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Introduction

Setup

Measurements u come from sensing x by sensing matrix Φ: u = Φx + n.
We use a recovery algorithm to build x̂ given u and Φ, e.g., OMP, BP.

Exact Recovery

In theory, we have no trouble asking x̂
?
= x.

In practice, we must use a different criterion.

At least two different criteria have been used in the simulation
of compressed sensing recovery algorithms.
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Introduction

One exact recovery criterion in CS simulation: Support

Let Ω index the columns of Φ, and define the support of x as

S(x) := {i ∈ Ω : xi 6= 0}.

x is exactly recovered with respect to support if

S(x̂) = S(x). (SC)

This has been used in simulations of CS recovery in, e.g.,

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” IEEE Trans. Info.
Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

J. Tropp and A. C. Gilbert, “Signal recovery from random measurements via
orthogonal matching pursuit,” IEEE Trans. Info. Theory, vol. 53, no. 12, pp.
4655-4666, Dec. 2007.

A. K. Fletcher, S. Rangan, and V. K. Goyal, “Necessary and sufficient conditions
for sparsity pattern recovery,” IEEE Trans. Info. Theory, vol. 55, no. 12, pp.
5758-5772, Dec. 2009.
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One exact recovery criterion in CS simulation: Support

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” IEEE Trans. Info.
Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

For N = 512. (a) Empirical prob. exact recovery as fun. of M (ord.), K/M (abs.).

White is 1.0. (b) Empirical prob. of exact recovery for M = 64 as function of K/M .

4 / 25



Introduction

One exact recovery criterion in CS simulation: Support

J. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal
matching pursuit,” IEEE Trans. Info. Theory, vol. 53, no. 12, pp. 4655-4666, Dec 2007

5 / 25



Introduction

One exact recovery criterion in CS simulation: Support

A. K. Fletcher, S. Rangan, and V. K. Goyal, “Necessary and sufficient conditions for
sparsity pattern recovery,” IEEE Trans. Info. Theory, vol. 55, no. 12, pp. 5758-5772,
Dec. 2009.
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Introduction

Another exact recovery criterion: Normalized `2-norm Error

Define a 0 ≤ ε2 < 1.

x is exactly recovered with respect to normalized squared error if

‖x− x̂‖22
‖x‖22

≤ ε2 (ε2C)

This has been used in simulations of CS recovery in, e.g.,

A. Maleki and D. L. Donoho, “Optimally tuned iterative reconstruction algorithms
for compressed sensing,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp.
330-341, Apr. 2010.

J. Vila and P. Schniter, “Expectation-maximization Bernoulli-Gaussian
approximate message passing,” in Proc. Asilomar Conf. Signals, Syst., Comput.,
Pacific Grove, CA, Nov. 2011.

Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support
detection,” SIAM J. Imaging Sciences, vol. 3, no. 3, pp. 462-491, 2010.
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Introduction
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Introduction
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Introduction

Two Criteria for Exact Recovery

1 x is exactly recovered with respect to support if

S(x̂) = S(x) (SC)

2 x is exactly recovered with respect to normalized squared error if

‖x− x̂‖22
‖x‖22

≤ ε2 (ε2C)

One does not necessarily imply the other. There are instances, however,
when one must be true if the other is true.

My Aims

With regards to running and comparing simulations of CS recovery:

Given a pair (x̂,x), when does “exact recovery” occur with respect to
only one or both criteria?

What is the role of ε2, and how should we define it?
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Introduction Presentation Outline

Presentation Outline

1 Noiseless Case

x ∼ Bernoulli-Rademacher sparse signals
x ∼ Bernoulli-Gaussian sparse signals
Simulations

2 Noisy Case

x ∼ Bernoulli-Rademacher sparse signals
Simulations

3 Conclusions
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Noiseless Case Setup

Noiseless Case

Measurements u come from sensing x by the sensing matrix Φ, ‖n‖ = 0:

u = Φx + n.

Given x̂, the weights minimizing the measurement modeling error are

yls := arg min
y′
‖u−ΦS(x̂)y

′‖22 = Φ†S(x̂)u.

