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EXECUTIVE SUMMARY

This short report summarizes the ongoing activities of T1.2 in WHERE2 WP1 on the charac-
terization, i.e., measurement, modeling and estimation of non-stationarity and time varying
effects. This report is structured in two parts, a body part that provides a summary of the
reported activities organized topic-wise, and an appendix containing all related publications
and reports produced within WP1. The latter documents are meant to provide the readers
with more detailed information on the activities if needed or wanted.

In Section 2 first results on the non-stationarity of the radio channel are summarized for
scenarios with moving transmitter or receiver. A platform for measuring the time variant
channel response is introduced. This platform allows for a high reproducibility of measure-
ment locations and antenna orientations. Several conducted measurement campaigns made
use of this platform. Research results on the time variation of multipath components for
an outdoor-to-indoor environment are summarized. In the considered environment various
transmitters (outdoors) and a moving receiver in an office building are located on different
floors (heights). An algorithm for tracking multipath parameters is introduced for the esti-
mation of time variant parameters. The algorithm is based on a combination of the Space-
Alternating Generalized Expectation-maximization (SAGE) algorithm and the Kalman filter
(KF). Detailed information on the algorithm and the results can be found in Appendices A.1,
A.2 and A.3.

The research activities of non-stationarity due to human interaction are summarized in
Section 3. The focus is put on three main activities: 1. modeling of human interaction
in channel models, 2. movement models for human activity and 3. stochastic models for
antenna responses and rotation due to human activity.

1. A new stochastic channel model is proposed for modeling the human interaction in
channel models. The idea is to introduce time-variant components into a geometry-
based stochastic channel prediction (i.e. WINNER 2). The model formulation is
generic but it has been adjusted up to now, to static line-of-sight links within corporate
environments. A detailed description of first results can be found in Appendix A.4.

2. Movement models in communications and localization are typically statistical mod-
els and interactions with other objects, such as walls or other agents, are modeled
independently. In multi-link communication and localization the interaction between
walls and agents is important. A survey of available models, which include more real-
istic interactions between nodes and the environment, is currently conducted and first
findings are summarized.

3. The human interaction resulting in changed antenna responses and unknown termi-
nal orientation has been identified as crucial for localization with fingerprints. Thus
stochastic models, including the variation of the antenna response and terminal ori-
entation, are necessary to obtain more robust localization systems, e.g., using finger-
printing.

Together with the results from D1.3 on the statistical dependency of multi-link channels
and investigations with ray-tracing tools in D1.5 and D1.6, a description of a multi-link
channel model for localization will be prepared and continuously shared with the other work
packages in WHERE2.
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1 INTRODUCTION

In this deliverable the intermediate research results, conducted in WHERE2 WP1, for the
purpose of characterizing the non-stationarity of multi-link radio channels are presented.
The time variation of the radio channel plays an important role in both radio communication
and localization. The purpose of channel models for communications is the statistical evalu-
ation of the performance of wireless communication systems. In indoor measurement cam-
paigns for communication purposes, transmitter and receiver are typically moved by hand
in an “uncontrolled” fashion. This results in unknown transmitter and receiver positions and
as well unknown antenna orientations during the measurement. Human interaction is often
conducted with people moving “randomly” (often unnatural) in the room. These circum-
stances render the measurements un-reproducible. For channel models used to statistically
evaluate the performance of communication transceivers this is sufficient. In localization,
however, exact information regarding the transmitter and receiver location, the antenna ori-
entation and the human interaction is of crucial importance. Radio channel modeling in
WHERE 2 focuses additionally on multi-link channels. As such the time variation of the
channel needs to be determined and modeled for multiple links. Multi-link channel mea-
surements are often conducted sequentially, by assuming the environment to be static for the
measurement period. However, to conduct such measurements a high reproducibility of the
transmitter and receiver trajectories need to be ensured.

In the following the intermediate research results, conducted in WHERE2 WP1, for the
purpose of characterizing the non-stationary time variant effects for single- and multi-link
radio channels, are presented. This report is structured in two parts, a body part that provides
a summary of the reported activities organized topic-wise, and an appendix containing all
related publications and reports produced within WP1. The latter documents are meant to
provide the readers with more detailed information on the activities if needed or wanted.

Section 2: First results on the non-stationarity of the radio channel are presented. A plat-
form for measuring the time variant channel response that results when the transmitter
or the receiver is moving is introduced, which allows for a high reproducibility of mea-
surement locations and antenna orientations. An algorithm for tracking multipath pa-
rameters, based on a combination of the Space-Alternating Generalized Expectation-
maximization (SAGE) algorithm and the Kalman filter (KF), is used to estimate the
time-varying channel model parameters for localization. First results obtained in the
WHERE2 project on time variant parameters are presented.

Section 3: The research activities of non-stationarity due to human interaction are pre-
sented. A new stochastic channel model is proposed. The idea is to introduce time-
variant components into a geometry-based stochastic channel prediction (i.e. WIN-
NER 2). The model formulation is generic but has been adjusted up to now, to static
line-of-sight links within corporate environments. Movement models in communi-
cations and localization are typically statistical models and interactions with other
objects, such as walls or other agents, are modeled independently. In multi-link com-
munication and localization the interaction between walls and agents is important. A
survey of available models, which include more realistic interaction between nodes
and the environment, is currently conducted and first findings are summarized. Fur-
thermore the human interaction resulting in changed antenna responses and unknown
terminal orientation has been identified as crucial for localization with fingerprints.
Thus stochastic models, including the variation of the antenna response and termi-
nal orientation, are necessary to obtain more robust localization systems, e.g., using
fingerprinting.
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Section 4: Conclusions.

Appendix A: The appendix contains a collection of already/soon to be published articles or
reports from the WHERE2 project. This collection contains detailed information to
the various sections in the deliverable.
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2 NON-STATIONARY TIME VARIANT CHANNEL

Models of the radio channel are an essential tool for receiver development in terms of local-
ization in communication networks. Due to a dissimilar focus between communication and
positioning, requirements to channel models for these applications differ.

• For communications in mobile radio networks, multipath modeling is more used to
evaluate the Bit Error Rate (BER), and is considered as the most essential criterion for
algorithms evaluation, like channel estimation, coding/decoding, and synchronization.

• Localization using mobile radio networks focuses on investigating of the position er-
ror, which is directly related to the range error of individual links. Two different major
channel characteristics effect the range error. Firstly, the ranging based on the first de-
tectable wave is positively biased if the Geometrical Line-of-Sight (GLoS) path is
blocked. Generally this bias, between the geometrical distance from the transmitter to
the receiver and the propagation distance of the first detectable path is known as the
Non Line-of-Sight (NLoS) error [1]. Secondly due to multipath the correlator based
synchronizer which is generally used for range estimation is biased [2].

In realistic scenarios for location-tracking/navigation applications, the multipaths are time-
variant in delays, amplitudes, phases and incoming angles due to movements of transmitters,
receivers, and/or reflectors. This results into the requirement of using channel models ca-
pable to reproduce propagation paths with delays in sub-sample domain and second having
a smooth time evolution of the Channel-Impulse-Response (CIR) in the simulation process.
Therefore, propagation paths within the CIR should be modeled having a continuous delay
and a life-time or life-distance.

2.1 Measurement Platform for the Time-variant Wireless Channel

The absolute delay information of signal arrivals is essential in channel modeling for posi-
tioning applications [1]. Ranging based on the first detectable propagation path is positively
biased if the LoS is blocked. This bias, i.e. the difference between the geometrical distance
from the transmitter to the receiver and the propagation distance of the first detectable path
is known as the Non Line-of-Sight (NLoS) bias. In order to obtain the necessary statistics a
well located moving platform is needed in the measurement process. We propose a low-cost
mobile measurement platform jointly fulfilling the requirements given by the positioning
application. Accurate positioning of transmitter and receiver antennas is possible. The pa-
rameter space of the estimated CIR can be increased by the azimuth of arrival (AoA) due to
the movement of the platform. Therefore, for measurements with a single receive or transmit
antenna, the one dimensional AoA can be estimated.

A single antenna can be mounted on the experimental mobile platform realized by a
model railway running on a cogwheel to prevent wheel slipping. A rotary encoder mounted
on the motor allows determining the number of impulses per meter. Taking multiple mea-
surements over accurately measured distances allows for determining the mean error µ =
−2.4 µm/m with standard deviation σ = 0.23 mm/m of the platform. By storing the num-
ber of rotary encoder impulses synchronously with each measured CIR snapshot, since the
start of the train movement, a traveled distance for each CIR snapshot can be obtained in
a straightforward manner. This platform can be used either at transmitter or receiver side.
A more detailed explanation of the platform can be found in the measurement report in the
appendix of the WHERE2 deliverable D1.3. The measurement jointly done by DLR and
AAU described in WHERE2 deliverable D1.3 and some of the measurements used in this
deliverable were performed with this platform.
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In general, a measurement requiring a time-variant transceiver location information can
gain benefits from the proposed platform with low-cost. Moreover, it is worth to mention
that due to the accuracy of the platform, it is possible to generate a virtual antenna array
based on the predicted traveled distance. Some measurement results based on this platform
are presented in this deliverable in Section A.2 and Section A.3 .

2.2 Estimation of Time-variant Channel Parameters

Estimation of time-variant multipath parameters from channel measurement data is usually
based on an underlying snapshot based estimator like the Space-Alternating Generalized
Expectation-maximization (SAGE) algorithm [4] or RIMAX [5] and an attached path detec-
tion scheme as in [6]. Snapshot based algorithms do not consider the previous or consequent
time information and are therefore non-optimal. With the fact that the multipath parameters
vary slowly in time, some alternative algorithms have been proposed by utilizing a variable
state dimension Extended Kalman Filter (EKF) to track propagation path parameters [7].
However, applying the EKF inherently means using a first order polynomial approximation,
which is inadequate in scenarios where closed space multipath components are present. In
such a situation the filter might lose its lock on tracking the global a-posteriori maximum and
tracks local maxima or diverges completely. In Appendices A.1 and A.2 we propose a SAGE
based Kalman Filter (KF) method to estimate and track the multipath components based on
measurement data. Parallel Kalman filters are used to track the multipath components for
a different number of paths. Instead of considering the measurement CIR directly in the
Kalman filter as in [7], the estimator outcomes from SAGE are utilized. An information
criterion based selection metric is used to select the most correct number of paths among the
parallel Kalman filters. Some estimation results based on outdoor to indoor measurements
are presented in Appendix A.2 in terms of path life, NLoS bias and its spatial characteris-
tics. These estimated parameters can be used for further channel model parametrization or
directly for localization algorithm testing. For instance, the NLoS bias obtained in the spec-
ified scenario could be modeled by an exponential distribution. It impacts the positioning
algorithm performance due to different NLoS bias statistic assumptions. Meanwhile, the
statistics of path life seem to follow a log-normal distribution. In order to check the time-
variant characteristics in cooperative scenarios, it is worth to modify and apply the SAGE
based KF algorithm to the channel data, measured jointly by DLR and AAU.
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3 MODELING OF HUMAN MOBILITY

The human mobility plays an important role on the time variation of the radio channel. Ra-
dio channel models often consider only movement of transmitter or receiver entities. Thus
the time variation of the radio channel is modeled based on this movement. For static trans-
mitters and receivers the activities of humans, present in the environment, lead to strong
variations in the radio channel as well. Section 3.1 proposes a model to deal with the effects
of time-variation due to human mobility.

Typically statistical movement models are used in communication and localization. In
these models interaction with other objects, such as walls or other agents, is modeled inde-
pendently. More realistic movement models, considered in Section 3.2, include the interac-
tion between walls and agents. This is important in models for multi-link communication
and localization.

Furthermore the effect of human activity on the transmitter or receiver itself, for instance
the impact on the antenna response or orientation of the antenna, plays a vital role in local-
ization with fingerprints, as described in Section 3.3.

3.1 Introduction of a Time-variant Component Related to Human Activity Into
WINNER 2 Model

It was proven that the human activity, i.e. location and movement of persons, has signifi-
cant impacts on the wireless channel properties in indoor environments. Thus, these impacts
need to be considered in realistic positioning approach. In Appendix A.4, we propose a new
stochastic channel model simulating indoor time-variant channel properties related to hu-
man activity. The approach basically consists in introducing a time-variant contribution into
a geometry-based stochastic channel prediction (WINNER 2), taking into account the path
geometries and the random distribution of human bodies. The proposed solution is compat-
ible with any kind of human activity properties, in terms of density or mobility. However it
has been adjusted up to now for only a small number of human obstructions.

