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Abstract: In this paper we consider design of control laws for a marine cooling system with
flow dependent delays by use of principles from feedback linearization. To deal with model
uncertainties and delay mismatches, a robust linear H∞ controller is designed for the feedback
linearized system. In this context, we apply a bilinear transformation to obtain a well-posed
H∞ problem. Robustness of performance for the resulting robust nonlinear control design is
evaluated through a simulation example where a comparison is made to a linear control design.

Keywords: Delay compensation, feedback linearization, robust control, cooling systems,
bilinear transformations

1. INTRODUCTION

Control of nonlinear systems is often achieved by use of
linear controllers designed for a linear approximation of
the nonlinear system at some chosen operating point. A
shortcoming of this approach is that validity of the linear
approximation is very often limited to a small region
around the chosen operating point. As a consequence the
performance of the linear controller is likely to deteriorate
as the system moves away from the operating point chosen
in the design [Franco et al., 2006]. One way of dealing
with this is by feedback linearization where the objective
is to find a state feedback control law and possibly a
change of variables to transform the nonlinear system
into a linear equivalent [Khalil, 1996]. However, to achieve
successful cancellation of nonlinearities in the system, the
plant model has to be exact. If the system is subject to
uncertainties, which is the case for most real processes,
the performance of the feedback linearization is degraded,
sometimes even to the point where instability occurs.

In this paper we consider application of feedback lineariza-
tion together with robust control design to a marine cool-
ing system with flow dependent delays. This system was in-
troduced in [Hansen et al., 2011a]. The use of linear robust
control design in combination with feedback linearization
has been investigated on several occasions, see for instance
[Franco et al., 2006] and [Chang et al., 1998]. In this paper
we take a heuristic approach to include time-varying state
delays in the feedback linearization to achieve a linear
and delay free equivalent system. However, as the marine
cooling system is not exempt from neither uncertainties
nor measurement noise, the cancellation of nonlinearities
and delays through feedback linearization cannot be exact.
Since the cooling system in question plays a vital role in
the operation of a marine vessel, robustness of performance
is an important aspect of the controlled cooling system.
Hence, it should be ensured that inexact cancellation by

the feedback linearization does not result in significant
deterioration of the closed loop system performance, or
even worse, causes instability. To this end, a linear H∞

controller is designed for the feedback linearized system to
deal with model uncertainties and delay estimation errors.
Robustness of performance is illustrated through a simula-
tion example, and is compared to a linear base-line control
design from [Hansen et al., 2011b]. The results shows a
clear improvement in both performance and robustness of
performance for the design approach applied in this paper,
compared to the linear reference design.

The structure of the paper is as follows: In Section 2 we
introduce the model of the marine cooling system consid-
ered in this paper. Section 3 deals with the transformation
of the nonlinear system into a linear equivalent using
feedback linearization. Section 4 describes robust control
design for the feedback linearized system, and performance
of the overall control design is evaluated through a simu-
lation example in Section 5. Finally, concluding remarks
are given in Section 6.

We make use of the following notation: R denotes the set
of real numbers while R+ denotes the set of non-negative
real numbers. Rn×m is the set of real n×m matrices and
C(M,N ) is the set of continuous functions mapping from
M to N . Vectors are written in bold, and In denotes the
n× n identity matrix, while 0n,m denotes the n×m zero
matrix.

2. MARINE COOLING SYSTEM MODEL

We consider the problem of designing robust nonlinear
control laws for the marine cooling system introduced
in [Hansen et al., 2011a]. A simplified diagram of the
cooling system is illustrated in Fig. 1. The circuit on the
left is denoted seawater (SW) circuit and has the single
purpose of pumping seawater through the primary (cold)



side of the heat exchanger. The objective is to remove
heat from the coolant circulating through the machinery
in the low temperature (LT) circuit on the right, i.e.,
on the secondary (hot) side of the heat exchanger. The
LT circuit contains various types of auxiliary machinery
in a parallel configuration, i.e. the consumers in Fig. 1
ranges from diesel generators to air condition condensers.
As a consequence, the individual consumer provides very
different heat loads to the cooling system and have various
flow requirements. To keep the model complexity to a
minimum, the same first order ODE model is applied to
all consumers. It is assumed that heat exchange only takes
place in the consumers of the cooling system, and in the
heat exchanger.

