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Message-Passing Receiver Architecture With
Reduced-Complexity Channel Estimation

Mihai-Alin Badiu, Carles Navarro Manchon, and Bernard Heteury, Senior Member, |IEEE

Abstract—We propose an iterative receiver architecture which
allows for adjusting the complexity of estimating the chanml

frequency response in OFDM systems. This is achieved by
approximating the exact Gaussian channel model assumed in
the system with a Markov model whose state-space dimensios i !

a design parameter. We apply an inference framework combinig

of model mismatch by selecting the state-space dimendien: t
lower this dimension, the higher the model mismatch, but the
lower the complexity of channel estimatiémn addition, noise
precision estimation is included in the design. The receive
is derived in a unified manner by applying the inference

belief propagation and the mean field approximation to a framework [8] to the proposed factor graph.
probabilistic model of the system which includes the approxnate
channel model. By doing so, we obtain a receiver algorithm
with adjustable complexity which jointly performs channel and
noise precision estimation, equalization and decoding. Siulation
results show that low-complexity versions of the algorithm—
obtained by selecting low state-space dimensions — can
attain the performance of a receiver devised based on the esa
channel model.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

We assume an OFDM system employing data andM
pilot subcarriers with disjoint sets of indicésand P, respec-
tively, such thatD,P C[1: M + N|, DUP =[1: M + N]
andD NP = (.2 The transmitter encodes tHé information
bits inu = (uy | k€ [1: K])" € {0,1}X using a channel

Index Terms—Channel estimation, iterative algorithms, mes- .
code of rateR = K/(NL) and interleaves the output of the

sage passing, receiver design

encoder into the vectoe = (¢! | n € [1 : N))T of NL
bits. Each subvectoe, = (c\”,...,c)T € {0,1}L with

I. INTRODUCTION
nel:

Iterative receiver structures performing joint channdi-es elonging to a discrete complex modulation alphaBgtof
mation, equalization and decoding (e.g., see [1]-[5]) can Bize oL, The data symbols ip — (z; | i € D)T are
designed in a unified manner by applying belief prc)pag"j‘ti(?ﬁ‘uItiplexed with pilot symbols:;, j € P, which are randomly
(BP) [6] to the factor graph of the analyzed system. HOWeVefy oot from a modulation alghat&t The aggregate vector

BP vyields i.ntra(_:table computational_ complexjty related tg _ (z; |i € [1: M+N])T is OFDM modulated by inputting
channel estimation, anq thus heuristic apprOX|mat|on.shef tit to an IEET and inserting a cyclic prefix (CP). The modulated
BP messages are. typically made [2]_[5]' A more r'g,orOLJS?gnal is sent through a channel whose maximum excess delay
alternative to obtain tractable receivers [7], [8] COMSIBl * is5qmed to be smaller than the CP duration. At the receiver

resorting to the region-graph method [9] pursued in [8] e signal after CP removal and FFT reads
devise a generic message-passing algorithm that merges BP

and the mean-field (MF) approximation.

@)
In OFDM systems, the estimation of the channel frequen

c :
response in iterative receiver schemes has a very high cdﬁu-(l)’ © denotes the componentwise produgt,= (y; |

- : T i -
plexity because large matrices need to be inverted when fn€ [ M + N])" is the vector of received signal samples,

— . ; . T i
corporating the soft data information (as in [7] or any reeei h = (hll K ef 1 f' M+ N]g]d cﬁontams' thelsgjrr/[plesNothhe
using a data-aided LMMSE estimator). Nonetheless, coMpa@a;ne trans efr gg_c_’uon ane = (w; || ! EV\[/ F M+ ])b
to non-iterative receivers, the performance is signifiltyantISt e vector of additive noise samples. We assihmie be

. . . . _ . p

improved, especially when few pilot symbols are available.zgro'”:,ean, Gaussian d_|§tr|buted,. i.e(h) N CN(h; 0’.211) .

In this paper, we design a message-passing OFDM recei $h X being the H(larmman Toeplitz covariance matn_x,_ while
with adjustable channel estimation complexity. We rely ofi w) = CN(w; 0,7 Iar+ ), wherey is the noise pl’e.CIS-IO?I..
a mismatched channel model by assuming that groups of \t the receiver, the b't'?y'b't MAP decision crlterlon_ IS
contiguous channel weights obey a Markov model whoS8USht to minimize the bit error rate (BER). It requires
parameters are determined by the exact Gaussian pdfCRnPutating the marginal posterior pdftuy), k € [1 : K],
the original model. The size of the group — the state-spafl@™ the joint pdfp(y. h, 7, xp, ¢, u), which is intractable for
dimension of the Markov model — is configurable. With thi€Y" as§umed systgm. Thus, we have to resort t(? computing
assumption, we exploit local correlation and adjust thelley@PProximate marginal,, (ux) ~ p(ux|y), called beliefs.