This time-variant channel model currently predicts multi-path channel properties for a
static SISO radio link that undergoes variations due to human body obstructions. Using the
WINNER 2 model, the exact trajectory of indirect paths (i.e. paths that undergo at least
one interaction with the environment) is unknown. Then, for the first snapshot, simulation
of obstruction of each indirect path by the person is determined randomly by an obstruction
probability function. For the following snapshots, each probability that a person obstructs an
indirect path is obtained by probability function depending on the previous obstruction state
and state duration. The LOS direct path is distinguishable as its trajectory is fully known.
Then the simulation of its “obstruction state”, and even the prediction of the obstruction loss,
may be done in a deterministic way. A new method was developed, inspired from [9] with
some enhancements that permit to deal with a larger number of person distribution cases
(especially when nobody obstructs the direct path) and to determine a Doppler shift. This
method is still under investigation as the algorithm becomes more complex when several
persons are in the vicinity of the LOS direct path. However, first simulation results are very
close to observations and simulations reported in the literature.

As previously introduced, parameterization of this stochastic time-variant channel model
relies on an obstruction probability function and an obstruction transition probability func-
tion, which have to be as close as possible to reality. We are currently studying the possibility
to get these probability functions for a wide range of configurations from simulations, based
on the realistic prediction of the channel multi-paths provided by the ray-tracing technique.
Besides, the analysis of transition probabilities is not achieved, in the sense that we did not
evaluate the duration of the obstruction state as a function of all geometrical parameters. The
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proposed model should also be adapted in order to simulate the impact of groups of persons
in busy areas, e.g. dense crowd effects in a shopping mall. Current modeling of shadowing
loss and Doppler shift are notably expected to be not suitable. A measurement campaign is
being specified in order to characterize simple radio link with controlled human activity.

3.2 Agent Based Mobility Models for Cooperative Communication and Localiza-
tion in Indoor Scenarios

Models for terminal mobility are at interest for localization and communication in several
ways at various layers of radio communication or localization systems. It is particularly
relevant to design and simulation of multi-link systems, where the mobility imposes depen-
dencies in between different communication links. Therefore mobility models have potential
applications on both communication and localization.

Mobility models can be constructed assuming the movements of different nodes to be
independent [10]. This approach may be feasible in situations where a low node density is
considered. However, to realistically model systems in environments with high node den-
sity, the inter-node dependencies must be accounted for. Such scenarios include pedestrian
mobility in shopping malls, train stations, airports, hospitals, etc. So-called agent based
mobility models are used in other engineering fields such as fire evacuation simulation or
pedestrian modeling for traffic evaluation [11, 12]. These models rely on the concept of
individual agents (humans) which during their movement interact with other agents or e.g.
walls by direct (contact) forces or indirectly due to social forces [11, 13]. Inspired by these
approaches, an agent could in the setting of localization and communication represent a net-
work node. One virtue of the agent based approach for indoor mobility modeling is that it
inherently accounts for the constraints of the trajectory imposed by the building geometry.

There are several open issues to consider regarding agent based mobility models for
indoor localization and communications. The available models are originally constructed for
Monte Carlo simulation of pedestrian flows and are thus not directly applicable for modeling
of node mobility. For localization, in particular, the models should be modified to allow for
a solution of the inverse problem, e.g. to infer, based on noisy range estimates, on the
trajectory of an agent using statistical estimation techniques. It is also an open issue to
clarify which effects should be considered in agent based mobility models to reliably model
node mobility in indoor localization and communication.

3.3 Impact of the Antenna Response and Terminal Orientation on Fingerprints

In fingerprinting, the position is found by comparing an observed fingerprint with finger-
prints in a prerecorded database. The fingerprints can consist of measurements of parameters
of the received signal at a specified position. Obviously, the precision of the method depends
on the precision of the database. In general, one cannot assume, that the database is recorded
with exactly the same equipment as the equipment used for the positioning. Thus, to evalu-
ate the performance of such positioning algorithms it is of great importance to evaluate the
effect of such uncertainties inherent in the fingerprints in the database.

The observed signal, and thus the matching of fingerprints, are affected by the antenna
systems used to record the database and to record new fingerprints at the terminal to be local-
ized. As a result, the observed signal may differ from the fingerprints in the database, even
when the terminal is located at exactly the same position as used in the database. Moreover,
this difference is affected by an unknown antenna response due to user operation, along with
an unknown antenna orientation due to user movement.

To study the effect of the unknown and varying antenna response, along with the un-
known, and possibly time-varying antenna orientation, it is necessary to propose stochastic
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models including these effects. Thus mobility models accounting for the terminal orientation
and stochastic models for the terminal antennas are needed. The statement and validation
of such models are currently open issues. Once such models are available, the effect on
a specific channel feature can be evaluated analytically or via computer simulations. The
availability of such models will also improve the realism of Monte Carlo simulations of
cooperative localization schemes, as effects due to the unknown antenna response and ori-
entation can be taken into account.
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4 CONCLUSIONS

This intermediate deliverable summarizes the ongoing activities of T1.2 in WHERE2 WP1
on the characterization, i.e., measurement, modeling and estimation of non-stationarity and
time varying effects.

Research results on the time variation of multipath components for an outdoor-to-indoor
environment were presented. The environment considered various transmitter positions and
a moving receiver on different heights (floors) of an office building. Current investigations
on the time variability due to human mobility complete this research topic. Human mobility
creates, for instance due to blockage of multipath components, strong variations in the chan-
nel characteristics. A method has been proposed to introduce indoor time-variant channel
properties related to human activity into a geometry-based stochastic channel model (i.e.
WINNER2). Research on more realistic agent based movement models, as for instance for
crowds, has been started. These movement models will become more important in radio
channel modeling for localization and can be further utilized in positioning and tracking
algorithms. The impact of the human mobility on fingerprinting, due to changed antenna
responses and random antenna orientations, is a possible topic of future investigations. A
stochastic model for the human activity, including these effects on the terminal, could im-
prove the robustness of fingerprinting.

Together with the results from D1.3 on the statistical dependency of multi-link channels
and investigations with ray-tracing tools in D1.5 and D1.6, a description of a multi-link
channel model for localization will be prepared and continuously shared with the other work
packages in WHERE2.
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A APPENDIX

The appendix contains a collection of articles and reports with detailed information to the
summaries of the different sections in this deliverable, which are results of the WHERE2
project. Table 1 lists titles of the following sections in the appendix.

Table 1: Overview of the collection of papers and reports.

Appendix Title Page number

A.1 Evaluation of Time-Variant Multipath Characteristics for
Localization Channel Model in Terrestrial Mobile Radio

14

A.2 Estimation and Modelling of NLoS Time-Variant Multi-
path for Localization Channel Model in Mobile Radios

23

A.3 Outdoor to Indoor Channel Characteristics on two Differ-
ent Floors

30

A.4 Introduction of a Time-variant Component Related to Hu-
man Activity Into WINNER 2 Model

40
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A.1 Evaluation of Time-Variant Multipath Characteristics for Localization Chan-
nel Model in Terrestrial Mobile Radio

W. Wang and T. Jost. Evaluation of time-variant multipath characteristics for localization
channel model in terrestrial mobile radio. In COST Action IC0802, Propagation tools and
data for integrated Telecommunication, Navigation and Earth Observation systems. MCM
3, Athens, Greece, April 2010.
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INTRODUCTION 
 
Positioning by using Global Navigation Satellite Systems (GNSSs), such as the Global Positioning System (GPS) 
operating at L-band, promises very accurate location information, when a Line-of-Sight (LoS) condition to the satellite 
is present. However, positioning in urban canyons, where LoS might be absent, GNSSs do not provide accurate 
positions. For some indoor areas, like rooms with metallised windows, satellite signals can not be tracked by GPS 
receivers because of low signal power. Time Based (TB) localization, utilizing available ground communication 
networks [1][2], are investigated as a complementation to GNSS with the advantage of higher power level in 
comparison. By suitable Hybrid Data Fusion (HDF) algorithms to combine measures obtained from GNSS and 
terrestrial networks, the accuracy of the estimated position can be improved. 
 
As an essential tool for receiver development in terms of TB localization in communication networks, wireless channel 
modelling has a growing significance. Due to a dissimilar focus between communications and positioning, channel 
models for both applications are different. 

• For communications in mobile radio networks, multipath modelling is more used to evaluate the Bit Error Rate 
(BER) [3], and is considered as the most essential part for algorithms evaluation, like the channel estimation, 
coding/decoding, and synchronization. 

• TB positioning using mobile radio networks focuses on investigating of the position error, which is directly 
related to the range error of individual links. Two different major channel characteristics affect the range error. 
Firstly, the ranging based on the first detectable wave is positively biased if the Geometrical Line-of-Sight 
(GLoS) path is blocked. Generally this bias, between the geometrical distance from the transmitter to the 
receiver and the propagation distance of the first detectable path is known as the Non Line-of-Sight (NLoS) 
error [4][5]. Secondly due to multipath the correlator based synchronizer which is generally used for range 
estimation is biased positively or negatively by the superposition of paths [2]. Besides, at least 3 transmitters 
with known positions are required to be linked to receiver for positioning. It is also important to evaluate the 
inter-link correlations of NLoS error for channel modelling.  

In realistic scenarios for location-tracking/navigation applications, the multipath components are time-variant in delays, 
amplitudes, phases and incoming angles due to movements of transmitters, receivers, and/or reflectors. Therefore, it is 
essential to model the time evolution for each path as well as its life-time. Estimation of time-variant multipath 
parameters from channel measurement data is usually based on an underlying snapshot based estimator like the Space-
Alternating Generalized Expectation-maximization (SAGE) algorithm [6] or RIMAX [7] and an attached path detection 
scheme as in [8]. Snapshot based algorithms do not consider the previous or consequent channel snapshot information 
and are therefore non-optimal. With the fact that the multipath parameters vary slowly in time, some alternative 
algorithms have been proposed by utilizing a variable state dimension Extended Kalman Filter (EKF) to track 
propagation paths parameters [9]. However, applying the EKF inherently means using a first order polynomial 
approximation, which is inadequate in scenarios where closed space multipath is present. In such a situation the filter 
might loose its lock on tracking the global a-posteriori maximum and track local maxima or disconverges completely. 
In this paper, we utilize a SAGE based Kalman Filter (KF) method to estimate and track the multipath based on a 
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dynamic Single Input Single Output (SISO) measurement. 1-D Angle of Arrival (AoA) information is used by utilizing 
a Virtual Antenna Array (VAA) in post-processing. 
 
 
CHANNEL MEASUREMENT CAMPAIGN 
 
The measurement was accomplished in the SISO manner with a MEDAV RUSK broadband channel sounder at 
premises of the German Aerospace Center (DLR). A spread signal --- in particular an Orthogonal Frequency Division 
Multiplexing (OFDM) signal --- has been sent by the transmitter. The parameter setup of the channel sounder is 
summarized in Error! Not a valid bookmark self-reference.. The measured i-th snapshot of the Channel Impulse 
Response (CIR), h(i,j), j=0,…,M-1 consists of M = 1537 samples at delays j=jΔ, with Δ=1/B, with a bandwidth of 
B=120 MHz The channel sounder records one CIR every Tg = 1.024 ms providing a measurement rate of 976 CIRs per 
second (CIRs/s). 

Table 1: Channel sounder settings for the measurement 

RF Center Frequency 5.2 GHz
Bandwidth B= 120 MHz
Transmitted Power 5W
Signal Period 12.8 μs
Measurement Time Grid 1.024 ms
Antennas Omni-directional (V-poliraized)
Receiver Speed v ≈ 0.15 m/s

 
The measurement was performed on the second floor (~9 m above ground) of the building characterized as a standard 
three story office building of concrete with non-metallic window glass as described in [10]. In order to perform a 
dynamic measurement, the receiving antenna was mounted on a model train running along two tracks R1 and R2 
planted on the ground with a speed of v ≈ 0.15 m/s, where no LoS is present as displayed in Figure 1. The transmitter 
was positioned above the points Tx-1 and Tx-2 as shown in Figure 1 in heights of H1=12 m and H2=18 m. Hence, 
overall four different transmitter positions were achieved.  
 