Heat exchanger Cons.

no. 1

Cons.

no. p

SW 

pump

LT pump

TSW,out(t)

TSW,in(t)

TLT (t)

Tin(t)

qLT (t)

q1(t) qp(t)
Tin(t−D1) Tin(t−Dp)

Q̇1(t) Q̇p(t)

qSW (t)

T1(t) Tp(t)

Fig. 1. Simplified layout of the cooling system considered
in this work.

Using notation from Fig. 1 the dynamics of the system is
governed by:

Ṫi(t) =
1

Vi

[

qi(t)(Tin(t−Di(q))− Ti(t)) +
Q̇i(t)

ρcp

]

(1)

Ṫin(t) =
1

VCC

[ p
∑

i=1

qi(t)(TLT (t)− Tin(t))

+qSW (t)
ρswcp,sw

ρcp
∆TSW (t))

]

, (2)

for i = 1, 2, . . . , p, where q denotes volumetric flow rate, V
is internal volume, T is temperature and Q̇ denotes heat
transfer. Furthermore, ρ and cp are respectively the density
and specific heat of the coolant, ∆TSW = TSW,in−TSW,out

and q = [q1, q2, . . . , qp]
T . Due to the size and layout

of the cooling system, there is a transport delay in the
coolant temperature from the heat exchanger to each of
the consumers. Delays are modeled by:

Di(q) =
i∑

j=1

am,j





p
∑

k=j

qk





−1

+
ac,i
qi

, (3)

where am,j and ac,i are positive, system specific constants.

In this setting, we define states, controllable inputs, and
exogenous inputs as:

x =







T1(t)
...

Tp(t)
Tin(t)







u =







q1(t)
...

qp(t)
qSW (t)







w1 =






Q̇1(t)
...

Q̇p(t)




 . (4)

With the definitions in (4) the state equations can be
represented as:

ẋ(t) =
m∑

i=1

fi(x(t),x(t−Di(u)))ui(t) +Bww1(t) , (5)

where x ∈ R
n, u ∈ R

m, w1 ∈ R
d, Bw ∈ R

n×d and fi(·)
are smooth vector fields defined on a subset of Rn.

We assume that the parameter varying delays are bounded,
i.e. Di(q) for i = 1, . . . ,m belongs to the set:

D :={D ∈ C(R,R); 0 ≤ D ≤ D < ∞ (6)

∀q ∈ R
p
+} .

To ensured delays are bounded entails according to (3)
that inputs must be strictly positive. In this context we
only consider situations where there is a positive heat
load and as a consequence the temperature difference of
the coolant at the in- and outlet of a consumer is always
positive, i.e. 0 < (Ti(t) − Tin(t − Di(q)) , ∀t ∈ R+. The
bilinear nature of the systems means that flow rates must
be strictly positive for the system to be at an equilibrium,
and it is not unreasonable to bound the flows, and thereby
the inputs such that: 0 < U ≤ u ≤ U .

Similar, disturbances are assumed to be bounded but
unknown, i.e. they belong to the set:

W :={w ∈ C(R,R); 0 < W ≤ w ≤ W < ∞ (7)

∀t ∈ R+} .

Initial conditions for the system in (5) are governed by:

x(0) = x0 , (8)

x(θ) = φ(θ) , θ ∈
[
−D, 0

]
, (9)

and we define that:

xt(θ) = x(t+ θ) . (10)

It is assumed that xt(θ) is available to the controller.

3. FEEDBACK LINEARIZATION DESIGN

From general feedback linearization theory it is well
known that the nonlinear state equations can be linearized
through state feedback of the form:

u = α(x) + γ−1(x)v , (11)

if the state equations follows the structure of:

ẋ = Ax+Bγ(x)[u− α(x)] , (12)

where A ∈ R
n×n, B ∈ R

n×m, α : Rn 7→ R
m, γ : Rn 7→

R
m×m, γ(x) is nonsingular in the domain of interest, and

the pair (A,B) is controllable [Khalil, 1996].

By writing γ as a function of both states and delayed
states using (3) to estimate the delays, i.e. γ(x,x(t −

D̂1), . . . ,x(t− D̂n)) the system in (5) is written as:

ẋ(t) = Bvγ(·)u(t) +Bww1(t) . (13)

Under invertibility assumptions on γ the system is lin-
earized through the feedback law:

u(t) = γ(·)−1v(t) , (14)

where v(t) is a linear control input.

