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Abstract—The reference current generation (RCG) is a crucial
part in the control of a shunt active power filter (APF). A
variety of RCG techniques have been proposed in literature.
Among these, the instantaneous reactive power theory, called
pq theory, is probably the most widely used technique. The
pq theory offers advantages such as satisfactory steady-state
and dynamic performance, and at the same time simple digital
implementation, however its application was limited to three-
phase systems. To exploit the advantages of pq theory in single-
phase systems, the single-phase pq theory has been proposed
recently. In this paper, a simple and effective implementation
of the single phase pq theory for single-phase shunt APFs
is proposed. The suggested approach is based on employing
second order generalized integrators (SOGI), and a phase locked
loop (PLL). To fine tune the control parameters, a systematic
design procedure based on the pole-zero cancellation, and the
extended symmetrical optimum theory is proposed. During the
design procedure, the effects of grid frequency variations and the
presence of distortion in the grid voltage are taken into account.
Finally, to confirm the effectiveness of the suggested approach,
simulation results are presented.

I. INTRODUCTION

Nowadays, with ever increasing use of power electronic-
based devices/equipements, the harmonic contamination in
electrical networks is growing rapidly. Harmonics increase
the losses in electrical equipments, cause malfunction of
protective devices, create interference with communication
circuits, damage sensitive loads, and result in perturbing torque
and vibration in electrical motors [1], [2]. Therefore, the
compensation of harmonics has become a serious concern for
both electricity suppliers and consumers [3].

To deal with harmonic problems, as well as to provide
reactive power compensation, passive filters have been em-
ployed traditionally. These filters have a relatively low cost
and high reliability, but they suffer from many disadvantages,
such as large size, resonance susceptibility with the load and
line impedances, de-tuning caused by aging, fixed compen-
sating characteristics, etc [4]. Thus, in order to avoid these
shortcomings, the active power filters (APFs) have attracted

considerable attentions.
An APF is a power electronic converter-based device which

is intended to mitigate the power quality problems caused
by nonlinear loads. Several topologies for APFs have been
proposed, with the most widely used being the shunt APFs
(SAPFs) [5], [6]. As shown in Fig. 1, a SAPF is connected in
parallel with the nonlinear load, and controlled to inject (draw)
a compensating current, iC , to (from) the grid such that, the
source current, iS , is an in-phase sinusoidal signal with the
grid voltage, vg , at the point of common coupling (PCC).

Extraction of the reference compensating current is un-
doubtedly the most crucial part in the control of a SAPF [7]. A
variety of reference current generation (RCG) techniques has
been proposed in literature. These approaches can be broadly
classified into time-domain and frequency domain techniques.

The digital Fourier transform (DFT), fast Fourier transform
(FFT), and sliding DFT (SDFT) (also known as recursive
DFT (RDFT)) are the most renowned approaches in the
frequency-domain [8]-[10]. These approaches provide a good
precision in detecting harmonics, and can be applied to both
single-phase and three-phase APFs. Despite these prominent
advantages, the Fourier transform based approaches suffer
from some common drawbacks such as: high computational
burden, and high memory requirement [9]. Moreover, because
of the relatively long time (typically more than two cycles
of fundamental frequency) needed for computation of Fourier
coefficients, these approaches are suitable for slowly varying
load conditions [11].

The instantaneous active and reactive power theory (also
called pq theory) is probably the most widely used time-
domain RCG technique [12]. This theory was originally de-
veloped for three-phase, three-wire systems by Akagi et al.
in 1983 [13], [14], and since then it has been significantly
extended by different researchers [15], [16]. The pq theory
has a relatively fast dynamic response and low computational
burden compared to the frequency-domain approaches [9], but
its application was limited to three-phase systems.
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Fig. 1. A single-phase SAPF.

To exploit the advantages of the pq theory in single-phase
APFs, the single-phase pq theory has been proposed in [17],
[18]. In this theory, the load current and the grid voltage are
shifted by 90◦, enabling the representation of the single-phase
system as a pseudo two-phase (αβ) system. In this way, the
three-phase pq theory can be applied to a single-phase system.
A major drawback regarding this theory is that the grid voltage
is considered as a pure sine wave. As a consequence, presence
of any distortion in the grid voltage significantly degrades the
extraction of the reference current. On the other hand, because
of the frequency dependency of the techniques used to realize
a phase shift of 90◦, variations of the grid frequency give rise
to errors in the reference current estimation.