The position of the transmitter was precisely determined using a Leica tachymeter giving a nominal accuracy in the sub-
cm domain. To get a similar accuracy for the receiver antenna mounted on the model train, the train is equipped with a 
rotary encoder giving 500 impulses per motor turn as described in [10]. To prevent wheel slipping the model train runs 
by a cogwheel. Together with each CIR snapshot measurement h(i,j) the number of impulses given by the rotary 
encoder, since the model train started to move, is saved, which results in a precise travelled distance measure for each 
captured impulse response snapshot. To validate the accuracy of the distance measurement by rotary encoder, k=1,…,K, 
with K=21 train runs have been performed. The K distance errors between estimated travelled distances dk

est and the real 
distances dk have a mean value of 0.16 mm/m and a standard deviation of 0.14 mm/m. As the time of arrival is the most 
important value for navigation receivers and therefore the most important part in this measurement campaign, receiver 
and transmitter were perfectly synchronized by cable connection using one common rubidium atomic clock serving as 
frequency normal. This setup prevents time drifts which usually occur in channel sounder measurements using 
separated clocks. 

 

Figure 1: Building layout with track R1 and R2. Tx-1 and Tx-2 indicate azimuth positions of the transmtiter. All 
rooms are lcoated on the high-level of the building, which is ~ 9 m above the ground. 

Generally, estimation of AoA information with an antenna array is performed by taking incoming phase differences of 
different antenna elements into account. As described in above, the measurement was performed in the SISO manner 
with a single antenna which does not provide spatial phase difference information. However, it is possible to extract a 
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linear antenna array from the measurement due to the utilization of the rotary encoder. The distance error per meter 
estimated through the odometer measurement is 0.16 mm/m in average, which is small enough to be ignored. As a 
result, it is possible to form a uniform linear VAA with element-spacing d as shown in Figure 2. In this paper, the train 
movement direction is defined as the travelling direction, meaning that for the receiver antenna positioned at the end of 
the track a ray coming from the start point of the track has an AoA of 0°. The receiver was running from the left to the 
right for tracks R1 and R2 as depicted in Figure 1.  A VAA snapshot is defined as 

( ) [ ( ), , ( ( 1) )]T
Ei h i h i N d= + - ⋅h  , where ( )  stands for vector or matrix transpose,  is the number of 

elements, and 

T EN

( )h i  stands for the measured CIR at time  as a column vector. For each VAA snapshot, the Fourier 

transform of CIRs  for each row is denoted as . More details on the VAA and SAGE processing can be 

found in 

i
( )i( )ih H

[4]. 
 

      

Figure 2: VAA generation from the measurement 

 
 
SAGE BASED KF METHOD FOR MULTIPATH ESTIMATION AND TRACKING 
  
The purpose of the method described here, is to track the parameter vector 

, for each path , with . The elements of 

 are the complex amplitude , its AoA , its delay  as well as the rates , , and 

. The state vector  of the KF describes the states for all paths as . 

Instead of taking directly  as measurement into the tracking filter as done in 

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]T
l l l l l l li i v i i i v i ia t a t= D Dθ

( )l iθ ( )l ia ( )lv i

( )l itD ( )iQ
( )iH

D i

T

l

)

)

1, , ( )l N= 

laD
( ) [ ( )i iQ =

(l it

ˆ (i-Q

( )i

,
( )lv iD

1 (, ( )T T
N iθ θ ) ]i

[9], a maximum search converging to 

the next maximum of the likelihood function around the prediction  is used. This yields a faster convergence of 

the tracking filter over time i  as well as a more robust behavior. 
 

For the maximum likelihood search, the SAGE algorithm [6] is favored denoted by ˆ( ), ( )S i i-é ùQê úë ûH  starting at the 

predicted value . The Kalman filter as the outer estimator is defined by  ˆ ( )i-Q

                            

( )

ˆ ˆ( ) ( 1)

ˆ ˆ( ) ( 1)

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ), ( ) ( )
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i i
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i i

-

-

- -
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-
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= ⋅ - ⋅ +
é ù= ⋅G ⋅ G⋅ ⋅G +ê úë û

i-é ùé ùQ =Q + ⋅ Q -G⋅Qê úê úë ûë û
= - ⋅G ⋅

F

P F P F W

K P P R

K H

P I K P

 (1) 

where  represents a simple mapping matrix between the state vector  and the values calculated in the SAGE 

algorithm. 

G ˆ ( )i-Q
F  represents the state transition matrix in the system equation, W  the covariance of the process noise,  

the Kalman gain matrix and  the covariance of the measurement noise. 
K

R
 
Figure 3 displays the overall routine including the model order selection part. From the last time step  the model 

order ,  and the tracking results  and  are used.  represents an additive 

factor to the model order selection criteria based on each snapshot as shown in 

1i-
( 1N i- ) ( 1iD - ) ) )ˆ ( 1iQ - ˆ ( 1i-P ( )iD

Figure 3. For model order selection the 
Minimum Description Length (MDL) [11], using the sample covariance matrix for decreasing the computational 
complexity, is utilised.  
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After calculating the new model order at time i , , several tracking filters (denoted in ˆ ( )N i Figure 3 only as KALMAN) 

are running in parallel each with a different model order around the estimated . ˆ ( )N i
• If the model order set to a tracking filter is larger than ( 1)N i- , new paths are initialised by calculating the 

residual sequence 

               (2) ( ) ( ) (ˆ ˆ| ( 1) | ( 1), ( 1)i i i i i N iQ - = - Q - -Res H H )

 

Figure 3: Flow graph of the new algorithm 

and using the initialisation step in [6], where  is the approximation of       

using the model order  with the parameter vector . 

( ˆ| ( 1), ( 1)i i N iQ - -H

ˆ ( 1)iQ -

)
)

( )iH

( 1N i-
• If the model order set to a tracking filter is smaller than ( 1)N i- , one or more existing paths are selected 

sequentially to be killed if its drop in ˆ ( )iQ  increases least the approximation quality among all paths. The 

approximation quality ˆ( ( ))q iQ  defined as 

                                                    
( )
( )

2

2

ˆ| ( 1)
ˆ( ( 1)) 10log10

i i
q i

i

æ ö÷ç Q - ÷ç ÷ç ÷Q - = ç ÷ç ÷ç ÷ç ÷÷çè ø

Res

H   
 (3) 

describes the energy ratio between the residual  and the measurement matrix . In 

other words if  is minimal, the residual energy is small and therefore the estimated  matches the 

true values as good as possible. 

( ˆ| ( 1)i iQ -Res ) ( )iH

ˆ( ( ))q iQ ˆ ( )iQ

                       (4) 
After all tracking filters calculated the update step, a decision among all results is performed as shown in Figure 3 as 
DECISON block. Inside the decision block a model order change compared to last time step and higher model orders 
are penalised. This is needed as otherwise model order changes would occur too frequently with the result of paths with 
low power and a small life-time. The penalization of higher model orders is of the same principle as in standard model 
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order selection criterion [11] and is needed as the estimation problem is nested and overfitting might occur, such that 
paths would track noise only.  
 

The decision process proposed here is based on the value ( )xq  calculated by (4) where ordp  as the penalty factor for 

higher model order and chp  as the penalty value for a model order change.  is calculated according to 

(3) using the estimate  with model order . The new model order at time step i ,  is selected as   

ˆ( ( ) |q iQ ( ))N i

(N iˆ ( )iQ ( )N i )

                                                      (3) ( ) min ( )
x

N i x= q

with . ( ) ( ) { ( )}i N i MDL iD = - H
 
 
PRELIMINARY RESULTS ON TIME-VARIANT MULTIPATH CHARACTERISTICS 
 
The parameters of the proposed algorithm, especially the penalty factors in (4) have to be carefully chosen depending 
on received signal strength in order to achieve good performance. In this paper, the factors are set to 0.15 and 0.1 for 

ordp  and chp  respectively. Figure 4 visualises the results for a section of 1 m on the model railway track R2 while the 

transmitter was positioned above Tx-1 in height H2. To verify the estimation algorithm, the approximation quality 

 defined in last section is analysed.  is the residual to measured CIR energy ratio. A smaller value for 

 implies a better estimation performance, since it stands for a small residual power. For instance, a quality of -

10 dB means 10% power is left as residual after estimation. However, it is worth to note that this quality is highly 
dependent on the received signal strength. For a low Signal-Noise-Ratio (SNR) case, the signal part in the measured 

CIR is small, therefore  will be higher than for a high SNR scenario. 

ˆ( (q Q
ˆ( (q Q

)i

)i

)

)

ˆ( ( ))q iQ

ˆ( ( ))q iQ

 

Figure 4: Example of estimated CIR within 1 m travelled distance. The light grey line shows the true GLoS 
distance between the transmitter and the receiver.  is the speed of light. c

The left plot of Figure 5 shows the approximation quality for one track measurement where the transmitter is located 
above Tx-2 in a height of H1 while the model train was running on track R1. The quality is decreasing as the receiving 
antenna is travelling forward on R1. This can be explained by the received power shown in the right plot of Figure 5, 
which is proportional to the SNR, assuming a constant noise floor over the whole measurement. As the received signal 

power increases while the model train travels further,  decreases. ˆ( ( ))q iQ
 
For time variant channels, an important parameter is the number of co-existing multipath components. As long as the 
receiver travels, new paths will appear and other paths will vanish. The estimated Probability Density Function (PDF) 
of co-existing number of paths is given by the left plot of Figure 6. A Weibull distribution shown in red is found to fit 
best the distribution for the number of paths. During movement of the receiving antenna, some paths are dropped due to 
low power and some new paths are added due to the new multipath environment. The variation in the number of paths 
is important which implies how often a path vanishes or appears. The right plot of Figure 6 shows the probability 
density function of number of paths changed between the measured neighbouring snapshots with 1 mm spatial spacing. 
The negative value represents the number of paths dropped and the positive value represents the number of paths added. 
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With a probability of 81.1%, as the receiver moves 1 mm the number of paths is not changed. A path vanishes with a 
probability of 9.1%, whereas a new path is detected with a probability of 9%.  

 

 

Figure 5: Left plot: approximation quality  while the receiving antenna is running on track R1 with the 

transmitter located above Tx-2 in height H1. Right plot: the received signal power while the receiving antenna is 
running on track R1 with the transmitter located above Tx-2 in height H1. 

ˆ( ( ))q iQ

 

Figure 6: Left plot: histogram of the number of paths with a Weibull distribution fit as red curve. Right plot: 
Probability density function for a change in the number of paths between two adjacent snapshots measured in a 
spatial distance of 1 mm. The negative value represents a decrement of paths and positive value an increment of 

paths. 

As described in the introduction section, the NLoS error is a key factor in the channel modelling for localization 
applications, which is usually not considered in communication channel models. Defined in [4] and [5], the NLoS error 

 is determined by  ( )NLoS ie

                                                      (4) 
where ( )FPToA i  is the estimated delay of the first incoming path,  is the GLoS distance between the 

transmitter and receiver antenna, and  denotes the speed of light. Due to estimation errors and irresolvable paths, the 

estimated NLoS error might be negative. For the further analysis negative values for  have been discarded. 

( )GLoSToA i

c

( )NLoS ie
 
The left plot of Figure 7 shows the PDF of estimated NLoS errors with an exponential distribution fit. Consistent with 
the findings based on the fixed point measurements on the same floor described in [5], the NLoS error can be modelled 
as an exponential distribution.  
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Due to the requirement on at least three transmitters for positioning, it is important to evaluate the link level NLoS error 

 correlation characteristics. We denote the NLoS error vector with transmitter position 

 for a certain track 

( )NLoS ie
1id dÎ{ }: ( , 1), 2 : ( , 2), 3 : ( , 1), 4 : ( , 2),Tx-1 Tx-1 Tx-2 Tx-2H d H d H d H { }1, 2k R Rg Î  

as ( ) ( ) ( ) ( ), 1 , 2 , , ( , )i NLoS NLoS NLoS id g e e e géÁ = ë  Len dùû  where ( ) ( , )d g  represents the NLoS error when 

transmitter is located at  and receiver is running on track , and d g Len

, 4}

 is the number of measured snapshots. The 

correlation coefficients , i , with i j , is calculated by ( , , )i jCor d d g j¹ , {1Î , 2,3

                                                    
( ) ( )( )

( ) ( )( ) ( ) ( )( )

, , ,

, , , , , ,

( , , )
i j

i i j j

d d

i j

d d d d

C
Cor d d

C C

g g

g g g g

g
Á Á

Á Á Á Á

=
⋅

 (3) 

where 
( ) ( )( ), , ,i jd d

C
g gÁ Á

 is the cross-covariance of NLoS errors ( ),id gÁ  and , and  

represents the auto-covariance. The corresponding correlation coefficients are listed in 

( ,jd gÁ ) ( ) ( )( ), , ,i id d
C g gÁ Á

Table 2 for the scenarios where 
the transmitter is located at different horizontal positions. It can be seen that the NLoS errors of different links have no 
correlation in general. In other words, the NLoS errors are uncorrelated to each other. In mobile radio networks, the 
links to BSs from different cells would therefore result in uncorrelated NLoS errors. For channel modelling, this implies 
the fact that NLoS errors for different links can be generated as an independent and identically-distributed process. 
 

