub figure shows that the state prediction
confidence interval for the OU state (x) fits well with
the real state except around time 10, where the real and
predicted states has opposite signs. The second sub figure
shows that the Kalman gain varies a lot due to the non
linear measurement equation. The third sub figure shows
that the state prediction std. does not vary so much,
except for some bumps where the state prediction variance
increases, because the state prediction is close to zero,
so the measurement provides less information about the
state. The bottom sub figure shows that the corresponding
squared state (z) prediction confidence interval fits well
with the real z, and the uncertainty varies a lot due to the
square transformation.
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Fig. 4. Results from using the Lamp-EKF algorithm on
the data in figure 3. Notise that the data are really
in discrete time which is indicated with a dot on the
line connecting the samples for visability.

Figure 5 shows the results from using the TSOEKF
algorithm on the data in figure 3. The bottom sub figure
shows the state prediction variance goes negative, which
makes the algorithm stop prematurely, leaving the rest of
the values at the zero initial values.

Figure 6 shows the results from using the UKF algorithm
on the data in figure 3. The top sub figure shows the
state prediction confidence interval is similar to the one for
the Lamp-EKF algorithm in figure 4. However, there are
some time point e.g. a little before 60 and after 80 where
the performance of the UKF is superior. The middle sub
figure shows a Kalman gain mostly close to one, due to the
measurement equation, except when the state prediction
variance is very small due to a small state prediction, then
the Kalman gain drops a bit. However, the state prediction
variance changes a lot due to the nonlinear and SDD SDE.
It is very clear that the state prediction std. follows the
predicted state level. For this algorithm also the convincing
auto correlation plot, for the output prediction errors, are
shown in the bottom sub figure.

To save space, results from the two last algorithm are not
shown.
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Fig. 5. Results from using the TSOEKF algorithm on the
data in figure 3.
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Fig. 6. Results from using the UKF algorithm on the data
in figure 3.

Returning to the statistical results, many can be extracted
from table 1. EKF and UKF works best and very similar.
Also they perform similar to a KF for a linear system.
The normalized errors for output and state has a RMS
close to one, showing that the variance estimates are very
good. The p-value for the Portmanteau test Madsen (2008)
is also very convincing. The other methods are clearly
inferior. TFOEKF and TSOEKF ends up with negative
state variance estimates when the state estimate becomes
small. This happens in all the runs, and results in the
Not-all-finite-flag fraction being 1. Notice that all state
estimates and corresponding variances are set to zero
before each run. This is why the normalized RMS errors
can not be calculated in case the method does not finish.
Also in this case the remaining output predictions is zero,
which leads to large average RMS for the output error.
Perhaps the most important for TFOEKF and TSOEKF
is not the RMS, but that they stopped prematurely
due to negative variance estimates. The Lamp-EKF is
underestimating the variance on ỹn|n−1 by approximately
a factor 4. This is probably because the gradient of the
measurement function x2

n i.e. 2xn, gives to small variance

for ỹn|n−1 when xn is close to 0. The problem that
the Lamperti method can transform a otherwise linear
measurement, and/or state, model into a non linear one,
is also mentioned in the conclusion of Nielsen and Madsen
(2001) and Baadsgaard et al. (1997).

7.2 Exponential OU

Again to save space, only plots of the simulated signals
and the results for UKF is shown. The simulated signals
are seen in figure 7. Notice the OU process (x) is the same
as in figure 3, as the default random number start is used
in matlab. In this case, small OU states (x) gives close
to zero measurements, where then the measurement noise
has relatively more impact. Figure 8 shows the result of
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Fig. 7. Simulated OU process (x), exponential process
(z) and measurements. This plot is corresponding to
figure 3 in the square process case.

the UKF algorithm used for the data in figure 7. Again
the performance seems good with white output prediction
errors. As for the squared case, the Kalman gain is close
to one, except when the state prediction error variance is
very small due to state predictions being close to zero.

Results corresponding to table 1, is shown in table 2 for the
exponential OU state process. EKF, TFOEKF and UKF
works best and very similar. Also in this case they perform
similar to a KF for a linear system. The other methods
are clearly inferior. TSOEKF ends up with negative state
variance estimates when the state estimate becomes small.
This happens not all the time, as in the squared OU case,
but in 12% of the runs. Also in this case the Lamp-EKF is
underestimating the variance on ỹn|n−1, but this problem
is less severe compared to the squared OU case.

8. CONCLUSION

This paper discusses stochastic differential equations with
state dependent diffusion. Specifically, methods for ap-
proximating the state second order statistics, and finally
estimating the state from measurements are analyzed.

The paper includes a method that exploits the unscented
transform to approximate the time evolution of mean
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Fig. 5. Results from using the TSOEKF algorithm on the
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Fig. 6. Results from using the UKF algorithm on the data
in figure 3.