With x̂ composed of yls, if (SC) then for any ε2 ∈ [0, 1] (ε2C).

If, however, (ε2C) for ε2 = 0 then necessarily (SC).

Now we analyze the behavior of these criteria for signals distributed
Bernoulli-Rademacher, Gaussian, and empirically in other ways.
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Noiseless Case Setup

Noiseless Case

Consider the best case scenario for sparsity s

S(x) = {1, 2, . . . , s};
x̂ lacks the first 0 < k < s elements, i.e., for n ∈ {1, . . . , k}(x̂n = 0);

x̂ has all the others, i.e., n ∈ Ω\{1, . . . , k}(x̂n = xn).

This means that

S(x̂) ⊂ S(x), i.e., x̂ has no false detections;

the missed detections do not influence our estimation of the values of
the recovered support.

In this case, (ε2C) and not (SC) becomes for 1 ≤ k ≤ s

1

‖x‖22

k∑
n=1

x2n ≤ ε2. (1)
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Noiseless Case Bernoulli-Rademacher Signals

Bernoulli-Rademacher Signals

If x ∼ Bernoulli-Rademacher, its non-zero elements are iid equiprobable in
{−1, 1}. In this case, ‖x‖22 = s, so

P{(ε2C) ∧ ¬(SC)} =

{
1, k/s ≤ ε2

0, else.
(2)

For Bernoulli-Rademacher sparse signals in the best case scenario:

The parameter ε2 limits the number of missed detections k for a sparsity s.

As long as s < ε−2 for x ∼ Bernoulli-Rademacher, (ε2C) → (SC).

In Maleki et al. 2010, where s < 800 and ε2 = 10−4, (ε2C) → (SC).
However, if for this ε2 the sparsity s > 10000, then the two conditions
are no longer equivalent.
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Noiseless Case Bernoulli-Gaussian Signals

Bernoulli-Gaussian Signals

Let the s non-zero elements of x ∼ N (0, σ2y) with variance σ2y > 0.
Define the independent chi-squared rvs

Yk :=

k∑
n=1

[xn/σy]2 ∼ χ2(k), Zs−k :=

s∑
n=k+1

[xn/σy]2 ∼ χ2(s− k)

Since Yk and Zs−k are independent, Fk,s−k := [Yk/k]/[Zs−k/(s− k)]
∼ F(k, s− k). Thus, in the best case scenario

P{(ε2C) ∧ ¬(SC)} = P

{
Fk,s−k <

ε2

1− ε2
1− k/s
k/s

}
. (3)

If k/s > ε2, then, for s ≥ 2k, P {Fk,s−k < 1 + δ} > 0.5 for δ > 0.

For Bernoulli-Gaussian signals in the best case scenario:

The parameter ε2 limits the number of missed detections k before
((ε2C) ∧¬ (SC)) is false in a majority sense.
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Noiseless Case Experiments

Experiments for several ε2 (labeled) & sparsities (legend)

(a) Zero-mean Gaussian (theoretical)
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(b) Laplacian (empirical)
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(c) Uniform (empirical)
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(d) Bimodal Gaussian (empirical)
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Noisy Case Setup

Noisy Case (assuming (SC))

Measurements u come from sensing x by the sensing matrix Φ, ‖n‖ > 0:

u = Φx + n.

Assume (SC), and x̂ is built from Φ†S(x)u. The weights in real solution are

y := arg min
y′
‖u− n−ΦS(x)y

′‖22 = Φ†S(x)(u− n).

Then, (ε2C) becomes

‖y −Φ†S(x)u‖
2
2

‖y‖22
=
‖Φ†S(x)(u− n)−Φ†S(x)u‖

2
2

‖y‖22
=
‖Φ†S(x)n‖

2
2

‖y‖22
≤ ε2. (4)

Hence, for any ε2 ∈ (0, 1] we can find an n such that ((SC) ∧¬ (ε2C)).
This is different from noiseless case.
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Noisy Case Bernoulli-Rademacher Signals Given (SC)

Bernoulli-Rademacher Signals Given (SC)

Define v := Φ†S(x)n, and assume its |S(x)| elements are iid N (0, σ2v) and
independent of y. Define the chi-squared-distributed rv

Vs :=

s∑
n=1

[vn/σv]2 ∼ χ2(s). (5)

If s elements of x ∼ Rademacher, the probability of (ε2C) given (SC)

P{(ε2C)|(SC)} = P

{
Vs <

ε2s

σ2v

}
. (6)

Note P {Vs < s+ δ} > 0.5 for δ > 0.

