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Control Configuration Selection for Multivariable Descriptor
Systems

Hamid Reza Shaker and Jakob Stoustrup

Abstract— Control configuration selection is the procedure
of choosing the appropriate input and output pairs for the
design of SISO (or block) controllers. This step is an important
prerequisite for a successful industrial control strategy. In
industrial practices it is often the case that the system, which is
needed to be controlled, is either in the descriptor form or can
be represented in the descriptor form. Singular systems and the
differential algebraic equation (DAE) systems are among these
systems. Descriptor systems appear in the variety of fields to
describe the practical processes ranging from power systems,
hydraulic systems to heat transfer, and chemical processes. The
focus of this paper is on the problem of control configuration
selection for multivariable descriptor systems. A gramian-
based interaction measure for control configuration selection of
such processes is described in this paper. The proposed MIMO
interaction measure is the extension of its gramian-based
analogous counterpart, which has been proposed for the input—
output pairing as well as for the controller architecture
selection of the processes with the standard state-space form.
The main advantage of this interaction measure is that it can be
used to propose a richer sparse or block diagonal controller
structure. The interaction measure is used for control
configuration selection of the linearized CSTR model with
descriptor from.

1. INTRODUCTION

HE technological world of today has been witnessing

the increased complexity due to the rapid development
of the process plants and the manufacturing processes. The
computational complexity, the reliability problems and the
restrictions in communication make the centralized control
of such large-scale complex systems expensive and difficult.
To cope with these problems, several decentralized control
structures have been introduced and implemented over the
last few decades [1]. The decentralized controllers have
several advantages, which make them popular in industry.
The decentralized controllers are easy to understand for
operators, easy to implement and to re-tune [1],[2].
The decentralized control systems design is a two-step
procedure. The controller structure selection and input-
output pairing is the first main step and the controller
synthesis for each channel is the second step of the
decentralized control. The focus of this paper is on pairing
and the controller structure selection of the decentralized
control systems. This issue is a key problem in the design of
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the decentralized and distributed control systems, which
directly affects the stability and the performance of the
control systems. The interaction measures play an important
role in the suitable pairing and the controller structure
selection for the decentralized and the distributed control.
Interaction measures make it possible to study input-output
interactions and to partition a process into subsystems in
order to reduce the coupling, to facilitate the control and to
achieve a satisfactory performance. The interaction
measures have received a lot of attention over the last few
decades [2]-[4]. There are two broad categories of
interaction measures in the literature. The first category is
the relative gain array (RGA) and its related indices [5]-[10]
and the second category is the family of the gramian-based
interaction measures [11]-[14].

The most well-known and commonly used interaction
measure is the relative gain array (RGA), which was first
proposed in [5]. In the RGA, d.c. gain of the process is used
for the construction of the channel interaction measure. The
RGA is not sensitive to delays and more importantly it
considers the process just in the particular frequency.

The RGA has been studied by several other researchers (see,
e.g. [6],[7]). There are also other similar measures of
interaction, which use dc gain of the process e. g. the NI (the
Niederlinski index) [8].

The NI (the Niederlinski index) does not provide more
information for pairing compared to RGA. The RGA and the
NI have been extended for input-output pairing of unstable
MIMO systems in [2]. The relative interaction array (RIA) is
an interaction measure, which is similar to RGA and it is
based on considering the interaction as an unmodelled term
atd.c.

RIA does not provide more information than the RGA about
the channel interactions of the process. These indices use the
model of the processes at zero frequency. In [7], [9], the
relative dynamic gain array (RDGA) was proposed for the
first time. The RDGA shows how the interaction varies over
the frequency. The idea is further generalized in [10] by the
generalized relative dynamic gains (GRDG). This method
was mainly proposed for 2 x 2 system.

The second category of the interaction measures is the
family of the gramian based methods. A method from this
category was first proposed in [11] and further in [12]. In
this category, the observability and the controllability
gramians are used to form the Participation Matrix (PM).
The elements of the PM encode the information of the
channel interactions. PM 1is used for pairing and the
controller structure selection. The Hankel Interaction Index
Array (HIIA) is a similar interaction measure, which was



proposed in [13]. The gramian-based interaction measures
have several advantages over the interaction measures in the
RGA category. The gramian-based interaction measures take
the whole frequency range into account rather than a single
frequency. This family of the interaction measures suggests
more suitable pairing and allows more complicated
controller structures. For more details on the applications
and the differences between two main categories of the
interaction measures, see [12]-[15].