N] is mapped to a data symbaj; , i, € D,

y=hox+w.
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I1l. M ESSAGEPASSING RECEIVER DESIGN

We formulate the receiver’s task as inference in an approx-
imate probabilistic model and we use the combined BP-MF
inference framework [8] to compute the beliéfg, (uy).

A. Probabilistic model and factor graph

Even though in the system model we assumgl) =
CN(h;O,Efl), when designing the receiver we deliberately
introduce a mismatched probabilistic model of the channel
weightsp(h) ~ p(h). As we will see, this is the key idea
to tune and reduce the complexity of channel estimation, as
compared to receiver schemes that estimate the channel by
inverting an(M +N) x (M + N) matrix. Specifically, we make
the approximation that the channel weights obey a Mark®ig. 1. Factor graph representation of the pdf factorizefi¢). In this figure,

model: we assumed; € D1, in € Dy, iy € D@, j1 € P1, jm € Pq, jm € Pq-
’ B Q In general, for a relatively small state-space dimengiand/or low number
p(h) = p(hl) quz p(hq|hq71)- (2) of pilots M, there could be many values gfe [1 : Q] for which P, = 0.

In (2), state vectord, = (h; | i € [(¢ — 1)G + 1 : ¢G])7, N ,

g € [1: Q), represent non-overlapping groups@tontiguous /M. (Zins€n) = p(zi,[cn), n € [1 NA] in € D, represent
channel weighté.We denote byD, andP, the sets of data and (e modulation constraintsfc(c,u) = p(cfu) stands for
pilot indices corresponding to thgh vector, i.e.D, 2 D the coding and interleaving constraintfy, (ux) = p(ur),
[(g—=1)G+1: ¢G] andP, = PN[(g—1)G+1 : ¢G]. Intuitively, k € [1: K], are the prior pdfs of the .|nf_ormat|on t_nts. The
with this model one can better retain and exploit the cotieta factor graph representation [6] of (4) is illustrated in Fig

of the channel weights by selecting larger value&aind vice NOte that whenz = M + N (Q = 1) we havep(h) = p(h),
versa. In the right-hand side of (2) we plug the expressiof¥ch that the approximate channel model (2) and joint pdf (4)
of the marginal pdfp(h;) and conditional pdfg(h,|h,_;), educe to the exact ones used in [7], [8].

q € [2: Q), derived from the “exact” joint Gaussian pgfh).

- p . .
Sinceh has zero mean ankly is Toeplitz, we have B. Message-passing algorithm

p(hylhg—1) = CN(hg; Ahy 1, V) ®3) We apply the combined BP-MF inference framework [8] to
for all ¢ € 2 : Q], with A and V determined byﬁf,is the factor graph in Fig. 1. According to [8], we first define
. ) the MF and BP parts of the factor graph by splitting the 4et
A=VyV, V=Va2u-VyV;;Vp of all factor nodes into two disjoint setdyr and.4gp, such