In this paper, a simple and effective implementation of the
single phase pq theory for single-phase SAPFs is presented.
The suggested approach is based on employing second order
generalized integrators (SOGI), and a phase locked loop
(PLL). To fine tune the control parameters, a systematic
design procedure based on the pole-zero cancellation and the
extended symmetrical optimum theory is proposed. During
the design procedure, the effects of grid frequency variations
and voltage distortions are taken into account. Finally, the
effectiveness of the suggested approach is confirmed through
simulation results.

II. OVERVIEW OF SINGLE-PHASE PQ THEORY

In order to exploit the advantages of the pq theory in single-
phase APFs, the single-phase pq theory has been proposed in
[17], [18]. In this theory, the load current and the grid voltage
at the point of common coupling (PCC) are shifted by 90◦,
enabling the representation of the single-phase system as a
pseudo two-phase (αβ) system. The original load current and
grid voltage are considered as the α-axis quantities, whereas
the 90◦ phase-shifted version of these signals are considered as
the β-axis quantities. To achieve a phase shift of 90◦, different
approaches such as using the all pass filter [18], the Hilbert
transformation [20], and the transfer delay [21] have been
proposed.

A common assumption in the single-phase pq theory is
to consider the source voltage as a pure sine wave, i.e.,

vs(t) = V cos(ωt+ φ), where V , ω, and φ are the source
voltage amplitude, frequency and phase angle, respectively.
In this case, the αβ coordinate representation of the source
voltage is

[
vgα(ωt)
vgβ(ωt)

]
=

[
vg(ωt)

vg(ωt− π/2)

]
=

[
V cos(ωt+ φ)
V sin(ωt+ φ)

]
.

(1)
Similarly, the αβ coordinate representation of the load current
is [

iLα(ωt)
iLβ(ωt)

]
=

[
iL(ωt)

iL(ωt− π/2)

]
. (2)

Once the β-axis quantities are obtained, the instantaneous
active and reactive powers drawn by the nonlinear load can
be expressed as

[
p
q

]
=

[
p̄+ p̃
q̄ + q̃

]
=

[
vgα vgβ
−vgβ vgα

] [
iLα
iLβ

]
(3)

where, p and q are the instantaneous active and reactive
powers, respectively. The dc components p̄ and q̄ represent
the fundamental active and reactive powers, respectively, and
the ripple components p̃ and q̃ are the oscillating active and
reactive powers, respectively.

The fundamental active current drawn by the nonlinear load
can be obtained by taking the inverse of (3) as

[
i′Lα,p
i′Lβ,p

]
=

[
vgα vgβ
−vgβ vgα

]−1[
p̄
0

]
=

1

v2gα+v2gβ

[
vgα
vgβ

]
p̄.

(4)
Since, only the α-axis quantities are belong to the original
single-phase system, therefore

i′L,p = i′Lα,p =
p̄

v2gα + v2gβ
vgα. (5)

The reference compensating current can be simply determined
by subtracting i′L,p from the load current iL as

i∗C = iL − i′L,p = iL −
p̄

v2gα + v2gβ
vgα (6)

where, the term p̄ is typically determined by passing the
instantaneous power p (i.e., p = vgαiLα + vgβiLβ) through
a LPF.

To provide a self supporting dc-bus property for APF, a term
pdc is also added to (6) as follows

i∗C = iL −
(p̄+ pdc)

v2gα + v2gβ
vgα. (7)

This term is typically generated by passing the difference
between the reference value of the dc-bus voltage and its actual
value through a proportional-integral (PI) controller.

The major drawback regarding the extraction of reference
compensating current using (7) is that, the extraction accuracy
highly depends on the grid voltage quality. In other words,



presence of distortion in the grid voltage results in errors in
the reference current generation.