The results on the gramian-based interaction measures,
which have been proposed so far, only support systems in
the ordinary state-space form. However, in industrial
practices it is often the case that the system, which is needed
to be controlled, is either in the descriptor form or can be
represented in the descriptor form. Singular systems and the
differential algebraic equation (DAE) systems are among
these systems. Descriptor systems appear in the variety of
fields to describe the practical processes ranging from power
systems, hydraulic systems to heat transfer, and chemical
processes[18],[19].

In this paper, a gramian-based interaction measure is
extended to support the descriptor systems. The proposed
interaction measure is used for pairing and the controller
structure selection.

The paper is organized as follows. In the next section, we
review the concept of the gramians for the ordinary systems
as well as descriptor systems. The interpretation of the
controllability and observability gramians is also discussed
in this section. Section III presents how gramians can be
used to quantify the channel interactions for descriptor
systems. The application of the proposed interaction measure
in pairing and the controller structure selection is explained
in this section. In Section IV, the proposed interaction
measure is used for pairing and the controller structure
selection for CSTR model in the descriptor from. Section V
concludes the paper.

The notation used in this paper is as follows: M~ denotes the

transpose of matrix if M € R™" and complex conjugate

nxm

transpose if M < C"" . The standard notation >, > (<, <)is

used to denote the positive (negative) definite and
semidefinite ordering of matrices. Structure(H (s)) denotes
the structure of a MIMO system with transfer function. For a
pxp MIMO system H(s) with input «(:)e R” and output

y()eR”, Structure(H(s)):I:hij:I is a symbolic array
pxp

where », ==, if there exist a subsystem in # (s) with input

u,and output y,. Otherwise: », = 0.

II. CONTROLLABILITY AND OBSERVABILITY GRAMIANS

The controllability and the observability gramians are
well-known matrices, which are widely used to check the
controllability and the observability of the linear dynamical
systems. The controllability and observability gramians
show how difficult a system is to control and to observe. The
gramians are also widely used in the process of model order
reduction [16],[17]. For dynamical systems with the minimal
realization:

G(s):=(A,B,C.D), (D
where G (s) is the transfer matrix with the associated state-
space representation:

x(2) = Ax(t)+ Bu(t), x(t)eR",u(t)eR?”,

2
y(t) = Cx(¢t) + Du(t), y(t)eR?,
the gramians are defined as:
W, = J.weATBB*eAtfd'r,
’ 3)

o

W, = [ et i ce  ar,
0
which are given by the solutions of the Lyapunov equations:

AW, +W_ A" +BB =0,
. . “
AW +W A+CC=0.

For stable A , they admit unique positive definite solutions
W, >0 and W, >0 , which are the controllability and the

observability gramians respectively.

In practice it is often the case that the system, which is
needed to be controlled and to be studied, is described by a
set of differential algebraic equations and therefore does not
have the ordinary state-space form (2). These types of
systems can be represented in the descriptor. The well-
known singular systems are among these systems.

For a dynamical system with descriptor form:

Ex(t) = Ax(t) + Bu(1),
y(t) = Cx(t),

x(t)eR", u(t)e R?, )
y(r) e R?,

where Rank(E)<n and G(s) is the associated transfer

matrix:
G(s)=(E,A,B,C), 6)

the controllability gramian is decomposed into a causal
gramian R_and a noncasual gramian R _ which are defined

as[20]-[23]:

R = | @, BB ™D, dr, )
0
-1
R,=> @,BB' @, (8)
k=-h
W =-R+R,_, €

where @, is Laurent parameter in series expansion:

(SE-4)"'=Y @', (10
with: -
fQFJk (ﬂP 50
@, :—j {0 OJ (11)
HO ° }P k<0
0o -nN "



The positive integer 4 is the length of the longest chain of
generalized eigenvectors of (sE - A) corresponding to the
eigenvalue s = . P and Q are obtained from Weierstrass-

Kronecker decomposition of the pencil matrix.
The observability gramian for a descriptor system is defined
analogously:

0, = J.wd)o*ed)“*A*TC*CeAm“Td)odz', 12)
0
-1
0,=>ao/cco, (13)
k=—h
W =0+0,_. (14)

The controllability gramians are solutions to the following
Lyapunov-like equations [20]-[23]:

O AR +RA® +® BB D =0, (15)
®_ER E'® -R_+®_ BB'® =0, (16)
®_ EWE® +® BB® +d_ BB O
D . D . a7
+ (@, +—)AW_ +W A (D, +—) =0.
2 2

Dually for the observability gramians
equations are [20]-[23]:

Lyapunov-like

OSAO +OAD +DCCD, =0, (18)
® EO0_ED -0, +0 C'CD =0, (19)

O EWED +® CCO, +d CCO_,
20

q)—l *oE q)—l
(@, +—) AW + W AD, +—)=0.
2 2

III. INTERACTION MEASURE

In this section, an interaction measure for the MIMO
processes with descriptor form is built upon the notion of the
gramians. The trace of the cross gramian is used as a
convenient basis to present the channel interaction and to
select the most appropriate controller structure.