that Ayr U Agp = A and Ayr N Agp = 0. The BP (MF)
part contains the factor nodes.itsp (Awmr) together with the
[22]1-20 e = [ X; X;z } ) variable nodes connected to them. We refer the reader to [8]
o for the message passing fixed-point equations that are to be
Using Bayes’ rule and the system assumptions, the approxgived in order to retrieve the beliefs of the variables.e\tbat
mate joint pdf of all system random variables factorizes asthe message computation rules clearly state that variatles
o lying in both BP and MF parts send extrinsic values to factor
Py, b, 7,%p, ¢, 1) = HieD Tou (hiy v, i) HjeP Tr;(hg> ) nodes in the BP part aradposteriori probability (APP) values
Q to factor nodes in the MF part. For our factor graph, we choose
x fr, (h1) Hq:2 fr,(hg hg1) fu(v) 4) .AMF[é {fﬁi {i c D|}U{frj | j ﬁp{}u{}f,\‘{} anTABP[é {fo}|
X M, (zi,,cn) fc(c,u u, (ug). ge[l:Q}U{fm, |ne[l: NJJU{fctU{fu, | ke[l: K]}
H"GD:N]f ( ) Jel )H%“:K]f o) We now define some quantities that will often occur in
The factors in (4) are defined in the following: the message computations: foe D, #; = f:rl by, (x;) da;
Fou(hisys 23) 2 plyslhis v, @) = CN(yss hazssy~Y), i € D, and o2 & [z - «ii|2bmi(fl7i.) dz; represent the meffm and
a . _ variance, respectively, of beliéf, (x;) of data symbol;; the
i (R ) = p(yslhy, ) = CN(y;; hjzj, v ™), G €P estimate of the noise precision with ptif(v) is the mean
are given by the observation model (), (h1) £ p(h;) 4 £ [vby(y) dv; similarly, for ¢ € [1 : Q], the mean and
CN(hy;0, V1) is the prior pdf ofhy, fr,(hg,hy 1) covariance of belieby, (h,) of the channel weight vectdx,
p(hylhy_1), ¢ € [2 : Q], denote the “transition” pdfs arehy = [hgby,(hy)dh, and =y, £ [(hy — hy)(h, -
in (3); fn(v) £ p(v) is the prior pdf of the noise precision;hg)™bn, (hy) dh,, respectively.
Since fp, € Awr, we haven,, ., (z;) = bs,(x;), i € D,
“We assumedV + N = QG, which can be achieved by appropriatelyj e  these messages are the APP values of the data symbols.
choosing the corresponding values. L .
Similarly, having fo,, fr, € Awmr leads 01, fp, (v) =

5The matricesA and V can also be computed by using the Yule-Walke ) -
equations. Ny fo, (7v) =0by(7), forallie D, j e P.

whereV,;, i,j € {1,2}, areG x G submatrices oE)fl, ie.,

lI> 11



1) Channel estimation: For all ¢ € [1 : Q], we have

m'}ADF —h, (hi)

= exp < [ s @001, () 0 o (i) d~y>
x CN (hi; hio, 0;211,_’0) ., ieD,, (5)
o 1) =50 ([ 75 ) 0 ) )

x CN (hi; hio, 0,2”,0) . ieP, (6)

with oc denoting proportionality and

A = 124152 )
hi,o = lml‘ toz, )
Yi 1€ Py

x;’

~—1 .
€Dy Tz (€D
~—1 4 . .
&T‘g, 1€ Pq
We define the vectoh®™ £ (i, | i € D, UP,)T and the
diagonal matrixzﬁ';S with diagonal elements;, , i € D, U
P,. Becausefr, € Agp, we have

nh,—fr,, (Bg)
_ . BP MF MF
= My —h, (hg) Hiqu My, —h, (hi) Hjqu Mfp. —h, (hy)

forall g € [1: @ — 1], while

m?ﬁ,%hq (hy) o /nhqfl_)qu (hg—1)fr,(hg,hg—1)dhg_y

TABLE |
PARAMETERS OF THE CHANNEL WEIGHT MESSAGES

(=)~ = (297 + (sl

. - 1 ala )
By = = (=009 R+ (2 ) TRy

n'’ =0 B =vy (10)

flg\qfl — AhMwd

M, St = Azl ATtV

Ry ke - (SR (o) ()

flgck _ E?]t;k[(zi)]k;s)*lﬁgbs_i_ (Ef}‘jﬂ)*lflg‘q“] a1

ﬁg‘qﬂ _ Aflflggth

_ —1\H -
o R S o I A 1 S T O s M

flg\Q+l 29
(12)
0

(n,) 71 = (B (2!

. e 1rale s (13)
By = S, [(SH0) 1R + (59 TR

o Ga('y; 2, ly; — ﬂliz|2 + cr,QH:EZ- + (iLl + O'}QH)O'Q ) ,

2) Noise precision estimation: We compute the messages

MF
mel. —y (7)