To evaluate the coherence characteristics of the NLoS error, the spatial correlation of  for different transmitter 

positions and receiver tracks is investigated which is calculated as the covariance function. The result is shown in the 
right plot of 

( )NLoS ie

Figure 7 where l  is the wavelength of transmitter wave. Considering a correlation level of 0.5, it can be 
seen that the NLoS error when receiver was running on track R1 in corridor has longer correlated distance in spatial 
compared to the NLoS errors when receiver was running on track R2 in wide area room. For former case, the correlated 
distance is up to 40 l , whereas for the latter case the correlated distance is up to 4 . l

 

 

Figure 7: Left plot: Histogram of the NLoS error with an exponential fit as red curve. Right plot: the spatial 
correlation characteristics of NLoS error for different transmitter positions and receiver tracks. 

Table 2: Inter-Link Correlation coefficients of NLoS Error 

g   
R1 R2 

1 3( , , )Cor d d g  -0.4335 0.0056 

1 4( , , )Cor d d g  -0.2195 0.0762 

2 3( , , )Cor d d g  0.1661 0.1233 

2 4( , , )Cor d d g  0.1896 0.0510 

 
 



TITLE: EVALUATION OF TIME-VARIANT MULTIPATH CHARACTERISTICS FOR LOCALIZATION 
CHANNEL MODEL IN MOBILE RADIOS 

AUTHOR: WEI WANG AND THOMAS JOST   

 8/8 COST IC0802 

 
 
CONCLUSIONS 
 
In order to model the time variant multipath components for location/navigation applications, we proposed a new SAGE 
based Kalman filter to effectively estimate and track the parameters of time variant paths. Based on an outdoor to 
indoor broadband wireless channel measurement campaign, the time-variant channel characteristics are estimated and 
modelled. As one important parameter for positioning applications, the NLoS error is demonstrated to be exponential 
distributed, and inter-link NLoS errors can be generated as an independent and identically-distributed process. It has 
also been shown that the spatial correlation distance of NLoS error in corridor is generally longer than that in wide area 
room. The number of multipaths is modelled by a Weibull distribution. For most of the time, the number of co-existing 
paths does not change when the receiving antenna is moved by 1mm. With a probability of 18.1% the number of paths 
is changed by 1.  
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Abstract—Time Based (TB) localization in terrestrial commu-
nications mobile radio as a complementation to global navi-
gation satellite systems has gained recently plenty of interests.
As an essential tool to develop suitable algorithms for joint
communications and localizations in mobile radio networks,
the wireless channel model has a growing significance. For
both communications and localizations, the time evolution of
multipath components is essential especially for tracking ap-
plications. Moreover, the Non Line-of-Sight (NLoS) error due
to an undetectable line-of-sight path introduces an additional
range error for TB localizations, which needs to be taken into
account in the channel model. In this paper we present a space-
alternating generalized expectation-maximization based Kalman
filter method to efficiently estimate and track the time-variant
multipath components based on a channel measurement cam-
paign. The modeling of time-variant multipath characteristics,
in terms of NLoS error, variance of path number, and the life
span, are presented in this paper as well.

I. INTRODUCTION

Positioning by using Global Navigation Satellite Systems
(GNSSs), such as the Global Positioning System (GPS) oper-
ating at L-band, promises very accurate location information,
when a Line-of-Sight (LoS) condition to the satellite is present.
However, positioning in urban canyons, where LoS might be
absent, GNSSs do not provide accurate positions. For some
indoor areas, like rooms with metallized windows, satellite
signals can not be tracked by GPS receivers because of low
signal power. Time Based (TB) localization, utilizing available
ground communication networks [1] [2], are investigated as a
complementation to GNSS with the advantage of higher signal
power level in comparison. By suitable Hybrid Data Fusion
(HDF) algorithms to combine measures obtained from GNSS
and terrestrial networks, the accuracy of the estimated position
can be improved.

As an essential tool for receiver development in terms of
TB localization in communication networks, wireless channel
modelling has a growing significance. Due to a dissimilar fo-
cus between communications and positioning, channel models
for both applications are different.

• For communications in mobile radio networks, multipath
modelling is more used to evaluate the Bit Error Rate
(BER) [3], and is considered as the most essential cri-
terion for algorithms evaluation, like channel estimation,
coding/decoding, and synchronization.

• TB positioning using mobile radio networks focuses
on investigating of the position error, which is directly
related to the range error of individual links. Two differ-
ent major channel characteristics effect the range error.
Firstly, the ranging based on the first detectable wave is
positively biased if the Geometrical Line-of-Sight (GLoS)
path is blocked. Generally this bias, between the geomet-
rical distance from the transmitter to the receiver and the
propagation distance of the first detectable path is known
as the Non Line-of-Sight (NLoS) error [4] [5]. Secondly
due to multipath the correlator based synchronizer which
is generally used for range estimation is biased positively
or negatively by the superposition of paths [2].

In realistic scenarios for location-tracking/navigation applica-
tions, the multipaths are time-variant in delays, amplitudes,
phases and incoming angles due to movements of transmitters,
receivers, and/or reflectors. Therefore, it is essential to model
the time evolution for each path, e.g., its life-time. Estimation
of time-variant multipath parameters from channel measure-
ment data is usually based on an underlying snapshot based
estimator like the Space-Alternating Generalized Expectation-
maximization (SAGE) algorithm [6] or RIMAX [7] and an
attached path detection scheme as in [8]. Snapshot based
algorithms do not consider the previous or consequent time
information and are therefore non-optimal. With the fact that
the multipath parameters vary slowly in time, some alternative
algorithms have been proposed by utilizing a variable state
dimension Extended Kalman Filter (EKF) to track propagation
paths parameters [9]. However, applying the EKF inherently
means using a first order polynomial approximation, which
is inadequate in scenarios where closed space multipath is
present. In such a situation the filter might loose its lock
on tracking the global a-posteriori maximum and track local
maxima or disconverges completely. Besides, [10] applied a
particle filter algorithm to overcome the problem of the non-
linear measurement model with the drawback of an increased
computational complexity. For practical application of the
algorithm, one particle filter per path is proposed, which limits
the usability of the algorithm to scenarios, where paths are
very distinct and independent in their features and influences
on the measurement data.



Fig. 1. Building layout with track R1 and R2. Tx-1 and Tx-2 indicate
azimuth positions of the transmitter. All rooms are located on the high-level
of the building, which is ≈ 9 m above the ground.

In this paper, we utilize a SAGE based Kalman Filter (KF)
method to estimate and track the multipath based on a dynamic
Single Input Single Output (SISO) measurement. 1-D Angle
of Arrival (AoA) information is used by utilizing a Virtual
Antenna Array (VAA) in post-processing.

In Section II, the setup of the channel measurement cam-
paign is briefly addressed. Thereafter, the SAGE based KF
method is presented in Section III. In Section IV the estimated
results of the proposed methods and the modeling of multipath
components are presented. Finally Section V concludes this
paper.

II. CHANNEL MEASUREMENT CAMPAIGN

A. Measurement Setup and Environments

The measurement was accomplished in the SISO manner
with a MEDAV RUSK broadband channel sounder at premises
of the German Aerospace Center (DLR). A spread signal —
in particular an Orthogonal Frequency Division Multiplexing
(OFDM) signal — has been sent by the transmitter. The pa-
rameter setup of the channel sounder is summarized in Table I.
The measured i-th snapshot of the Channel Impulse Response

TABLE I
CHANNEL SOUNDER SETTINGS FOR THE MEASUREMENT

RF centre frequency 5.2 GHz
Bandwidth B = 120 MHz with 1537 sub-carrier
Transmit Power 5 W ∼= 37 dBm
Signal period 12.8 μs
Measurement time grid 1.024 ms
Antennas Omni-directional (V-polarised)

(CIR), h(i, j), j = 0, . . . ,M − 1 consists of M = 1537
samples at delays τj = jΔτ , with Δτ = 1/B. The channel
sounder records one CIR every Tg = 1.024 ms providing a
measurement rate of 976 CIRs per second (CIRs/s).

The measurement was performed on the second floor (9 m
above ground) of the building characterized as a standard three
story office building of concrete with non-metallic window
glass as described in [11]. In order to perform the dynamic
measurement, the receiving antenna was mounted on a model
train running along two tracks R1 and R2 planted on the
ground with a speed of v ≈ 0.15 m/s, where no LoS is
present as displayed in Fig. 1. The transmitter was positioned
above the points Tx-1 and Tx-2 as shown in Fig. 1 in
heights of H1 = 12 m and H2 = 18 m. So overall four

Fig. 2. VAA generation from the measurement

different transmitter positions were achieved. The position
of the transmitter was precisely determined using a Leica
tachymeter giving a nominal accuracy in the sub-cm domain.
To get a similar accuracy for the receiver antenna mounted on
the model train, the train is equipped with a rotary encoder
giving 500 impulses per motor turn as described in [11]. To
prevent wheel slipping the model train runs with a cogwheel.
Together with each CIR snapshot measurement h(i, j) the
number of impulses given by the rotary encoder, since the
model train started to move, is saved, which results in a
precise travelled distance measure for each captured impulse
response snapshot. To validate the accuracy of the distance
measurement by rotary encoder, k = 1, . . . ,K, with K = 21
train runs have been performed. The K distance errors between
estimated travelled distances d̂k and the real distances dk have
a mean value of 0.16 mm/m and a standard deviation of 0.14
mm/m. As the time of arrival is the most important value
for navigation receivers and therefore the most important part
in this measurement campaign, receiver and transmitter were
perfectly synchronized by cable connection using one common
rubidium atomic clock serving as frequency normal. This setup
prevents time drifts which usually occur in channel sounder
measurements using separated clocks.

B. VAA Processing

Generally, estimation of AoA information with an antenna
array takes the benefit of incoming phase differences of
different antenna elements. As described in Section II-A,
the measurement was performed in the SISO manner with a
single antenna which does not provide spatial phase difference
information. However, it is possible to extract a linear antenna
array from the measurement due to the utilization of rotary
encoder. The distance error per meter estimated through the
odometer measurement is 0.16 mm/m in average, which is
small enough to be ignored. As a result, it is possible to
form a uniform linear VAA with element-spacing d as shown
in Fig. 2. In this paper, the train movement direction is
defined as the travelling direction, meaning that for the receiver
antenna positioned at the end of the track a ray coming from
the start point of the track has a AoA of 0◦. The receiver
was running from the left to the right for tracks R1 and
R2 as depicted in Fig. 1. A VAA snapshot is defined as
h(i) = [h(i), . . . , h(i + (NE − 1) · d)]T , where (·)T stands
for vector or matrix transpose, NE is the number of elements,
and h(i) = [h(i, 0), . . . , h(i,M − 1)]T . The Fourier trans-
form, denoted as F{·}, of h(i) shall be further defined as
H(i) = F{h(i)}, where each row of h(i) is separately Fourier
transformed. More details on the VAA and SAGE processing
can be found in [4].



III. SAGE BASED KF METHOD FOR MULTIPATH

ESTIMATION AND TRACKING

The purpose of the method described here,
is to track the parameter vector θl(i) =
[al(i), ϑl(i), τl(i),Δal(i),Δϑl(i),Δτl(i)]

T , for each path
l, with l = 1, . . . , N(i). The elements of θl(i) are the
complex amplitude al(i), its AoA ϑl(i), its delay τl(i)
as well as the rates Δal(i), Δϑl(i) and Δτl(i). The state
vector Θ(i) of the KF describes the states for all paths as
Θ(i) =

[
θ1(i)T , . . . , θN(i)(i)T

]T
.

Instead of taking directly H(i) as measurement into the
tracking filter as done in [9], a maximum search converging
to the next maximum of the likelihood function around the
prediction Θ̂−(i) is used. This yields a faster convergence of
the tracking filter over time i as well as a more robust behavior.