For a MIMO dynamical system with descriptor form (6), we
have:

2D

A set of elementary SISO systems can be associated to
this MIMO system, such that each SISO system has a single

input u (1) and single output y (z) . The elementary systems

are in the descriptor form:

G,(s)=(E,Ab,,c), (22)

with gramians W_ and W, . The controllability gramian
Ww_,and the observability gramian W, for the elementary

systems are the solutions to:

® AR, +R,AD, +Dbb O =0, (23)
®_ER E® -R_+® bb'® =0, (24)

O EWE® +®bb O +® bb O
(25)

@ | . o .
(D, + —)AW_+W_A (P +—) =0.
2 T 2

Dually for the observability gramians
equations are [20]-[23]:

Lyapunov-like

D A0, +O0 AD +D Tcc[ D =0, (26)
® E0_E® -0, +® cc® =0, (27)

O EWE® +® cc'® +® cc '@
(28)

q)—l oar ¢)4
(@, +—) AW +W AD, +—)=0.
2 2

In the following lemma, we show that the system gramian
for a descriptor system can be expressed in terms of the
gramians of the elementary systems.

Lemma 1. Let W, and W, be the controllability and the

observability gramians of a MIMO dynamical system with
descriptor form (6) and W_ and W  be the controllability

and observability gramians for the elementary systems (22).
Then:

WC

W
(29)

P
W, = Zwm.
i=1

Proof:

For the elementary systems (22), we have :
O EW E® +®bb'® +® bbb D

1

*

@ . @
(@, + —AW_+W_A (O +—) =0.
2 ¢ v 2

for j=1,....p.

If we add all these equations:

»
SO EW ED +D b O+ _bb O (D +

=1

o . o,
VAW, + W, A (@, + —)
3 ot Wy 3

=0.

Equivalently:



14 14 14
O ESWIED +@ (b0 +@ (3 bb D

j=1 j=1 j=1

-1

@ ’ ’ . @
+(CI>O+T")A(Z W)+ QW A (®0+?'): 0

j=1 j=1

P
On the other hand, we have: BB" = > b b," , which leads to:
j=1

»
O EQW)IE® +® BBO +®_ BB G

i=t

' (30

@ 2 > . o
+(D, +T")A(Z W)+ QWA (D, + ?I): 0.

=1

This is exactly the Lyapunov-like equation (17), for
controllability gramian W_of the original MIMO system.

Hence:

»
Wo=>Ww_.

j=1
For the observability gramian also the results can be proven
in the similar way.

A direct result of this lemma is that:

WW, =W HE W= > W W).

i=1 j=1

€)Y

The information of the channel interaction which is obtained
from the gramians of elementary systems is encompassed
into the so-called participation matrix (PM):

¥ =y, |eR™7,

where:

trace |:WC ij :|

v, = (32)

trace [WCWO ]

P P
Notethatogy/[/_<l andzzwlyzl.

=1 j=1

The participation matrix highlights the elementary
subsystems, which are more important in the description of
MIMO systems, and in this way it shows the suitable pairing
and the appropriate controller structure to select.

For pairing and controller structure selection, the nominal

model G_(s) needs to be obtained. The nominal model is a

model, which is obtained by keeping some of the elementary
subsystems of the actual MIMO process and assuming the
rest as zero. For example, assume that one of the ordinary
methods for pairing is used and a decartelized control is
synthesized. If the inputs and outputs are re-labeled, one
only needs to design p independent SISO controller loops,

for elementary diagonal subsystems. In this case:

G ()= diag(GH(s),Gzz(s),...,GW(s)) . (33)
The designed controller is:
C(s) = diag(Cl(s),Cz(s),...,CP(s)) . (34)

The elements of the PM shows which elementary
subsystems are significant and should be considered in

nominal model. When v, is small , the associated

elementary subsystem to the pair (i, j) is either hard to

control or hard to observe. This shows that it does not have
any significant effect in the actual model transfer function

and need not be kept in nominal model. When v, is larger

that 1/ p® , some states in the elementary system with

output yland input u are easy to control and easy to

observe and therefore G, is good candidate to be kept in the
nominal system. The suitability of the pairing and the
performance of the controller structure is highly depends on
how close the sum of the chosen v, elements to one is.