Returning to the statistical results, many can be extracted
from table 1. EKF and UKF works best and very similar.
Also they perform similar to a KF for a linear system.
The normalized errors for output and state has a RMS
close to one, showing that the variance estimates are very
good. The p-value for the Portmanteau test Madsen (2008)
is also very convincing. The other methods are clearly
inferior. TFOEKF and TSOEKF ends up with negative
state variance estimates when the state estimate becomes
small. This happens in all the runs, and results in the
Not-all-finite-flag fraction being 1. Notice that all state
estimates and corresponding variances are set to zero
before each run. This is why the normalized RMS errors
can not be calculated in case the method does not finish.
Also in this case the remaining output predictions is zero,
which leads to large average RMS for the output error.
Perhaps the most important for TFOEKF and TSOEKF
is not the RMS, but that they stopped prematurely
due to negative variance estimates. The Lamp-EKF is
underestimating the variance on ỹn|n−1 by approximately
a factor 4. This is probably because the gradient of the
measurement function x2

n i.e. 2xn, gives to small variance

for ỹn|n−1 when xn is close to 0. The problem that
the Lamperti method can transform a otherwise linear
measurement, and/or state, model into a non linear one,
is also mentioned in the conclusion of Nielsen and Madsen
(2001) and Baadsgaard et al. (1997).

7.2 Exponential OU

Again to save space, only plots of the simulated signals
and the results for UKF is shown. The simulated signals
are seen in figure 7. Notice the OU process (x) is the same
as in figure 3, as the default random number start is used
in matlab. In this case, small OU states (x) gives close
to zero measurements, where then the measurement noise
has relatively more impact. Figure 8 shows the result of
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Fig. 7. Simulated OU process (x), exponential process
(z) and measurements. This plot is corresponding to
figure 3 in the square process case.

the UKF algorithm used for the data in figure 7. Again
the performance seems good with white output prediction
errors. As for the squared case, the Kalman gain is close
to one, except when the state prediction error variance is
very small due to state predictions being close to zero.

Results corresponding to table 1, is shown in table 2 for the
exponential OU state process. EKF, TFOEKF and UKF
works best and very similar. Also in this case they perform
similar to a KF for a linear system. The other methods
are clearly inferior. TSOEKF ends up with negative state
variance estimates when the state estimate becomes small.
This happens not all the time, as in the squared OU case,
but in 12% of the runs. Also in this case the Lamp-EKF is
underestimating the variance on ỹn|n−1, but this problem
is less severe compared to the squared OU case.

8. CONCLUSION

This paper discusses stochastic differential equations with
state dependent diffusion. Specifically, methods for ap-
proximating the state second order statistics, and finally
estimating the state from measurements are analyzed.

The paper includes a method that exploits the unscented
transform to approximate the time evolution of mean
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Fig. 8. Results from using the UKF algorithm on the data
in figure 7.

Table 2. Estimation performance measures for
the methods used on the exponential OU pro-
cess. The numbers are averages over 100 runs

of each 100 seconds.

Method R
Y

R
Y
N

P
V

R
X
M

R
X
M
N

R
X
P

R
X
P
N

N
A
F
F

Lamp-EKF 1.15 1.48 0.61 1.23 0.96 0.96 4.25 0
EKF 1 1.03 0.53 0.99 1.03 0.1 1 0
TFOEKF 1 0.98 0.53 0.99 0.98 0.1 0.99 0
TSOEKF 1.05 NA 0.49 1.04 NA 0.18 NA 0.12
UKF 1 1.03 0.53 0.99 1.03 0.1 1 0

and covariance for state dependent diffusion stochastic
differential equations. To the authors best knowledge, this
is a new contribution.

The paper starts by presenting the methods. This is fol-
lowed by analyzing the methods ability to calculate long
term development of mean and covariance from initial
state values. Because the two examples are transforma-
tions of the linear OU process, the Lamperti method gives
exactly the correct results. For the squared OU process,
it was surprising that the EKF and TSOEKF methods
gave correct results. Here the UKF method gave relative
errors below 30%. For the exponential OE process, the
UKF method was clearly superior, with a relative error
below 20%. The EKF method gave much larger errors,
the TFOEKF gave a variance that grew unlimited, and
the TSOEKF gave a variance going negative after about
the time constant.

The last part of the paper analyses the performance
estimating states using measurements. The results can
be compared to the scarce literature. Baadsgaard et al.
(1997); Nielsen and Madsen (2001); Møller and Madsen
(2010) states that EKF can have poor performance for
SDD SDE but does not give examples. The results ob-
tained here can not support this. On the contrary, The
superior methods for the two examples are UKF and
EKF, which are very similar, and surprisingly have fea-
tures found for linear systems, as white prediction errors
and correct error variance estimates. Møller and Madsen
(2010) states that HOEKF can have numerical issues.

This comply with the TSOEKF filter crashes due to nega-
tive variance in both examples. Baadsgaard et al. (1997);
Nielsen and Madsen (2001) compares only the Lamperti
and TSOEKF approach for one SDE model, and conclude
the performance is similar. Here the Lamperti method has
a significantly lower performance compared to UKF and
EKF. The overall conclusion from these two examples, is
that the UKF method is preferable as it in both examples
are among the best methods, and it does not need any
derivatives or transformations and works for any state
dimension and diffusion function.
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