For the maximum likelihood search, the SAGE algorithm
[6] is favored denoted by S{H(i), Θ̂−(i)}. The initialization
of the SAGE is given by the predicted value Θ̂−(i) from the
KF. The Kalman filter as the outer estimator is defined by

Θ̂−(i) = F · Θ̂(i− 1)
P̂−(i) = F · P̂(i− 1) · FH + W

K = P̂−(i) · HH
n ·
[
Hn · P̂−(i) · HH

n + R
]−1

Θ̂(i) = Θ̂−(i) + K ·
[
S{H(i), Θ̂−(i)} −Hn · Θ̂−(i)

]

P̂(i) = (I−K · Hn) P̂−(i) ,

where Hn represents a simple mapping matrix between the
state vector Θ̂−(i) and the values calculated in the SAGE
algorithm. F represents the state transition matrix in the
system equation, W the covariance of the process noise, and
K the Kalman gain matrix. The covariance of the measurement
noise R is the inverse of the Fisher information matrix, which
is simplified as diagonal matrix.

Fig. 3 displays the overall routine including the model
order selection part. The initialization for i = 1, 2 is simply
performed by SAGE, so that the Δ(0) is obtained. From the
last time step i−1 the model order N(i−1), Δ(i−1) and the
tracking results Θ̂(i−1) and P̂(i−1) are used. Δ(i) represents
an additive factor to the model order selection criteria based
on each snapshot as shown in Fig. 3. For model order selection
the Minimum Description Length (MDL) [12], using the
sample covariance matrix for decreasing the computational
complexity, is utilised.

After calculating the new model order at time i, N̂(i),
several tracking filters (denoted in Fig. 3 only as KALMAN) are
running in parallel each with a different model order around
the estimated N̂(i).

• If the model order set to a tracking filter is larger than
N(i − 1), new paths are initialised by calculating the
residual sequence

Res(i|Θ̂(i− 1)) = H(i)−H(i|Θ̂(i− 1), N(i− 1)) (1)

and using the initialisation step in [6], where H(i|Θ̂(i−
1), N(i − 1)) is the approximation of H(i) using the
model order N(i−1) with the parameter vector Θ̂(i−1).

• If the model order set to a tracking filter is smaller
than N(i − 1), one or more existing paths are selected
sequentially to be killed if its drop in Θ̂(i) increases
least the approximation quality among all paths. The
approximation quality q(Θ̂(i)) defined as

q(Θ̂(i)) = 10 log10

(
‖Res(i|Θ̂(i− 1))‖2

‖H(i)‖2

)
, (2)

describes the energy ratio between the residual
Res(i|Θ̂(i − 1)) and the measurement matrix H(i). In
other words if q(Θ̂(i)) is minimal, the residual energy is
small and therefore the estimated Θ̂(i) matches the true
values as good as possible.

After all tracking filters calculated the update step, a decision
among all results is performed as shown in Fig. 3 as DECISION

block. Inside the decision block a model order change com-
pared to last time step and higher model orders are penalised.
This is needed as otherwise model order changes would occur
too frequently with the result of paths with low power and
a small life-time. The penalization of higher model orders is
of the same principle as in standard model order selection
criterion [12] and is needed as the estimation problem is nested
and overfitting might occur, such that paths would track noise
only. pord can be straightforwardly calculated according to the
information criterion rules, e.g., MDL.

The decision process proposed here is based on the value
q(x) calculated by Eq. (3) where pord as the penalty factor
for higher model order and pch as the penalty value for a
model order change. q(Θ̂(i)|N(i)) is calculated according to
Eq. (2) using the estimate Θ̂(i) with model order N(i). The
new model order at time step i, N(i) is selected as

N(i) = min
x

q(x)

with Δ(i) = N(i)−MDL{H(i)}.

KALMAN KALMANKALMAN

DECISION

N̂(i) − 1 N̂(i) + 1

N(i − 1)

Δ(i − 1)

Θ̂(i − 1)

Θ̂(i − 1)

Θ̂(i − 1)Θ̂(i − 1)

P̂(i − 1)

P̂(i − 1)P̂(i − 1)P̂(i − 1)

N(i)

N̂(i)

Δ(i)

Θ̂(i)

P̂(i)

Θ̂(i)|N̂(i) − 1

P̂(i)|N̂(i) − 1

Θ̂(i)|N̂(i)

P̂(i)|N̂(i)

Θ̂(i)|N̂(i) + 1

P̂(i)|N̂(i) + 1

N̂(i) = MDL {H(i)} + Δ(i − 1)

Fig. 3. Flow graph of the new algorithm
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Fig. 4. Simulation scenario-1, where each line represents a path along time.
The points are estimates using the proposed method while the line indicates
the true values. The color represents a path respectively points belonging
togethers.

IV. TIME-VARIANT MULTIPATH CHARACTERISTICS

A. Analytical Simulations within Controlled Environments

To verify the robustness in tracking, two analytical simu-
lations are performed. The first simulation scenario consists
of two paths crossing each other as shown in Fig. 4, while
the second scenario surveys a situation where three paths are
running in parallel as shown in Fig. 5. The colored solid
lines represent the true path along time with constant complex
amplitude of 1 for all paths. The CIR length in the simulation
is fixed to 101 samples, and the signal-to-noise ratio is 20
dB. The transition matrix F is taken as an identity matrix as
well as for W and R. For all simulations the model order
determination is assumed as perfect. The evaluation of the
performance is based on the sum of squared errors m(i)
defined as

m(i) =
N(i)−1∑

l=0

|τ̂l(i)− τl(i)|2 + |α̂l(i)− αl(i)|2 (4)

where τ̂l(i) and α̂l(i) denotes the estimates of τl(i) and αl(i)
at time i respectively.

The simulation results for scenario-1 are shown in Fig. 6
comparing the EKF in [9] with the proposed algorithm. Both
algorithms are tracking two paths sufficiently up to i ≈ 20,
when both paths are still well separated from each other
in delay. As the two paths are getting closer in delay, they
interfere with each other which increases the estimation error
as visible in Fig. 6 around i = 25. After the two paths did
cross, the EKF disconverges, so looses its lock in the tracking
in 12 out of 100 simulated cases while the proposed algorithm
disconverges in only 5% of the simulated runs. The situation
gets even more severe for scenario-2 depicted in Fig. 7. Among
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Fig. 5. Simulation scenario-2, where each line represents a path along time.
The points are estimates using the proposed method while the line indicates
the true values. The color represents a path respectively points belonging
togethers.
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Fig. 6. Error results for scenario-1 with the proposed method and the EKF
in [9]. Displayed are the results of 100 simulation runs.
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Fig. 7. Error results for scenario-2 with the proposed method and the EKF
in [9]. Displayed are the results of 100 simulation runs.

the results obtained from 100 simulations, the tracking by
EKF looses in nearly every case while the proposed algorithm
shows a very robust behavior with only 3% failure rate.

B. Estimation of Multipath Parameters Based on Measure-
ments

The parameters of the proposed algorithm, especially the
penalty factors in Eq. (3) have to be carefully chosen de-
pending on received signal strength in order to achieve good
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performance. In this paper, the factors are set to 0.15 and 0.1
for pord and pch respectively. Fig. 8 visualises the results for
a section of 0.2 m on the model railway track R2 while the
transmitter was positioned above Tx-1 in height H2. The color
dots are estimates using the snapshot-based SAGE algorithm,
whereas the black lines are estimates using the proposed
algorithm.

1) NLoS Error Characteristics: As described in Section I,
the NLoS error is a key factor in the channel modelling for
localization applications, which is usually not considered in
communication channel models. Defined in [4] and [5], the
NLoS error εNLoS(i) is determined by

εNLoS(i) = c ·
(
ToAFP(i)− ToAGLoS(i)

)
(5)

where ToAFP(i) is the estimated delay of the first incoming
path, ToAGLoS(i) is the true GLoS distance between the
transmitter and receiver antenna, and c denotes the speed
of light. Due to estimation errors and irresolvable paths,
the estimated NLoS error might be negative. For the further
analysis negative values for εNLoS(i) have been discarded.

Fig. 9 shows the Probability Density Function (PDF) of
estimated NLoS errors with an exponential distribution fit
based on maximum likelihood estimation. Consistent with the
findings based on the fixed point measurements on the same
floor described in [5], the NLoS error can be modelled as an
exponential distribution.

2) Co-Existing Multipath Components: For time variant
channels, an important parameter is the number of co-existing
multipath components. As long as the receiver travels, new
paths will appear and other paths will vanish. The statistical
PDF of the amount of co-existing paths is given in Fig. 10. A
Weibull distribution shown as red curve is found to fit best the
distribution of number of multipath based on maximum like-
lihood estimation. During movement of the receiving antenna,
the variation in the number of paths is important which implies
how often a path vanishes or appears. Fig. 11 depicts the
spatial correlation characteristics of the path number for each
track measurement. Considering the correlation level of 0.5,
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curve
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most track measurements show a correlation distance of 2λ,
where λ denotes the wavelength. For scenarios with relatively
high received power, where transmitter located above Tx-2
and model train ran on R1, the number of paths varies much
slower.

3) Multipath Life Span: Due to the movement of trans-
mitter, receiver or reflector, multipath parameters change over
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time in delay, amplitude, and AoA in general. As long as the
receiving antenna is in movement, new paths appear and other
paths vanish in the performed measurement. The estimated
life span in terms of receiver travelled distance for multipath
components of all track measurements is shown in Fig. 12. The
Log-normal distribution seems to model the life span well as
shown on the right side of Fig. 12. Generally paths have a life
span of approximately 5λ. The maximum life span measured
is 158λ. Each multipath component is characterized by a life
span, a time variant AoA, amplitude and delay. To analyse
the properties for each multipath component, the mean values
of the AoA, the power and the delay are taken. The delays
are normalized to the GLoS delay, such that a LoS signal
would have a delay of value zero. Fig. 13 shows the scatter
plot of the mean normalized delay multiplied by the speed
of light, mean power, and life span. Each color-coded dot
represents a multipath component. Only the multipaths with
higher received power have long life spans. They are usually
close to the GLoS delay. For multipath components with a low
average received power the life span is usually short.

V. CONCLUSIONS

In order to model the time variant multipath components for
location/navigation applications, we proposed a new SAGE
based Kalman filter to effectively estimate and track the
parameters of time variant paths. Based on an outdoor to
indoor broadband wireless channel measurement campaign,
the channel characteristics are estimated and modelled. As one
important parameter for positioning applications, the NLoS er-
ror is demonstrated to be exponential distributed. The number
of multipaths could be modelled by a Weibull distribution and
their spatial correlation indicates the variation of the number
of paths. As another characteristic of multipath components,
the path life span estimated from the measurement is up to
158λ, but mostly less than 10λ. A Log-normal distribution is
proposed as life span modeling.
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Outdoor to indoor channel characteristics on two different floors†
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SUMMARY

Recently the fusion of positioning and wireless communication has gained many interests due to the merits of
location information for future communication systems. Both positioning and wireless communication are
highly dependent on the air channel. Current channel models are well suited for communication applications
but less for positioning. Therefore, we investigate and compare the channel characteristics of different floors
in favour of positioning based on an outdoor to indoor broadband channel sounder measurement campaign.
Power delay profiles on both floors show similar structure caused by outdoor wave propagation, and angle
of arrivals mostly arrive from the same direction. Differences can be seen in the RMS delay spread, power,
NLoS error and coherence characteristics. Copyright © 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

Since the last decade, issues in wireless communication sys-
tems like the number of users and the demand for higher data
rates are getting more and more critical. Therefore, it is es-
sential to efficiently manage and utilise limited resources for
future wireless network communication systems (e.g. Long
Term Evolution (LTE)) [1]. Cognitive radio could act as an
efficient allocator for frequency spectrum resources. Infor-
mation about the locations of receiver and transmitter could
further improve the system performance by enabling more
optimal assignment of frequency resources to the crowded
air channel. However, this aspect of how location informa-
tion can benefit to communication systems has been rarely
investigated, which has been demonstrated in Reference [1]
to be useful. The fusion of positioning and communications
are therefore gaining interests in research. Generally, loca-
tion information can implicitly provide Channel State Infor-
mation (CSI), like received power, Time of Arrival (ToA),
Power Delay Profile (PDP), which may be used to adapt the
modulation scheme, channel estimation or synchronisation
inside the communication system to improve the overall
performance.

* Correspondence to: Wei Wang, Institute of Communications and Navigation, German Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling,
Germany. E-mail: Wei.Wang@DLR.de
†A previous version of this paper was presented in the 7th International Workshop on Multi-Carrier System & Solutions (MC-SS 2009), Herrsching,
Germany.

Two well-known positioning techniques may be used to
locate the receiver: (i) Fingerprinting (FIP) based position-
ing makes use of pre-collected CSI of the wireless channel
saved in a database to find the best match to online mea-
sured values using a data recognition algorithm [2, 3]. (ii)
Time Based (TB) positioning utilises the ranging informa-
tion between transmitter and receiver to determine the tar-
get’s location, where the range estimate is usually biased
when the Line-of-Sight (LoS) signal is absent [4].