Since delays in the case of the marine cooling system
depends on the input, a practical remark is in order.
The use of an input dependent delay estimate in the
feedback linearization has the immediate consequence that



the control law will depend on the current input. To avoid
this algebraic constraint, we approximate the delays by:

D̂i(q) ≈
i∑

j=1

am,j





p
∑

k=j

qk(t− τ)





−1

+
ac,i

qi(t− τ)
, (15)

where τ is a small positive constant, i.e. we use previous
input values to estimate the current delays.

To ease the notation in the following, we define:

Λ =
ρswcp,sw

ρcp
∆TSW (t) , (16)

Φ = TLT (t)− Tin(t) , (17)

Ψi = (Tin(t−Di)− Ti(t)) . (18)

Bringing (1) and (2) to the form of (12) results in:

ẋ =

Bv

︷ ︸︸ ︷












1

V1
0 . . . 0

0
. . .

...
...

1

Vp

0

0 . . . 0
1

Vcc













γ
︷ ︸︸ ︷







Ψ1 0 . . . 0

0
. . .

...
... Ψp 0
Φ . . . Φ Λ








u

︷ ︸︸ ︷






q1(t)
...

qp(t)
qSW (t)







+

Bw

︷ ︸︸ ︷











1

ρcpV1
0 . . . 0

0
. . .

...
...

1

ρcpVp

0 . . . . . . 0












w1

︷ ︸︸ ︷





Q̇1(t)
...

Q̇p(t)




 (19)

We need to ensure that γ is non-singular, and in this case
it is sufficient to look at the product of the diagonal and
check if this is nonzero in the domain of interest:

Λ

p
∏

i=1

Ψi 6= 0 , ∀t ∈ R+ . (20)

We have already argued that Ψi < 0, and a similar
argument can be applied for Λ: Since we only consider the
system during operation, the heat transfer from the LT
side of the system will ensure that ∆TSW will be strictly
negative, and we have that Λ < 0, ∀t ∈ R+.

From the state feedback law (11), and the fact that α(x) =
0, we get that:

u = γ−1(·)v =













1

Ψ1
0 . . . 0

0
. . .

...
...

1

Ψp

0

Φ

Ψ1Λ
. . .

Φ

ΨpΛ

1

Λ













v . (21)

Because the feedback linearization relies on exact can-
cellation of nonlinear terms, any model uncertainties or
mismatch between the estimated delay and actual delay
will degrade the performance of the feedback linearization.
This can be represented as:

ẋ = Bvγγ̂
−1v +Bww (22)

⇓

ẋ = Bv(I +∆)v +Bww , (23)

where γ̂ estimates the system nonlinearities and ∆ rep-
resents the mismatch between the estimated and actual
system nonlinearities due to uncertainties. However, rather
than using the representation in (23) we accommodate for
this uncertainty by adding an output disturbance term,
w2 ∈ R

n. This can be interpreted as a way of describing
additive norm bounded modeling uncertainties for output
feedback H∞ control [Su et al., 2002].

By this approach the feedback linearized system can be
represented as the stabilizable system:

ẋ = Bvv +Bww1 (24)

y = C0x+D0w2 ,

where C0, D0 ∈ Rn×n for this system are identity matrices.

This setup is illustrated in Fig. 2 an forms the basis for
the H∞ control design in the following.

+
+

+
+v

w1 w2

Bv

Bw

x y
s−1I C0

D0

Fig. 2. Linear equivalent of feedback linearized marine
cooling system with an additive uncertainty term, w2.

4. ROBUST CONTROL DESIGN

Design of the linear control input v(t) for the feedback
linearized system in (24) is done by use of robust control
theory. We use the standard 2×2 block formulation as
illustrated in Fig. 3. This means that:

G(s) = C(sI −A)−1B +D :=

[
A B
C D

]

, (25)

for the system given by the state space representation A,
B, C and D. Combining exogenous inputs, w1 and w2,
into a single vector and introducing an error vector, z,
penalizing the states and inputs, yields:

w =

[
w1

w2

]

(26)

z = x+ ρ0v (27)

where ρ0 > 0 is a scaling factor for the control penalty.

v(s) K(s)

G(s)

z(s)w(s)

y(s)

Fig. 3. The H∞ control problem in a 2×2 block formula-
tion.



We apply the partitioning from [Doyle et al., 1989] to (25)
to achieve:

G(s) =





A B1 B2

C1 D11 D12

C2 D21 D22



 (28)

where B, C and D have been partitioned according to z,
y, w and v, respectively.