III. SUGGESTED RCG TECHNIQUE

Fig. 2(a) illustrates the basic scheme of the suggested RCG
technique, in which the SOGI structures are employed to
generate the filtered in-phase and quadrature-phase versions
of the grid voltage and load current, i.e., v′gα, v′gβ , i′Lα, and
i′Lβ , respectively. The scheme of a SOGI is illustrated in Fig.
2(b), where k is the damping factor [23]. In order to obtain a
balanced set of in-quadrature outputs with correct amplitudes,
the center frequency of the SOGI structure must be equal to
the input signal frequency. To achieve this goal, the center
frequency is adjusted by an estimation of the grid voltage
frequency. The estimated frequency is obtained by using a syn-
chronous reference frame PLL (SRF-PLL). SRF-PLLs have a
long history of use in three-phase systems, however in single-
phase applications, their implementation is more complicated,
because of the lack of multiple independent input signals [24],
[25]. To overcome this problem, the generation of a secondary
orthogonal phase from the original single-phase grid voltage
is necessary. In the suggested approach, as shown, the same
in-phase and quadrature-phase versions of the grid voltage
(i.e., v′gα, and v′gβ) that are used to extract the reference
compensating current, are employed in the SRF-PLL. Thus,
the need for generating a secondary orthogonal phase for the
SRF-PLL is eliminated. At first glance, one may argue that,
the precise extraction of the reference compensating current
requires considering a high level of filtering (small value of
the damping factor k) for SOGI structures, which results in a
relatively long settling time for v′gαβ , and i′Lαβ . Therefore,
considering v′gαβ as the input signals of the SRF-PLL will
result in a very poor dynamic response in estimation of the grid
voltage frequency, and may degrade the stability of the PLL.
This deduction is true when a PI compensator is used as the
loop filter in the SRF-PLL. While, in the suggested structure,
a PI-lead controller is employed as the loop filter. Using a
detailed mathematical analysis, it will be shown that, how
adding a lead compensator to the conventional PI controller
significantly improves the dynamic response and the stability
margin of the SRF-PLL.

IV. DESIGN GUIDELINES

A. SOGI Structures

From Fig. 2(b), the characteristic transfer functions of the
SOGI block can be obtained as

D(s) =
v′gα
vg

=
i′Lα
iL

=
kω̂s

s2 + kω̂s+ ω̂2
(8a)

Q(s) =
v′gβ
vg

=
i′Lβ
iL

=
kω̂2

s2 + kω̂s+ ω̂2
. (8b)

Figs. 3(a) and (b) illustrate the Bode plots of the transfer
functions (8a) and (8b), respectively, for three different values
of damping factor k. As it can be observed, a lower k leads

(a)

(b)

Fig. 2. Suggested RCG technique: (a) basic scheme, and (b) SOGI block.

to a narrower bandwidth, and hence better filtering capabil-
ity. However, a very low value of k degrades the dynamic
performance of the SOGI, resulting in a significant delay in
extraction of the reference compensating current. It is well
known that, during the load transients, the delay in extraction
of the reference current increases the duration for which APF
must sink/source the fundamental current, hence increases the
required APF rating [7], [26]. Therefore, it is necessary to find
a satisfactory compromise between the speed of response and
the harmonic rejection.

It can be easily shown that, under the frequency locked
condition (i.e., ω = ω̂), the outputs of the SOGI for a given
input voltage vg = V cos(ωt+ φ), and for k < 2 are

v′gα(t) = V cos(ωt+φ)+Aα cos(ω

√
1− (k/2)

2
t+φα)e−

kω̂
2 t

(9)

v′gβ(t) = V sin(ωt+φ)+Aβ sin(ω

√
1− (k/2)

2
t+φβ)e−

kω̂
2 t

(10)
where Aα, Aβ , φα, and φβ are functions of V , φ, and k. The
similar results can be obtained for the load current iL.

From (9) and (10), it is observed that, the transient terms
decay to zero with a time constant of τ = 2/kω̂. Thus, by
considering a same damping factor k for both SOGI structures
in Fig. 2, the settling time for the extraction of the reference
current can be approximated as

ts = 4τ =
8

kω̂
. (11)

Based on (11), the damping factor k can be simply deter-
mined by deciding an appropriate value for the settling time



(a)

(b)

Fig. 3. Bode plots of the characteristic transfer functions of the SOGI block
for different values of k: a) Gα = vα/vi, and b) Gβ = vβ/vi.

ts. In this paper, ts is selected to be equal to two cycles of
the fundamental frequency, yielding k = 0.637.