When the sum of the chosen v, elements are close to one,

the nominal and the actual model are close to each other and
the error is not significant. The complexity of the selected
controller structure depends on the number of the

v, elements. In the completely decentralized control, which

is the least complicated controller structure, the number of
the chosen elements would be p .

For example consider a 3 x 3 process model with PM:

[ 0.1833 0.1685 0.0861 W‘

¥'=1 01200 00445 0.1783 |

| 0.0639 0.0691 0.0863 |

To pair inputs outputs for decentralized structure, we have
to select one element per row and one element per column.
their

therefore associated

2
Vil o ¥a > 1/ 7,
elementary subsystems are good candidates to be involved in
nominal model.

The best paring for a decentralized controller can be
obtained with (u,,y,), («,, y,),(u,, y,) which are associated
with:

Y=y +y, +y, =04307

The structure of the nominal model will be:

o

Strucmre(Gg(s)) =] 0 0

o =
A simple controller structure for selection is the structure

of G;l(s) :

*
% O

Structure(C(s)) = Structure(G;l(s)) =

o
| |

|
| o
| o



If practically is possible to use more complicated

controllers  than decentralized control, y could be

commanded from u R and then we will have:

Y=y +ty,ty,, ty, =0599.

The structure of the nominal model then will be:

Structure(Gg(S)) = I 0 0 = } .
| o = o

A simple controller structure to select:

[

0
Structure(C(s)) = Structure(G;](s)) = I 0 0 =
*

| o

In this case the structure is partially decentralized.

One of the main advantage of the proposed method for
control configuration is that in the cases where a fully
decentralized controller results in unacceptably poor closed
loop performance, the PM can be used to propose a richer
sparse or block diagonal controller structures. The
participation matrix might be sensitive to input and output
scaling. One way to deal with this issue is discussed in [26].

IV. PAIRING AND CONTROLLER STRUCTURE SELECTION FOR
A CSTR WITH A HEATING JACKET

The systems of differential and algebraic equations
(DAESs) describe a wide range of chemical processes. The
differential equation parts usually arise from the mass and
the energy dynamic conservation equations, and the
algebraic equations usually consisting of empirical
correlations, thermodynamic equilibrium relations, etc. The
algebraic equations are often singular in nature and therefore
the resulting models have descriptor form rather than
standard state-space from [25]. In this section, the interaction
measure is used for pairing and the controller structure
selection of a CSTR with a heating jacket.

The detailed model is a MIMO nonlinear model and is
available in [24]. The linearized model is in the descriptor
form is described by [24]:

Ex(t) = Ax(t) + Bu(t), x(t)eR’,u(t)eR”’,

y(1) = Cx(1), y(r)eR’,

where:

[1 0 0 0 0]
01 00 0 }
E=lo 0o 1 0 o,
000 1 0 }
[0 0 0 0 o]
[0.93976 0 00761 0 0 T
063976 -03 00761 0 0 }
A=| 35544 0 07227 0  27778x10° |,
0 0 -0.1 0 2.7778x107* }
| o 0 25000 -25000 1 |
[ 0.3404 0
03404 0
B=115920 0 oo

The participation matrix (PM) for this system is obtained
using the proposed method:

| 0-000199414925755 0.002370821676489]
7{0.008799176151784 0.988630587245973J
The v, is significant compared to other elements. The =

associated to the best possible pairing for the completely
decentralized control is:
Y =w,, +v,, = 0.988830002171728.

The structure of the nominal model for this pairing will
be:

T+ 0]
Structure(G (s)) = LO *J .

The suggested simple control structure for this pairing is:

I A
Structure(C(s)) = Structure(G =~ (s)) = L J .
0 *k
If it is allowed to use more complex controllers than
decentralized control, y, could be commanded from «, and

then we have:
Y=y, ty, +ty, =0.997629178323511,

associated with:

[ 0]
Structure(G (s)) = L* *J .

The simple control structure for this pairing is:

y [* o]
Structure(C(s)) = Structure(G_~(s)) = L* *J .

The ¥ for this structure is very close to one.



V. CONCLUSION

Control configuration selection for descriptor systems
which are systems that appear in the variety of fields ranging
from power systems, hydraulic systems to heat transfer, and
chemical processes has been addressed in this paper. A
general gramian-based interaction measure for the control
configuration selection for such systems has been proposed.
The proposed MIMO interaction measure is the extension of
its gramian-based analogous counterpart, which was
proposed for input—output pairing as well as for the
controller architecture selection for the processes with
standard state-space. The proposed measure reveals more
information about the ability of the channels to be controlled
and to be observed and provides hints for the selection of the
richer controller structures such as triangular, sparse and
block diagonal.
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