With the definitions of ẋ, y, w and z for the marine
cooling system in question, we can write the matrices in
(28) as:

B1 = [Bw 0n,n ] (29)

B2 = Bv (30)

C1 = In (31)

C2 = In (32)

D11 = 0n,(p+n) (33)

D12 = ρ0In (34)

D21 = [0n,p In] (35)

D22 = 0n,n (36)

We now have a 2×2 block formulation of the robust control
problem. However, it is evident from Fig. 2 and (24) that
the system has poles on the imaginary axis. This means
we are dealing with a nonstandard problem which cannot
be solved with standard H∞ theory directly. To this end
we apply a bilinear transformation to shift the poles of
the feedback linearized system from the origin and trans-
form the system model into a close approximation which
allows standard H∞ control design. Once the controller is
designed for the approximate model, the inverse bilinear
transformation is applied to get the final controller for the
original plant model [Chiang and Safonov, 1991].

We apply the jω-axis pole shifting transformation de-
scribed in details in [Chiang and Safonov, 1992] given by:

s =
s̃+ p1

( s̃
p2

) + 1
, (37)

where p1, p2 < 0 are the endpoints of a circle being mapped
by (37) from the left s-plane into the jω̃-axis of the s̃-plane.
Correspondingly, the inverse transformation is given by:

s̃ =
−s+ p1
( s
p2

)− 1
. (38)

An important aspect of the bilinear transformation in (37)
is the choice of p1 and p2. A property of the weighted
mixed sensitivity problem formulation is that any unsta-
ble plant pole within the specified control bandwidth is
approximately shifted to its jω-axis mirror image once the
loop is closed with an H∞ controller. Since the bilinear
transformation maps the poles from the jω-axis in the s-
plane to a circle centered at −(p1 + p2)/2 in the s̃-plane,
the parameter p1 in (37) and (38) plays an essential role
when placing dominant closed loop poles in the s-plane.
Contrary to p1, the choice of p2 is of little importance to
the design, and can be chosen such that: p2 ≫ control
bandwidth [Chiang and Safonov, 1991].

Having mapped the system to the s̃-plane using appropri-
ate values for p1 and p2, we find a H∞ optimal controller,
K(s̃), by solving the two standard 2-Riccati equations from
[Doyle et al., 1989]. The final controller, K(s), is then
obtained by applying the inverse bilinear transformation
from (38) to K(s̃).

5. SIMULATION EXAMPLE

To clarify the design methodology in its entirety as well
as to evaluate both performance and robustness of perfor-
mance we consider a simulation example where p = 2, i.e.
we have that:

Ṫ1(t) =
1

V1

[

q1(t)(Tin(t−D1(q))− T1(t)) +
Q̇1(t)

ρcp

]

Ṫ2(t) =
1

V2

[

q2(t)(Tin(t−D2(q))− T2(t)) +
Q̇2(t)

ρcp

]

Ṫin(t) =
1

VCC

[ 2∑

i=1

qi(t)(TLT (t)− Tin(t))

+qSW (t)
ρswcp,sw

ρcp
∆TSW (t))

]

,

where the thermodynamic parameters for the cooling
system is illustrated in Table 1.

Table 1. Thermodynamic parameters for cool-
ing system.

cp ρ cp,sw ρsw VCC V1 V2

4181 1000 3993 1025 20 13.5 13.5

The corresponding delays are given by:

D1(q) =
am,1

q1 + q2
+

ac,1
q1

(39)

D2(q) =
am,1

q1 + q2
+

am,2 + ac,2
q2

(40)

From (21) we find γ−1 as:

γ−1 =










1

Ψ1
0 0

0
1

Ψ2
0

Φ

Ψ1Λ

Φ

Ψ2Λ

1

Λ










(41)

We then have that:

ẋ =









1

V1
0 0

0
1

V2
0

0 0
1

VCC









v +








1

ρcpV1
0

0
1

ρcpV2

0 0







w1 (42)

y = I3x+ I3w2 . (43)

We choose ρ0 = 1.2 and partition the system matrices
according to (29)-(36). For the bilinear transformation we
choose p1 = −10 × 10−3, p2 = −100 and obtain a H∞

controller using hinfsyn() in Matlab.