For Bernoulli-Rademacher signals, in the best case scenario:

Given (SC), if ε2 ≥ σ2v then (ε2C) in a majority sense.
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Noisy Case Bernoulli-Gaussian Signals Given (SC)

Bernoulli-Gaussian Signals Given (SC)

Assume s non-zero elements of x ∼ N (0, σ2y), independent of v. Define

Xs :=

s∑
n=1

[xn/σy]2 ∼ χ2(s). (7)

The ratio Vs/Xs is an F-distributed rv Ws,s := Vs/Xs ∼ F(s, s).
Thus, the probability of (ε2C) given (SC) is

P{(ε2C)|(SC)} = P

{
Ws,s <

σ2y
σ2v
ε2

}
. (8)

Note P {Ws,s < 1 + δ} > 0.5 for δ > 0.

For Bernoulli-Gaussian signals, in the best case scenario:

Given (SC), if ε2 ≥ σ2v/σ2y then (ε2C) in a majority sense.
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Noisy Case Experiments

Experiments for several SNR (legend) given (SC)

(a) Rademacher (theoretical)
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(b) Zero-mean Gaussian (theoretical)
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(c) Zero-mean Laplacian (empirical)
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(d) Zero-mean Uniform (empirical)
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Noisy Case Setup

Noisy Case (assuming not (SC))

Consider (ε2C) is true but not (SC), and best case scenario for sparsity s:

S(x) = {1, 2, . . . , s};
x̂ lacks the first 0 < k < s elements, i.e., for n ∈ {1, . . . , k}(x̂n = 0);

x̂ has the others perturbed by v: n ∈ Ω\{1, . . . , k}(x̂n = xn + vn).

This means that:

S(x̂) ⊂ S(x), i.e., x̂ has no false detections;

missed detections do not influence estimations of support recovered;

values of true detections perturbed only by the noise.

Assume x and v are independent, (ε2C) given not (SC) becomes

1

‖x‖22

[
k∑

n=1

x2n +

s−k∑
n=1

v2n

]
≤ ε2. (9)
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Noisy Case Bernoulli-Rademacher Signals

Bernoulli-Rademacher Signals (assuming not (SC))

Define the rv

Gs−k :=

s−k∑
n=1

[vn/σv]2 ∼ χ2(s− k). (10)

When the non-zero elements of x are distributed Rademacher, and
vn ∼ N (0, σ2v), (ε2C) given not (SC) becomes

P{(ε2C) ∧ ¬(SC)} = P

{
Gs−k <

ε2s− k
σ2v

}
. (11)

Note P{Gs−k < s− k + δ} > 0.5 for δ > 0.

For Bernoulli-Rademacher signals in the best case scenario:

If
ε2s− k
σ2v

< s− k, then (ε2C) is false in a majority sense.
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Noisy Case Experiments

Experiments for several ε2 (labeled) & SNR (legend)

(a) Rademacher (theoretical) (b) Zero-mean Gaussian (empirical)
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Summary and Conclusion

Summary and Conclusion

In theory, we can test for exact recovery with x̂
?
= x.

In practice (finite precision), we must use a different criterion.

In the simulation of compressed sensing recovery algorithms, two
different exact recovery criteria have been used:

1 x is exactly recovered with respect to support if

S(x̂) = S(x) (SC)

2 x is exactly recovered with respect to normalized squared error if

‖x− x̂‖22
‖x‖22

≤ ε2. (ε2C)

We have shown that

each does not necessarily imply the other

ε2 limits the acceptable number of missed detections.

See the paper for more useful tips!
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