From the harmonic rejection point of view, the selected
value for the damping factor is adequate for low distorted load
currents. However, in cases, where the load current have a high
harmonic content it may not be adequate. This problem can
be simply alleviated by adding extra SOGI blocks in parallel
with the single SOGI structure of the load current, as shown
in Fig. 4 [23]. Each SOGI block is tuned to resonate at a
desired harmonic frequency, and is responsible for attenuating
a specific harmonic component in the load current, improving
the accuracy of the extraction of the reference compensating
current. Hereby, the bandwidth of the fundamental frequency
SOGI can be even more increased to achieve faster dynamic
performance.

The performance of the multi-SOGI structure shown in
Fig. 4 can be better visualized through the Bode diagrams
plotted in Fig. 5. The solid line in Fig. 5 indicates the Bode
plot of the transfer function i′Lα/iL for a multi-SOGI structure
including four modules tuned at the fundamental, third, fifth,
and seventh harmonic frequencies, and the dashed line indi-
cates the Bode plot for a single SOGI structure tuned at the

Fig. 4. Multi-SOGI structure.

fundamental frequency. As it can be observed, the added SOGI
blocks results in notches in the gain plot at their resonance
frequencies. As a consequence, in the case of a highly distorted
load current, the extraction error is significantly reduced. It is
worth to mention that, the added SOGI blocks do not affect the
dynamics of the fundamental component SOGI block, since
they only respond to the frequencies around their resonant
frequencies, unless very high damping factors are selected for
these blocks.

Fig. 5. Bode plots of the Multi-SOGI and single-SOGI structures.

The number of SOGI blocks that need to be added depends
on the distortion level in the load current. However, since the
computational load is a major limiting factor, a trade-off has
to be found between accuracy and computational effort. In
this paper, adding two SOGI blocks tuned at the third and
fifth harmonic frequencies is suggested, since, typically, they
are the most dominant current harmonics produced by single-
phase nonlinear loads.

It is worth noting that, under highly distorted grid con-



ditions, as what proposed for the load current, the quality
of in-quadrature outputs of the grid voltage SOGI block can
be readily enhanced by employing extra harmonic component
SOGI blocks.

B. Loop Filter Parameters Design

In this section, a systematic design procedure to fine tune
the loop filter parameters is suggested. To simplify the design
procedure and the stability analysis, the small-signal model of
the SRF-PLL is derived first. Then, the pole-zero cancellation
technique and the extended symmetrical optimum theory are
employed to design the control parameters.

In order to derive the small-signal model, a quasi-locked
state (i.e., ω = ω̂, and φ ≈ φ̂) is assumed, where ω̂ and φ̂
are the estimated frequency and phase-angle by the PLL,
respectively.

1) Small-signal modeling: Let us consider the Park’s
(αβ → dq) transformation as

T =

[
cos θ̂ sin θ̂

− sin θ̂ cos θ̂

]
, θ̂ = ω̂t+ φ̂ (12)

where, θ̂ is the estimated angle. Applying (12) to v′gα and
v′gβ , gives the loop filter input signal (i.e., vq) as

vq(t) = − sin θ̂v′gα(t) + cos θ̂v′gβ(t). (13)

Substituting (9) and (10) into (13), and performing some
mathematical manipulations, yields (14). From (14), it is
observed that, the fluctuating terms decay to zero with a time
constant of τ = 2/kω̂, therefore, vq can be approximated in
the Laplace domain by

vq(s) =
V

1 + τs
φe(s) (15)

where, φe = φ− φ̂.
To minimize the phase error φe, vq is passed through the

loop filter, here a PI-lead controller with the following transfer
function

LF (s) =
kps+ ki

s︸ ︷︷ ︸
PI

1 + τ1s

1 + τ2s︸ ︷︷ ︸
Lead

(16)

where kp and ki are the proportional and integral gains of the
PI controller, respectively, and τ1 and τ2 (τ1 > τ2) are the
parameters of the lead compensator.