Both positioning and wireless communication strongly
depend on the propagation channel. As one of the most
challenging tasks, the indoor environment-based propaga-
tion channel in a femto-cell mobile radio environment is
focused in this paper. Modern residential houses, office
buildings and other constructions are usually multi-story
buildings. Therefore, it is necessary to investigate channel
characteristics of different floors in the same building. Sev-
eral studies on the indoor to indoor multi-floors have been
described in Reference [5]. This paper discusses the outdoor
to indoor multi-floor channel characteristics for localisation
and communication applications based on a channel mea-
surement campaign at German Aerospace Center (DLR)
premise in Oberpfaffenhofen.
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This paper is constructed as follows: in Section 2, the
setup of the channel measurement campaign is addressed.
Thereafter, Section 3 discusses the data processing meth-
ods and the evaluations. The corresponding channel char-
acteristics comparison results are shown in Section 4 and
conclusions are drawn in Section 5.

2. CHANNEL MEASUREMENT CAMPAIGN

The measurement was performed in a broadband Sin-
gle Input Single Output (SISO) manner using the Medav
RUSK-DLR channel sounder at operating centre frequency
5.2 GHz. The transmitter antenna was located on the rooftop
of the office building TE02 of the Institute of Commu-
nications and Navigation (ICN) of DLR in a height of
12 m above ground. There the transmitter was emitting
a 5 W chirp signal with a rectangular spectral shape of
B = 120 MHz bandwidth. The transmitted periodic signal
was vertically polarised with a period of 12.8 �s leading to
to a maximum resolvable propagation distance of 3.84 km.
The measured ith snapshot of the Channel Impulse Re-
sponse (CIR), h(i, j), j = 0, . . . , M − 1 consists of M =
1537 samples at delays τj = j�τ, with �τ = 1/B. The dis-
crete transfer function H(i, m) contains the same number
of samples at frequencies m�f , m = 0, . . . , M − 1 with
spacing �f ∼ 78.125 kHz. The channel sounder records
one CIR every Tg = 1.024 ms providing a measurement
rate of 976 CIRs per second (CIRs/s). The transmitter and
receiver were synchronised by adjusting a 10 MHz Rubid-
ium frequency normal at the receiver to the drifting of the
transmitter frequency normal. Table 1 summaries the chan-
nel sounder setup for the measurements.

The receiver was located inside the office building TE01
of ICN with a spacing of 20 m between both buildings as
visualised in Figures 1 and 2. The building itself can be char-
acterised as a standard three story office building of concrete
with metallised window glass. As our primary goal was to
simulate a moving receiver instead of point measurements,
the receiving antenna was mounted on a model train which is

Table 1. Channel sounder settings for the SISO measurement.

RF center frequency 5.2 GHz
Bandwidth B 120 MHz
Transmit power 5 W ∼= 37 dBm
Number of sub-carriers 1537
Measurement time grid Tg 1.024 ms
Antennas Omni-directional (V)
Receiver speed v 0.15 m/s
Transmit height 12 m

Figure 1. Track R1 on the first floor (ground floor) which runs
through the corridor.

Figure 2. Track R2 on the second floor (3 m above ground floor)
which runs through the corridor.

Figure 3. The model train used as mobile receiver platform shown
without receiving antenna.

displayed in Figure 3, moving with a speed of v ≈ 0.15 m/s.
For the same transmitter position, the model train was run-
ning on the tracks R1 and R2, where R1 was fixed on the
ground of the first floor (ground floor), and R2 on the second
floor as shown in Figures 1 and 2. Both tracks R1 and R2
were located at the same positions relative to the building
walls in the corridor, only differing in height above ground,
to compare the channel characteristics for both floors.

The position of the transmitter was precisely determined
using a Leica tachymeter giving a nominal accuracy in the
sub-cm domain. To get a similar accuracy for the receiver
antenna mounted on the model train, the train is equipped
with a rotary encoder giving 500 impulses per motor turn as
described in Reference [6]. To prevent wheel slipping the
model train runs by a cogwheel. Together with each CIR

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:426–434
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snapshot measurement h(i, j) done in a periodic cycle of Tg

the number of impulses given by the rotary encoder since
movement start of the model train is saved, which results
in a precise traveled distance measure for each captured
impulse response snapshot. To validate the accuracy of the
distance measurement by rotary encoder, K = 21 train runs
have been performed. The K distance errors between esti-
mated traveled distances d̂i and the real distances di have
a mean value of 0.16 mm/m and a standard deviation of
0.14 mm/m.

3. DATA PROCESSING AND EVALUATION

3.1. Channel characteristics evaluation

For wireless communication as well as for positioning, one
of the most important measures of a wireless multipath
channel is the PDP. Most common FIP positioning algo-
rithms make use of the pre-measured received signal power
or PDPs for an online pattern recognition [2, 3].

The PDP in this paper is denoted as P(l, j) calculated as
an average over normalised CIR snapshots hn(i, j) which
are measured within a segment l of 0.2 m length on the
model railway track. j denotes the delay bin of the sample
at delay τj . hn(i, j) is the CIR snapshot h(i, j) normalised
in power by the maximum peak power and in delay as the
CIR is shifted such that the first detected path above noise
floor is at delay bin j = 0.

To obtain the RMS delay spread στ(i) a threshold taken
as the 99.9% quantile of a known noise region in P(l, j)
has been used. Unlike PDP, the RMS delay spread is not
calculated segment by segment, but snapshot wise instead.

Frequency dispersion is usually measured by the coher-
ence time. Using the traveled distance which is accurately
measured by the odometer as described in Section 2, the
coherence time can be expressed as the coherence distance
Cd(ρ) taking a constant speed of v ≈ 0.15 m/s into ac-
count. A generic form of the auto-correlation for a spe-
cific series α(x) is given by Equation 1, where Ex denotes
the expectation over x. For coherence distance in this pa-
per, α(x) corresponds to the power amplitude |H(i, m)|2,
with distance x = i · v · Tg, and �x = ρ = k · v · Tg with
k = 0, 1, . . .,WD − 1 and WD stands for the number of CIR

snapshots measurement while the train was running in the
corridor. The correlation factor is calculated as the sample
mean over frequency samples m. The coherence distance is
usually regarded as the spatial correlation of the channel.
Moreover, the value of CDy is defined as the distance ρ

where Cd(ρ) falls to y% of the maximum.
To get an insight into the channel time dispersion charac-

teristics, we calculate the coherence bandwidth CB(i, w)
as the sample correlation of H(i, m) with a spacing of
�f = 78 kHz. As a result, CB(i, w) can be calculated up
to 60 MHz. To increase the signal to noise ratio, neighbour-
ing 10 snapshots (≈ 1.4 mm), which are highly coherent,
are averaged. Similar as Reference [7], the coherence band-
width CB(i, w) for each CIR snapshot is calculated by Equa-
tion 1, where the α(x) is correspondingly the complex am-
plitude of frequency H(i, m), x = m and w = �x = k · �f

with k = 0, 1, . . .,M − 1. The coherence bandwidth is cal-
culated for each snapshot i. Similar as coherence distance,
the value of CBy(i) is defined as the bandwidth w where
CB(i, w) falls to y% of the maximum.

As another channel characteristic, the None Line-of-
Sight (NLoS) error is important for TB positioning [6, 8]
defined as the difference of propagation distance of the first
detectable path to the Geometric Line-of-Sight (GLoS). The
GLoS delay ToAGLoS(i) is determined by the measured dis-
tance between transmitter and receiver divided by the speed
of light. For NLoS scenarios the first detectable incoming
path has a greater propagation distance than the GLoS re-
sulting in a bias for ranging applications. The NLoS error
εNLoS(i) for snapshot i is defined by

εNLoS(i) = c · (ToAFP(i) − ToAGLoS(i)) , (2)

where ToAFP(i) is the estimated delay of the first incom-
ing path and c denotes the speed of light. To evaluate the
coherence characteristics of the NLoS error, the spatial cor-
relation of NLoS error Cε(ρ) is calculated by Equation 1,
where the α(x) corresponds to the NLoS error εNLoS(i),
x = i · v · Tg and ρ = �x.

3.2. Virtual antenna array (VAA) processing

Generally, estimation of Angle of Arrival (AoA) informa-
tion with antenna array takes the benefits of incoming phase

C (�x) = Ex {(α(x) − Ex {α(x)}) (α(x + �x)∗ − Ex {α(x + �x)∗})}√
Ex

{
(α(x) − Ex {α(x)})2

}
Ex

{
(α(x + �x)∗ − Ex {α(x + �x)∗})2

} (1)
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Figure 4. 1D AoA estimation with linear antenna array based on
signal phase difference between neighbouring antenna elements.

differences for different antenna elements. Figure 4 gives an
example of a linear array to estimate the incoming 1D AoA.
As described in Section 2, the measurement was performed
in the SISO manner with single antenna which does not
provide spatial phase difference information. However, it is
possible to extract the linear antenna array from the mea-
surement due to the utilisation of rotary encoder. The dis-
tance error per metre estimated through the odometer mea-
surement is 0.16 mm/m in average which is small enough to
be ignored according to Section 2, which makes it possible
to form a linear VAA as shown in Figure 5. In this paper,
the train movement direction along the corridor is defined
as the x-axis in Figure 4, meaning that for the receiver an-
tenna positioned at the end of the track a ray coming from
the start point of the track has a AoA of 0◦.

3.3. Channel parameters estimation with SAGE

To accurately obtain the ToAFP(i) from the bandlim-
ited CIR, the Space-Alternating Generalised Expectation-
maximisation (SAGE) super resolution algorithm [9, 10]
has been utilised to estimate the path delays, amplitudes,
phases and the AoA from the measured raw data. Without
loss of generality, the received signal can be denoted as the
summation of paths plus additive noise n(i, j)

h(i, j) =
L(i)∑

l=1

xl(i, j) + n(i, j) (3)

where h(i, j) = [
h(i, j), . . . , h(i + N − 1, j)

]
with

the number of antenna elements N and xl(i, j) =

a(θl(i))αl(i)s(j − τl(i) · B). a(θl(i)) denotes the steering
vector, θl(i) is the 1D AoA, αl(i) the complex amplitude of
path l, τl(i) the delay of path l and s(j) denotes the trans-
mitted reference signal which is a dirac function within
the bandwidth. �̂l(i) = [τ̂l(i), θ̂l(i), α̂l(i)] is the parameter
vector to be estimated and L(i) is the number of paths for
snapshot i which is estimated by Minimum Description
Length (MDL) [11]. Starting from initialisation value, the
parameter could be obtained iteratively by the maximisa-
tion step following the expectation step which estimates the
hidden data space with rl(i, j) = h(i, j) − ∑l−1

k=1 xk(i, j).
In this paper 2D-SAGE is considered with steering vector

a(θ) = [1, e−j2π
d1
λ

cos θ, . . . , e−j2π
dN−1

λ
cos θ]T , where dn is

the spacing between the nth element and the element ‘0’ as
shown in Figure 4.

4. EVALUATION RESULTS OF CHANNEL
CHARACTERISTICS

4.1. PDP and RMS delay spread

The Probability Density Functions (PDFs) of the PDPs
P(l, j) for track R1 on the first floor and track R2 on the
second floor are presented in Figures 6 and 7. As clearly vis-
ible the PDPs for both floors have a ‘two-cluster’ structure,
starting with the fist cluster at 0 �s and the second at ap-
proximately 0.15 �s. The delay gap between both clusters
results in an equivalent propagation distance of approxi-
mately 45 m. The second cluster is most probably caused
by outdoor reflections between both buildings which are
20 m spaced as shown in Figures 1 and 2. The windows
of the buildings are metallised and do have therefore good
electromagnetic reflection properties.

For the first floor, the electromagnetic waves are most
probably propagating through the lab, which is directed to-
wards the transmitter as shown in Figure 1, before arriving
at the antenna placed in the corridor. However, for the sec-
ond floor, the amplitude of the waves suffer from additional

Figure 5. VAA generation in the measurement.
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Figure 6. PDF estimate for P(l, j) taken while the model train is
running on track R1. A Gaussian kernel estimator [12] has been
used to estimate the one-dimensional PDF of P(l, j) at each delay
bin j.

Figure 7. PDF estimate for P(l, j) taken while the model train is
running on track R2. A Gaussian kernel estimator [12] has been
used to estimate the one-dimensional PDF of P(l, j) at each delay
bin j.

transmission loss compared to the first floor due to the office
rooms located at the outer wall directed towards building
TE02. Therefore, the power received when the model train
runs on R1 is larger than the power obtained when running
on R2 as shown in Figure 8.