To evaluate performance we apply the proposed controller
to a nonlinear simulation model of the marine cooling
system and compare the response with the base-line (PI)
control design presented in [Hansen et al., 2011b]. In the
first simulation scenario we consider the nominal case,
where the system is subjected to step-wise disturbances
while at the operating point used in the design for the
base-line controller. To evaluate and compare robustness
of performance for the two designs we also consider param-
eter perturbations of ± 50% for V1, V2, VCC , am,1 and am,2

resulting in 32 combinations of extreme values. These com-
binations are all tested, and responses are plotted along the



response for the nominal system for both controller design
Parameters for the first simulation scenario are presented
in Table 2 and disturbances are plotted in Fig. 4.

Table 2. Parameters for 1st simulation run.

T1,ref T2,ref Tin,ref Tsw,in Tsw,out V1

65 70 36 24 40 13.5±50%

am,1 am,2 ac,1 ac,2 VCC V2

30±50% 40±50% 20 10 20±50% 13.5±50%
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Fig. 4. Disturbances Q1(t) and Q2(t).

Responses for the base line control is shown in Fig. 5 while
the response for the control design presented in this paper
is illustrated in Fig. 6.

0 0.5 1 1.5 2

x 10
4

30

40

50

60

70

80

90

Time [s]

T
e

m
p

e
ra

tu
re

 [°
C

]

T
1,ref

T
2,ref

T
in,ref

T
1

T
2

T
in

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

Time [s]

 V
o

lu
m

e
tr

ic
 f

lo
w

 r
a

te
 [

m
3
/s

]

q
1

q
2

q
SW

Fig. 5. Temperature response and corresponding input
signals for base-line controller

Comparing Fig. 5 and Fig. 6 it is evident that the control
design presented in this paper does not suffer from the
same transient peaks during disturbance steps as the base-
line control. However, due to the lack of integral action
in the H∞ controller, the temperature response for this
control design is subject to a small steady state error.
This could be avoided by introducing an integrator to the
H∞ controller as in [Su et al., 2002], which however, is
outside the scope of this paper. The results also shows that
even under considerable variations of system parameters
the closed-loop system controlled by the control design
proposed in this paper performs almost identical to the
nominal one. For the case of the base-line control, the pa-
rameter variations does influence the closed-loop response,
but never to the point where instability occurs.
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Fig. 6. Temperature response and corresponding input sig-
nals for H∞ controller applied to feedback linearized
system.

Next, we consider a scenario where the temperature ref-
erences are changed, such that the base-line control is no
longer at the operating point used in the design. We then
subject the system to the same disturbances as in the
previous case. Parameters for the second simulation run
are shown in Table 3.

Table 3. Parameters for 2nd simulation run.

T1,ref T2,ref Tin,ref Tsw,in Tsw,out V1

55 60 40 24 40 13.5±50%

am,1 am,2 ac,1 ac,2 VCC V2

30±50% 40±50% 20 10 20±50% 13.5±50%

Responses for the base-line control are plotted in Fig. 7
while the responses for the proposed design are plotted in
Fig 8.
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Fig. 7. Temperature response and corresponding input
signals for base-line controller

As before, parameter variations does influence the closed
loop response for the base-line design, while they are
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Fig. 8. Temperature response and corresponding input sig-
nals for H∞ controller applied to feedback linearized
system.

barely visible in the closed loop response for the control
design presented in this paper. The change in operating
conditions affects the disturbance rejection performance
of the base-line control resulting in increased transient
peaks when the disturbances are stepped. Contrary, the
change in operating conditions causes no visible change
in disturbance attenuation performance for the proposed
control design.

6. CONCLUDING REMARKS

We have presented a heuristic but systematic approach to
design a robust nonlinear controller for a marine cooling
system with flow dependent delays. The design methodol-
ogy was comprised by principles from feedback lineariza-
tion to deal with delays and nonlinearities, while a H∞

control design was used to ensure robustness towards
model uncertainties and disturbances. Robustness of per-
formance for the composite control design was illustrated
through a simulation example. Results from the simulation
showed that robustness towards both parameter variations
and changes in operating conditions for the proposed
design was significantly improved compared to a base-
line PI control design. From this it is concluded that the
design approach proposed in this paper yields a simple,
yet effective way of compensating delays and nonlinearities
while maintaining robustness of performance. However,
the control does require some storage of data as the control
law relies on previous values of one of the states. Also,
lack of integral action in the proposed design resulted
in a small steady state error, which will be addressed in
future works. Future works also includes verification of the
proposed design through implementation on a full scale
cooling system aboard a container vessel in service.
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