Based on the above information and considering the VCO
as an integrator, the small-signal model of the PLL can be
obtained as shown in Fig. 6.

Fig. 6. Small-signal model of the PLL.

2) Pole-zero cancellation (PZC): The relatively large time
constant (τ ) of the SOGI structure, which is necessary to
provide high harmonic rejection in extraction of the reference
current, will significantly degrade the dynamic performance
and stability margin of the PLL, if it is not compensated
properly. That is the reason why a PI-lead controller (instead
of a simple PI controller) is suggested as the loop filter in this
paper.

The lead compensator introduces an additional pole/zero
pair to the system. Thereby, the slow dynamics of the un-
desirable pole (i.e., s = −1/τ ) can be simply canceled, if the
zero of the lead compensator (i.e., s = −1/τ1) is located at
the pole position, i.e.,

τ1 = τ = 2/kω̂. (17)

It is worth to mention that, due to the variation of the
grid frequency, and hence the estimated frequency, the un-
desirable pole has a varying nature. Therefore, for a fixed
value of τ1, the exact PZC is not viable. However, since
the grid-frequency is typically allowed to change in a narrow
band (e.g., 47Hz < ω < 52Hz, as defined in [27]), selecting
τ1 = 2/kωff , where ωff is the nominal frequency, effectively
cancels the influence of the undesirable pole.

3) Symmetrical optimum theory: The symmetrical optimum
theory is a standard procedure for designing type-2 control
systems with an open-loop transfer function as

Gol(s) = K
(T1s+ 1)

s2(T2s+ 1)
. (18)

The main idea of this approach is that to achieve the maximum
possible phase margin, the crossover frequency should be at
the geometric mean of corner frequencies [28], [29]. Applica-
tion of this method to the PLL-based frequency synthesizers
can be found in [30].

If a perfect PZC is assumed, then the open loop transfer
function becomes

Gol(s) = V
kps+ ki
s2(1 + τ2s)

. (19)

Considering kp/ki = τz , and τ2 = τp, (19) can be rewritten
as

———————————————————————————————————————————————————–

vq(t) = V sin(φ− φ̂)︸ ︷︷ ︸
≈V (φ−φ̂)

+

[
Aβ sin(ω

√
1− (k/2)

2
t+ φβ) cos(ωt+ φ̂)−Aα cos(ω

√
1− (k/2)

2
t+ φα) sin(ωt+ φ̂)

]
e−

kω
2 t

(14)



Gol(s) = V ki
1 + τzs

s2(1 + τps)
. (20)

From (20), the crossover frequency (open-loop unity gain
frequency , i.e., |Gol(jωc)| = 1) can be obtained as

ωc = V kp
cosϕp
sinϕz

(21)

where
ϕp = tan−1(τpωc) (22a)

ϕz = tan−1(τzωc). (22b)

The phase margin (i.e., the difference between 180 degrees
and the phase angle of the open loop transfer function at the
cross-over frequency) is

PM = 180 + ]Gol(jωc) = ϕz − ϕp. (23)

To ensure the stability, the phase margin should be maximized.
This goal can be simply realized by differentiating (23) with
respect to ωc and equating the result to zero, which leads to

ωc =
1

√
τzτp

. (24)

As it can be concluded from (24), for given values of τz and τp,
the PLL phase margin is maximized if the crossover frequency
is equal to the geometric mean of the corner frequencies 1/τz
and 1/τp.

Based on (22) and (24), it is easy to show that

sinϕz = cosϕp (25a)

ϕz + ϕp = 90◦. (25b)

Substituting (25a) into (21), gives

ωc = V kp. (26)

Substituting (25b) into (23), and performing some mathemat-
ical manipulations, gives

τz =
1

ωc
tan(45◦ + PM/2) (27a)

τp =
1

ωc
tan(45◦ − PM/2). (27b)

From (26) and (27), the loop filter parameters kp, ki, and τ2
can be expressed based on wc and PM , as

kp = ωc/V

ki = kp/τz =
ω2
c

V tan(45◦ + PM/2)

τ2 = τP =
1

ωc
tan(45◦ − PM/2).

(28)

An interesting observation from (28) is that, in an optimum
manner, the number of degrees of freedom is reduced by one.

