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►Machine Learning Today
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Breakthroughs in ML using (deep) Articial Neural Networks (ANNs) have come 

at the expense of massive memory, energy, and time requirements
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►Machine Learning at Edge
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• A solution is mobile edge or cloud computing: offline 

load computations to an edge or cloud server

• Another solution is to scale down energy and memory 

requirements of ANNs via tailored hardware 

implementations for mobile devices

• Active field with established players and start-ups

• Trade-offs between accuracy and complexity

• Mostly limited to inference

The conventional inference cycle

Source: Lucas Wisnieweski, “Hardware Solutions for Low-Power Smart Edge Computing, 

“Journ. Low Power Electron. Appl., 2022



SUBHAM SAHOO, ReliaPEC GROUP, AAU ENERGY, AALBORG UNIVERSITY 6 - MAR - 2 4 /20

►Beyond ANN
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A sustainable fast-track process

• Energy-efficient

• Sparse and dynamic

• Event-driven learning 

and inferences

• Online actions

Source: https://www.olcf.ornl.gov, Google Images
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►Actually..
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• Neurons in the brain sense, process, and communicate over time using

sparse binary signals (spikes or action potentials).

• This results in a dynamic, sparse, and event-driven learning and

inference.

• Spiking signals minimize energy per bit.

• Biologically plausible neurons have a notion of charge and memory, 

that is reverse engineered to be implemented using memristorsSource: S Sahoo, Y Song, « Spike Talk – Genesis and Neural Coding 

Scheme Translations », Under preparation, IEEE Trans. Smart Grid, 2024.

Spiking Neural Networks (SNNs)
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►Processing Alternatives Today
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Proof-of-concept and commercial hardware

implementations of SNNs have demonstrated

significant energy savings as compared to ANNs
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►Simple Examples
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Source: Frenkel et al.: Bottom-Up and Top-Down Approaches 

for the Design of Neuromorphic Processing Systems, Proc. Of 
the IEEE, 2023.

Data Translation Encoding/Decoding
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►Biologically Plausible Neurons
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Source: S Sahoo, Y Song, « Spike Talk – Genesis and Neural Coding Scheme Translations », Under preparation, IEEE Trans. Smart Grid, 2024.
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►Complicated Neuron Models and Reset Mechanism
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Source: Wulfram Gerstner, Werner M. Kistler, Richard Naud, « Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition », 

2014.

• Complicated (more accurate) model

• Poor computational efficiency – deployment issues

with most hardware accelerators

Reset
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►Neural Coding Schemes
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Source: Eshraghian et al.: Training SNNs Using Lessons From Deep Learning, Proc. Of the IEEE, 2023.

How to translate real-valued

information into spikes?

• Input data to an SNN may be converted into a 

firing rate, a firing time, or the data can be 

delta modulated. 

• The network itself may be trained to enable the 

correct class to have the highest firing rate or 

to fire first, among many other encoding 

strategies.
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►Spike Timing Dependent Plasticity (STDP)
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Source: X Diao, Y Song, S Sahoo, Y Li, « Neuromorphic Event-Driven Semantic Communication in 

Microgrids» IEEE Trans. Smart Grid, 2024.

• The online weight update policy and its biological 

plausibility is explained by the Hebbian Principle: 

“neurons that fire together wire together”.

• If a pre-synaptic neuron fires just before a postsynaptic 

neuron, the connection between them is strengthened, 

often known as long-term potentiation (LTP). 

• Otherwise, the connection is weakened, often known as 

long-term depression (LTD) of the same synapse.



SUBHAM SAHOO, ReliaPEC GROUP, AAU ENERGY, AALBORG UNIVERSITY 6 - MAR - 2 4 /20

► Information Embedded in Power

• Scalability

• Efficiency

• Transmission beyond electrically isolated stages

• Stakeholders’ acceptance – grid codes?

M. Liserre, H. Beiranvand, Y. Leng, R. Zhu and P. A. Hoeher, "Overview of Talkative Power 
Conversion Technologies," IEEE Open Journal of Power Electronics, vol. 4, pp. 67-80, 2023, doi: 
10.1109/OJPEL.2023.3237709.
M. Angjelichinoski, Č. Stefanović, P. Popovski and F. Blaabjerg, "Power talk in DC micro grids: 
Constellation design and error probability performance," 2015 IEEE International Conference on 
Smart Grid Communications (SmartGridComm), Miami, FL, USA, 2015.

Talkative Power

Pioneering work by AAU researchers 

led by Prof. Petar Popovski – Power 

Talk

Inferential Communication
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►Energy Systems

Temporal patterns in voltages

Spatial patterns in voltages

Spatio-temporal pattern exploration
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►Re-inventing Cyber-Physical Architecture
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►Spiking Neuron as Energy Source

• We model each source as a LIF neuron

• It can respond to both input and output disturbances

• Only the remote sources will respond to a given 

disturbance based on the voltage fluctuations and its 

spatial decay

• STDP to change the conductance of the modeled neuron 

and change power generation

• Multi-agent networked control, adaptation, protection, 

flexibility is possible with minimal energy consumption 

per inference
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►Spike Talk

• No communication – no exogeneous path arrival for 

attackers

• Sparsity of signals acts as a leverage

• Easy adaptation

• Online training
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►Performance Evaluation

Source: X Diao, Y Song, S Sahoo, Y Li, « Neuromorphic Event-

Driven Semantic Communication in Microgrids» IEEE Trans. Smart 
Grid, 2024.
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►Closing Remarks

Open Course on Neuromorphic Computing in Power Electronics (certification to be provided by IEEE PELS)

• 8 video lectures – computational neuroscience, coding schemes, power electronic integration

• Notes, exercises

• FAQs

• Accuracy and Versatility – Big Questions Going Forward

• Innovations in Neuromorphic Hardware

• Cost – Big Limitation

• From pJ of computation concerns to kW of energy loss – how will this neural implant be projected by 

energy stakeholders? 

Yubo Song Xiaoguang Diao

Prof. Caroline Uhler

Prof. Steven Low
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