Although the PDPs of both tracks share the same cluster
structure, in the first floor the second cluster has a higher
mean value in power compared to the first cluster, whereas in
the second floor the first cluster has a higher probability for
a higher power level compared to the the second cluster. The
RMS delay spread values listed in Table 2 can be explained
by the PDPs of the different floors. For the track R1, the
power is more focused on the second cluster, while for track
R2, the power is mostly focused on the first cluster. As a

Figure 8. Received power in dB when receiver was running along
both tracks.

Table 2. Statistical parameters of RMS delay spread, µ denotes
the mean value and σ stands for the standard deviation.

R1 R2

µ (ns) 64.7438 39.6660
σ (ns) 12.4343 21.3655

result, the RMS delay spread obtained from measurements
for track R1 is larger than the delay spread obtained for
measurements on R2.

4.2. Coherence distance and coherence bandwidth

The coherence distance computed according to Section 3
is decreasing fast with distance ρ for both tracks as shown
in Figure 9. The CD50 of track R1 and R2 are 24.39 and
1.47 cm, respectively, while for CD90 value of 0.9 and
0.19 cm are obtained. The coherence distance calculated
when running on R1 is higher compared to the value asso-
ciated with R2. As the coherence distance with respect to
CD50 along the corridor is rather small, |H(i, m)|2 is less
correlated over spatial distance as the receiver moves along
the corridor. The FIP based position algorithms could ben-
efit from this due to less dependence of features, like PDPs,
for neighbouring points.

The coherence bandwidth information is essential for
communication systems. For instance, for orthogonal fre-
quency division multiplexing systems, the frequency spac-
ing should be less than the coherence bandwidth and the
symbol time is less than the coherence time. Figures 10
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Figure 9. Spatial correlation properties of CIRs at different floors.

Figure 10. Coherence bandwidth referring to a correlation of 50%
when the receiver was running on tracks.

and 11 show the computed coherence bandwidth referring
to correlation levels CB50(i) and CB90(i) for the received
signal while the model train was running on the tracks. The
coherence bandwidth keeps almost constant as the receiver
moves onR1 further into the corridor referring to correlation
level of 50% and 90%. When running on R2, the coherence
bandwidth referring to 50% keeps constant and decreases
as the receiver moves further after 5 m into the corridor,
whereas the coherence bandwidth referring to 90% keeps
constant from 1.5 to 5 m. Thereafter the coherence band-
widths drop down to a small value. This can be explained
by the fact that, the received power in the parts after 5 m

Figure 11. Coherence bandwidth referring to a correlation of 90%
when the receiver was running on tracks.

Table 3. Statistical parameters of coherence bandwidth, µ denotes
the mean value and σ stands for the standard deviation.

µ (MHz) σ (MHz)

R1, CB50(i) 3.40 0.80
R1, CB90(i) 1.19 0.35
R2, CB50(i) 0.86 1.27
R2, CB90(i) 0.07 0.14

of R2 are small so that the correlations are more affected
by noise. The statistical parameters of the coherence band-
width are listed in Table 3.

4.3. Number of paths, delay and AoA

The results of detected number of paths for CIRs measured
while the train was moving on track R1 and R2 using MDL
are depicted in Figure 12. The difference in the quantity of
paths detected for both floors indicates the significant influ-
ence of building structure on the outdoor to indoor propa-
gation channel. For the second floor the office room located
at the wall towards building TE02 introduces significantly
more attenuation such that more paths are below the noise
floor and cannot be detected any more.

As another important measure the AoA of a path provides
geometric information of propagation mechanism, which
is usually utilised in a statistical analysis like a joint AoA-
delay probability density function. Figures 13 and 14 show
the joint distribution for the estimated channel parameters
using a VAA as described in Section 3.2. Similar to the
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Figure 12. Cumulative density function of detected number of
paths by MDL for both tracks.

Figure 13. Joint AoA-delay PDF of measurements taken while
the train was running on track R1.

results obtained for PDPs, two clusters in delay domain
with similar AoAs are visible. The second cluster located
at τj ≈ 150 ns after the first one, which equates to an addi-
tional propagation distance of 45 m. This confirms the con-
clusions in Section 4.1, that reflections between two build-
ings introduce the second cluster as rays from both clusters
are arriving with a similar AoA.

For measurements taken on track R1 on the first floor
most incoming rays are from a direction lying on a cone
with an opening angle of ∼ 30 ◦. However, for track R2 on
the second floor, the paths are mostly from ∼ 0 ◦ direction.

Figure 15 shows the Cumulative Density Function (CDF)
of estimated NLoS errors εNLoS(i) for measurements per-

Figure 14. Joint AoA-delay PDF of measurements taken while
the train was running on track R2.

Figure 15. Cumulative density function of NLoS errors εNLoS.

formed on both tracks R1 and R2. From the CDF it can be
noticed that for the values obtained from measurements on
the second floor are larger than on the first floor, which can
be explained through the additional attenuation caused for
the GLoS and rays with a similar propagation path due to
the office rooms.

The corresponding spatial correlations for the NLoS er-
rors on both floors are given in Figure 16, where it is notice-
able that the NLoS error calculated for measurements per-
formed on the second floor has a larger correlation distance
compared to the ones for the first floor. In other words, the
NLoS error varies slower for measurements over distance on
the second floor. The AoA information of the first detectable
path provides more insides into the NLoS errors. Figures 17
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Figure 16. Spatial correlation properties of NLoS error εNLoS at
different floors.

Figure 17. Joint AoAFP-εNLoS PDF of measurement with R1.

and 18 show the joint AoAFirst path-εNLoS(i) PDFs obtained
for measurements on both tracks. According to Figure 18,
the first detectable incoming paths are mostly arriving from
the direction of the transmitter.

5. CONCLUSION

In this paper, based on an outdoor to indoor broadband wire-
less channel measurement campaign for femto-cell mobile
radio environment, we addressed the channel characteristics
and a comparison between signals received on two differ-
ent floors to study the wireless channel for communications
and localisation applications. The propagation characteris-
tics are presented in terms of PDPs, coherence distance,

Figure 18. Joint AoAFP-εNLoS PDF of measurement with R2.

coherence bandwidth, RMS delay spread, AoA and NLoS
error. The evaluation shows for these measurements that
CIRs measured on both floors have PDPs with a two-clusters
structure where the first cluster is caused by direct propa-
gation into the building and the second cluster is caused
by the reflections between two buildings. The obtained co-
herence distances are small, which indicates that CSIs are
nearly independent over short distance for both floors. This
is an advantage for FIP positioning as the feature should be
as discriminant as possible. Moreover, the estimated AoAs
show that paths are mostly arriving from the transmitter
direction in both floors. However, the RMS delay spread,
the coherence bandwidth and NLoS error are different from
floor to floor. In general, all results measured are reflecting
the building and its surroundings in terms of wave propaga-
tion which could be used for channel modelling. Neverthe-
less for similar environments channel characteristics can be
expected alike the ones described.
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Abstract—A time-variant wireless stochastic channel model for 

indoor transmitter is proposed in this paper. Time-variant 

components taking into account the human activity are 

introduced into geometry-based stochastic channel predictions. 

The proposed model aims at feeding evaluation of indoor 

geolocation algorithms with realistic non-stationary 

characteristics for wireless systems serving indoor areas. The 

model formulation is generic, and has been adjusted to static line-

of-sight links within corporate environments at a central 

frequency 2GHz. 

Stochastic channel modelling; time-variant channel; indoor 

geolocation; human activity; fixed indoor radio link;  

I.  INTRODUCTION 

The human activity strongly influences the wireless channel 
properties in indoor environments: the received signal strength 
(RSS) is attenuated in populated areas (e.g. office, residential 
building, shopping mall); the temporal variability of the time of 
arrival (ToA) or the time differences of arrival (TDoA) as well 
as the dispersion on the angles of arrival (AoA) are amplified 
by obstruction or scattering by people motion around the main 
propagation paths. These impacts are expected to be more 
significant on radio links with low antenna configuration.  

Realistic positioning approaches for indoor environments 
need to consider fading caused by the movement of people or 
the presence of furniture.  The model proposed in this paper 
aims at providing channel simulations of indoor transmitter 
deployments including the human activity. The method 
basically consists in introducing a time-variant contribution 
into a geometry-based stochastic channel prediction, taking 
into account the path geometries and the random distribution of 
human bodies.  

Only few channel models have been designed in order to 
provide realistic estimation of geolocation techniques 
performance. In [4], the authors propose a two-level channel 
model based on an extension of the CODIT model. More 
recently, a channel model based on statistical modeling 
approach for ToA, AoA and amplitude of the multipath 
components was proposed [5]. Nevertheless, these models do 
not fully account for the impact of human activity in indoor 
environment. Besides, different methods were used in the 
literature to establish a channel model that takes account this 
effect. Multi-state Markov chain is the most frequently 

proposed solution. In multi-state Markov chain model, 
transition probabilities and the values of factor K for different 
states are two crucial parameters. For example, the authors of 
[7] make use of [6] measurements to construct a two-state 
Ricean model where the periods with very low fading (K-value 
between 10 and 12dB) are distinguished from periods with 
severe fading (K-value=0dB, i.e. Rayleigh distribution). The 
model is simulated with a two-state Markov process associated 
to transition probabilities p and q for respectively transition to 
severe fading and transition to low fading. 

CW Measurements reported in [6] were conducted at the 
frequency 910MHz in two kinds of office environments. In 
building 1, one terminal is located in a small room whereas the 
other terminal is located in a long corridor. The fading related 
to human activity and “machinery” occurs in bursts of tens of 
seconds in duration, with 30dB dynamic range. In building 2, 
both terminals are located in the same large open space. The 
fading is more continuous with 17dB dynamic range. In most 
cases, the Ricean distribution is found to fit well to the power 
distribution during fading occurrence, with K-value in the 
range 6dB to 12dB. Besides, ITU-R P.1238 [1] show that the 
fading related to human activity is bursty and the channel 
statistics present some strong non stationarities. Measurements 
at 1.7GHz indicate that a person moving into the path of a LOS 
(Line-Of-Sight) signal causes a 6 to 8dB drop in received 
power level, and the K-value of the Nakagami-Rice 
distribution is considerably reduced. In the case of non-LOS 
conditions, people moving near the antennas did not have 
significant effects on the channel properties. 

Based on their observations, ITU-R P.1238 suggest an 
analytical model for static LOS and NLOS radio links, where 
indirect paths arrive at the MD (Mobile Device) with uniformly 
distributed horizontal directions, and persons are moving in 
random directions with constant speed. The received power is 
modelled by the Nakagami-Rice distribution with K-values 
depending on the number of moving persons, the room size and 
the direct/indirect power ratio. The autocorrelation function 
and Doppler power spectrum of the received power are defined 
as well to characterise continuous time variations. This 
approach provides time-variant received powers and it does 
rely on a uniform distribution of path directions. However it is 
not suited to be integrated into a stochastic geometry-based 
channel model. 



The TGn models from IEEE 802.11 [2] associate a non-
zero Doppler power spectrum to the taps representing the 
delayed channel components, then allowing the simulation of 
temporal fluctuations in power level. This Doppler power 
spectrum is given by  S(f) = (1 + 9 (f/fd)² )

-1
, where S(f) is a Bell 

shape function, expressed in linear, and  fd was experimentally 
found to be around 3Hz at 2.4GHz.  

The stochastic geometry-based WINNER 2 [3] model may 
associate some channel multi-paths to moving persons or 
scatterers, in indoor and microcell outdoor- indoor scenarios. 
The reflection is assumed to be the main interaction with 
human body in the targeted frequency range 2GHz – 6GHz. 
The procedure is roughly as follows: the channel properties are 
predicted for the fixed link; then a given percentage of clusters 
are assumed to be related to moving clusters; the number of 
rays within the cluster being generated by a moving scatterer is 
determined from the target temporal K-value; the mean 
velocity and direction of the moving clusters are simulated in a 
random way; then the Doppler frequency of the impacted rays 
is calculated from the ray geometry, the cluster velocity and 
direction. This procedure is partly reused in the solution 
proposed in this paper, however the main interaction is 
assumed to be shadowing whereas scattering is neglected.  