In other words, the loop filter parameters (i.e. kp, ki, and
τ2) can be determined by selecting appropriate values for the
crossover frequency ωc and the phase margin PM .

The recommended range for the phase margin is between
30◦ and 60◦ [31]. In this paper, a PM in the middle of
this range, i.e., PM = 45◦, is selected. For the crossover
frequency ωc, the situation is a bit more complex. A high value
of ωc improves the dynamic performance of the PLL, but at the
expense of noise/disturbance rejection capability of the PLL.
Consequently, selection of the crossover frequency is a tradeoff
between the dynamic response and the noise/disturbance re-
jection capability. In this paper, based on extensive simulation
results, wc is selected to be 2π20 rad/s.

By substituting the selected values of the phase margin
and the crossover frequency (i.e., PM = 45◦ and ωc =
2π20 rad/s) into (28), the loop filter parameters are deter-
mined as follows  kp = 125.66

ki = 6541
τ2 = 3.296e− 3 s.

(29)

Notice that, to determine the parameters, the input voltage
amplitude V was assumed to be unity. This assumption can be
simply realized by dividing the loop filter input signal (i.e., vq)
by an estimation of the input voltage amplitude prior to being
fed into the loop filter.

Fig. 7 illustrates the Bode plot of the open-loop transfer
function (19) for the designed parameters. As expected, the
crossover frequency corresponds to the peak of the phase plot,
optimizing the PLL phase margin. The system gain margin
(GM), as shown, is infinite.

Fig. 7. Bode plot of the open-loop transfer function.

V. SIMULATION RESULTS

In this section, the performance of the suggested RCG
technique is evaluated on a simple distribution system loaded
with diode bridge rectifiers (DBRs), as shown in Fig. 8.
The load current and grid voltage are sensed at the point of
connection, and fed to the suggested RCG technique to extract
the reference compensating current. The simulation studies are



Fig. 8. Simple distribution system used to confirm the performance of the
suggested RCG.

carried out in Matlab/Simulink. The sampling frequency is
fixed to 10 kHz, and the nominal frequency is set to 50 Hz.

In the suggested RCG, a dual-SOGI structure (tuned at
the fundamental, and third harmonic frequencies) for the grid
voltage, and a multi-SOGI structure (including three modules
tuned at the fundamental, third and fifth harmonic frequencies)
for the load current are employed.

A. Load Change

In the first test, the supply voltage consists of a 1-p.u.
fundamental component, a 0.05-p.u. third harmonic, a 0.05-
p.u. fifth harmonic, and a 0.1-p.u. seventh harmonic. Initially,
DBR1 is in service, and the system is in the steady-state
condition. At t=20 ms, DBR2 is switched on. Figs. 9(a), (b),
and (c) illustrate the grid voltage, the load current, and the
extracted reference current (i∗C), respectively. The grid voltage
total harmonic distortion (THD) is 12.1%, and the load current
THD is 43.96%. Figs. 9(d) and (e) illustrate the extracted
fundamental active current component (i′L,P ) and the estimated
frequency of grid voltage, respectively. Notice that, i′L,P is in-
phase with the fundamental component of the supply voltage.
As expected, the settling time for extracting the reference
compensating current is around two cycles of the fundamental
frequency.

B. Grid Frequency Step Change

In this test, DBR1 is in service, and the supply voltage
harmonic components are the same as before. Suddenly, at
t=20 ms, the supply voltage undergoes a frequency step change
of +5 Hz. Fig. 10 illustrates the simulation results under this
scenario. As it can be seen, the steady-state is achieved fast.
Therefore, the robustness of the suggested RCG against grid
frequency variations is proved.

VI. CONCLUSION

A simple and effective implementation of the single-phase
pq theory to extract the reference compensating current for
the single-phase SAPFs has been proposed in this paper. The
SOGIs were employed as the basic building blocks of the
suggested approach. To fine tune the control parameters, a
systematic approach based on the pole-zero cancellation, and
the extended symmetrical optimum theory has been proposed.
Effectiveness of the suggested approach has been confirmed
through simulation results.

(a)

(b)

(c)

(d)

(e)

Fig. 9. Simulation results in response to a load change.
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