A more precise approach is proposed in [8]. It is based also 
on a two-state Ricean model, but the calculation of the fading 
depends on the geometry: distance between radio terminals, 
distance between the person and the terminals, height of 
terminal antennas, height of the person. The model deals with 
the obstruction of the LOS direct path and assumes that the 
main impact of persons is diffraction; actually the person is 
considered as an absorbing screen. The fading is predicted 
from a three-knife-edge-diffraction method, i.e. from the sum 
of the three following components: knife diffraction at one 
edge of the human body; knife diffraction at the other edge; 
and knife diffraction by the top edge of the human body. The 
validity of this three-knife-edge-diffraction method is proven 
by comparison to CW measurements at 2.4GHz with controlled 
person movements. 

Besides, ray-tracing models may be combined with a 
physical human body representation (e.g. a cylinder filled by 
salty water [9]) to generate site-specific interactions between 
the persons and the wave propagation or to extract statistics on 
the channel variations.   

Some of these results are exploited in the solution described 
in this paper, leading to introduction of a time-variant 
component into Geometry-based Stochastic Channel Models 
(GSCM), and WINNER 2 model in particular. The remaining 
is divided as follows. Section II describes the elaborated 
solution. Section III discusses the parameterization of this time-
variant contribution. Finally, section IV gives first simulation 
results. This work was conducted in the context of indoor 
geolocation, then the radio terminals are referred as AP (access 
point) and MD (mobile device). 

II. TIME-VARYING CHANNEL PREDICTION 

A. General principles 

The time-variant channel model described in this section 

predicts multi-path channel properties for a static SISO radio 

link that undergoes variations due to human body obstructions. 

The whole process depicted in Fig. 1 generates continuous 

channel realizations that result from correlated “human 

activity snapshots”. 

 

Figure 1.  Process for time-variant GSCM predictions. 

On one hand, the static SISO radio link is defined by the 
AP and MD locations; AP and MD single antenna properties 
(pattern and orientation); and central propagation frequency, 
All these parameters are injected into the GSCM model to get 
the static multi-path channel prediction. On the other hand, the 
human activity model defines statistical characteristics of the 
person locations. Statistics on the person density is sufficient 
when the prediction does not care about time-continuity. 
Otherwise, a velocity and mobility path (possibly random) is 
associated to each person to provide time-correlated snapshots 
of person distributions. Finally, the time-variant channel 
prediction is obtained from each human activity snapshot. At 
the I

th
 snapshot, the number of obstructions of each path PTJ is 

simulated, depending on the person locations PEI,K and the path 
geometrical properties given by the GSCM model. 

WINNER 2 is the considered GSCM model in this paper. 
The predicted path geometrical properties are: path-length; 
departure horizontal angle; departure vertical angle; arrival 
horizontal angle; arrival vertical angle. The exact trajectory of 
indirect paths (i.e. paths that undergo at least one interaction 



with the environment) is unknown. Only the LOS direct path is 
perfectly known, when existing, thus the simulation of its 
“obstruction state” is done in a specific way. 

B. Simulating the obstruction state of indirect paths 

At the first predicted snapshot, the probability that the 

person PEI,K obstructs the path PTJ is given by the following 

obstruction probability function: 

 p1(PEI,K, PTJ) = f( l,dh1,dv1, 1, 1,dh2,dv2, 2, 2) (1) 

where l is the excess path-length defined as the difference 

between the path-length and the AP - PEI,K - MD length; dh1 

(resp. dh2) is the horizontal distance between AP (resp. MD) 

antenna and the person location; dv1 (resp. dv2) is the 

minimum vertical distance between AP (resp. MD) antenna 

and the person location; 1 (resp. 2) is the horizontal angle 

difference between the AP path direction and the direction 

from AP to the person location; and 1 (resp. 2) is the 

minimum vertical angular difference between the AP path 

direction and the direction from AP to the person location. 

Remark that p(PEI,K, PTJ) = 0 when l < 0m. 

The obstruction of the path PTJ by the person PEI,K is 

simulated from the two-state random variable SI,J,K with  

obstruction probability p1(PEI,K, PTJ). 

 

 

Figure 2.  Multi-paths involved in the LOS obstruction. 

At following snapshots, the probability that the person 

PEI,K obstructs the path PTJ depends on the previous 

obstruction state and state duration: 

p2(PEI,K, PTJ) = 

  g( l,dh1,dv1, 1, 1,dh2,dv2, $2, 2, SI-1,J,K,  I,J,K) (2) 

where PEI-1,K is the person location at the previous 

snapshot; SI-1,J,K is the obstruction state at the previous 

snapshot; and I,J,K is the distance covered by the person from 

the last change in obstruction state up to the current snapshot. 

A unique 7dB attenuation is applied to each obstructed 

path, compliant to the 6-8dB attenuations reported by [1]. 

A random non-zero Doppler shift is simulated to each 
obstructed path, with a probability density function (PDF) 
similar to the Bell-shaped Doppler power spectrum given in [2] 
at 2.4GHz. The Doppler shift is assumed to be constant during 
the whole obstruction.  

C. Simulating the obstruction state of the LOS direct path 

The geometry of the LOS direct path is fully known. Thus 

its power variations may be predicted in a very realistic way. 

The method described below is inspired from [8], and some 

enhancements permit to deal with a larger number of person 

distribution cases (especially when nobody obstruct the direct 

path) and determine a Doppler shift. 

As shown in Fig. 2, four different situations are 

distinguished when only one person is within the propagation 

environment: 

(a) The person is not in the vicinity of the LOS direct path. 

The LOS direct path is unchanged, with zero Doppler shift. 

(b) The person is approaching the LOS direct path, but 

does not yet obstruct the line-of-sight. Two indirect paths, 

diffracted at  the interior edge and  the exterior edge of the 

person, are assumed to interfere with the direct path. The LOS 

direct path is replaced by two contributions: 

 The first contribution has similar geometrical 

properties than the direct path, except that the 

propagation loss accounts for the additional knife-

edge diffraction loss LKF1 that results from diffraction 

at the interior edge of the person and oscillates 

around 0dB. 

 The second contribution is the diffracted path 

represented by the trajectory . The propagation loss 

is the direct path loss plus the knife-edge diffraction 

loss LKF2 > 6dB resulting from diffraction at the 

exterior edge of the person. This second contribution 

is negligible when the person is far away from the 

line-of-sight obstruction, but becomes more 

significant when the person is approaching. This 

second contribution is associated to a non-zero 

Doppler shift, which is simply calculated from the 

phase shift related to the path length variations when 

the person is moving. 



(c) The person is crossing the horizontal projection of the 

line-of-sight, but the line-of-sight passes above the person 

head. Three indirect paths, diffracted at  the interior edge,  

the exterior edge and  the head of the person, are assumed to 

interfere with the direct path. The LOS direct path is replaced 

by three contributions: 

 The first contribution has similar geometrical 

properties as the direct path, except that the 

propagation loss accounts for the additional knife-

edge diffraction loss LKF3 that results from diffraction 

above the head of the person and oscillates around 

0dB. 

 The other contributions are the diffracted paths 

represented by trajectories  and . The propagation 

loss is the direct path loss plus the knife-edge 

diffraction loss LKF1 and LKF2 respectively, both of 

them > 6dB. These contributions are associated to 

non-zero Doppler shifts. 

(d) The person is crossing the line-of-sight. The direct path 

is assumed to be negligible. It is replaced by three indirect 

paths: 

 The first contribution is the diffracted path 

represented by the trajectory . The propagation loss 

is the direct path loss plus the knife-edge diffraction 

loss LKF3 > 6dB. This contribution is associated to a 

non-zero Doppler shift. 

 The other contributions are similar to those of case 

(c). 

The algorithm becomes more complex when several 

persons are in the vicinity of the LOS direct path. It has been 

decided to preserve the same multi-path construction as 

illustrated in Fig. 2, with following adjustments: 

(b-extended) Several persons are around the LOS direct 

path, but there is no obstruction. Path  is constructed from 

the person that generates the highest diffraction loss.  Path  

is constructed from the shortest unobstructed trajectory 

diffracted at the exterior edge of a person, on the same side 

than path .  

(c-extended) and (d-extended) At least one person 

obstructs the LOS direct path. Path  and Path  are 

constructed on each side of the LOS path from the shortest 

unobstructed trajectories diffracted at the exterior edge of a 

person. 

With this approach, the algorithm deals with more than one 

person in the propagation environment, but this has to be 

evaluated or further adjusted. 

III. MODEL PARAMETERIZATION 

The stochastic time-variant channel model relies on an 

obstruction probability function and an obstruction transition 

probability function, which have to be as close as possible to 

reality. These probability functions could be empirically 

derived from a large set of channel measurements associated 

to controlled person movements. However this approach is 

very costly in terms of time, resource and measurement 

processing. That is why, to feed the model with realistic 

values, 3D ray-tracing predictions [10] are preferred to 

generate reference data. 

The purpose is to derive obstruction probabilities related to 

the geometrical path parameters used in section II, by 

analysing a large number of path-person pairs, where paths are 

simulated by the ray-tracing and persons are uniformly 

distributed in the propagation environment. The persons are 

modelled by a vertical cylinder of width 40cm and height 

170cm. The multi-paths are simulated from reflections on the 

building vertical partitions (light walls, strong walls, doors, 

windows and high cupboards), reflections on the ground and 

ceiling, reflections on the external walls of neighbour 

buildings, diffractions at the indoor partition edges and 

diffractions at the neighbour building edges. The attenuation 

along the different path accounts for the losses due to the 

transmission through building vertical partitions, floor ground 

and ceiling. 

The simulated radio link is a line-of-sight link into a large 

room within a corporate building; the AP and MD antenna 

heights are 1.5m; the simulation frequency is 2GHz. Three 

different AP locations are tested: AP1 located on a table in the 

middle of a meeting room (about 33m²); AP2 and AP3 located 

on a table in the middle of large “open spaces” (around 57m²) 

as illustrated in Fig. 3. 

 

Figure 3.  Obstruction probabilities function get from ray-tracing simulation. 

Human body represented by 3D cylinder (magenta).  

Only the paths of interest are kept for the obstruction 

analysis, i.e. indirect paths with relative power greater than -

50dB (relative to the strongest path get at the same MD 

location). Besides, for simplicity, the analysis has been 

restricted to paths propagating in nearly the horizontal plane, 

i.e. without any reflection on floor ground or ceiling. Finally, 

about 16.6M path-person pairs are generated, for which the 

obstruction state is determined. 

As only the horizontal paths are considered here, the 

obstruction probability function reduces to: 



 f( l,dh1, 1, dh2, 2) = 1 – f’( l,dh1, 1) f’( l,dh2, 2) (3) 

An analytical formulation of f’( l,dh1, 1) and f’( l,dh2, 2) 

is derived that matches very well the obstruction probabilities 

obtained from the ray-tracing: a cross-correlation of 97% is 

obtained.  

Besides, the analysis of transition probabilities has not 

been completed yet. But a simple approach has been selected 

based on first observations: 

g( l,dh1, 1,dh2, 2,SI-1,J,K,  I,J,K) = 

    + f( l,dh1, 1,dh2, 2)  (1 - ) (4) 

where  depends on the obstruction state at the previous 

snapshot:  = 1 in case of obstruction;  = 0 else; and  is a 

correlation coefficient depending on the distance I,J,K covered 

by the person PTJ  since the last obstruction transition;  = 1, 

when I,J,K < 40cm guarantees the obstruction to last at least 

the whole time used by the person to cover 40cm. 

IV. SIMULATION RESULTS 

In the scenario presented in Fig. 4, two persons are moving 

along different trajectories and cross the LOS direct path at 

different times. The person velocity is 1m/s and the length of 

both trajectories is 10m. The narrowband received power 

variations at 2GHz are predicted considering all two persons 

together with one snapshot every 1mm movement. Fig. 5 

shows that the received power reaches minima when the path 

is obstructed by one of the person. The fading length and 

fading amplitude depend on each obstruction situation. 

Moreover, the received power undergoes significant 

oscillations (about 2dB amplitude) between two obstructions. 

CONCLUSION 

A generic model has been presented for introduction of a 
time-variant component into stochastic channel models. The 
purpose is to provide realistic channel realizations for indoor 
geolocation algorithms, accounting for the human activity 
impact. Variability studies can therefore be carried out. The 
model is illustrated at frequency 2GHz in a LOS corporate 
environment. 

Most of the model characteristics rely on previously 
published results and ray-tracing based obstruction statistics. 
However, some proposition must still be confirmed 
(obstruction loss by multiple persons, transition probability 
function). And the parameterization must be extended to a 
wider range of configurations. 

ACKNOWLEDGMENT 

This work has been partly funded by WHERE2 Project (ICT-

248894). 

  

Figure 4.  Second simulation scenario.  

  

Figure 5.  Received power variations from two moving persons  
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