= exp (/nmiﬂfm (2;) Thy— fo, (hy) In f, (hi, 7y, z;) dz; dhq>

Tq

) = 0 [ o () 0 o 1) i,

for all ¢ € [2 : Q]. Note thatm?fl%h1 (h1) x fry(h1) = « Ga(7;2, ly; —ﬁjxj|2+a,2ljxj)
CN(_hl;O,Vu). Sing:e the messages (5) and (6) are prc?(—)r ali e D ic P € [ : Q. We have
portional to Gaussian pdfs, it follows thatn, s, and, . o ]B o 4 e tormat oat
consequentlym2” _, are proportional to Gaussian pdfs. By i (7) fN_(V)' y Setling a hon-ntorma’ive conjugate
mathematical induction, the forward messages in the sphgreP”or pdf fu(y) = Ga(7;0,0), we obtain the belief

i i i i MF MF MF
representing (2) are proportional to Gaussian pdfs, i.e., by () o mf(7) HieD meiﬁv(,y) HjGP mly ()
Mhe—fr .y (hy) =CN (hq§ flft;IVdv Efl\ll\;d) ) @ =Gay; M + N, B) (14)
m?TF;—mq (h,) o CN (hq; flg\qfl’ 2;1151—1) with rate 3 = > .. [|yZ — hai)? + o i+ (hi + U%i)aii}

. . . , —h,;z;|2+02 z; ). From (14), the estimate of the
with parameters given in (9) and (10). Analogously, the. _2367’ ('.yj_ J.afj|+;[’”xjjv) S (14) A
backward messages are also proportional to Gaussian pdfﬁOlse precision i = (M +N)/B. Since fo,, f_Pf € AvF, WE

aven, , (v) = Ny fo, (v) =by(y), forallie D, jeP.

3) Equalization and decoding: The messages

(8) MF

P, 1, () = ON (Bg; B Z5K)
. 1
m?fqﬂahq (hg) < CN (hq§ hZ‘q“, 2;11|5+ )

with parameters given in (11) and (12). Hence, the beliefs of “*P </ Mg fo, (g) 1y o, (7) I fo, (i, 7, i) dhg d7)
the channel weight vectots,, ¢ € [1 : @], are Gaussian pdfs:

. il:yz !
bn, (hg) =m2 _, (h h,) = CN (hy; h,, = e <I hal* 4o, ’%'lv”“ii)

o (Ba) =1y, o, (Bo) 7 1, () = ( o hq) for all ¢ € [1: Q], i € Dy, represent the extrinsic values that
with parameters given in (13). The belief of a componkent are input to the BP part. In this subgraph, the computation of
of h, is the corresponding marginal distribution &f, (h,), BP messages corresponds to MAP demapping, deinterleaving,
i € [(g—1)G +1: qG]; therefore, the meah, and variance deceding, interleaving and, finally, soft mapping. The &fsli
o2 are thei'th component ofh, and the(i’,i’)th element be., (¥5,) =mG0 .. (@i, )mly .. (x;,) are input to the
of X, respectively, withi’ = i mod G. Becausefp,, fp,, MF partvian,, g, (zi,), n€[l:N], i, €D.

€ Awr, we havenn, s, (hy) = nn, 5o, (hy) = bn, (hy), for 4) Message-passing scheduling: Initialize ¥ = (M +
alge[1:Q), i€ D, jeP, N)/yty and, for allq € [1 : Q], set m,'\;{'DFﬁhq(hi) x



CN(h;;0,00), i € Dy, and computen’t™ ., (h;), i € Py,
with (6). Then, perform a forward-backward propagatior
in the Markov chain by successively computing the mes
sages (7) and (8). The beliets,, (h,) are sent to the MF ¢
part viann, o, (hg) @ndnn, s (hy), ¢ € [1 2 Q). After o
computingm™F_  (x;), the first iteration is completed by

va‘}Ii

performing MAP demapping and decoding. Each subseque

—6

10 12 14

iteration consists in computing the messages correspgridin 0 4 6 8
; . . i 4 SNR (dB)
soft mapping, noise precision estimation, channel eskimat @

equalization, demapping and decoding.
Finally, the receiver computes hard decisianse {0, 1},
K], by choosing the value which maximizes the

kEell:
corresponding belieb,, (ux) = mE_,.,, (ur) fu (ur). channel model (Ré6 = 300)).
n%boutlo iterations of the algor

Fig. 2.
PDP [, and (b) versus: for PDP | and

5) Complexity of channel estimation (per iteration): With
the proposed splitting of the factor graph into the BP a
MF parts, i.e.,fr, € Agp, ¢ € [1 : Q], the computation of
the message parameters (9)—(13) are equivalent to the Kalma

TABLE
PARAMETERS OF THE SIMULATE

——Rec(G) PDP 1

---Ref. 1 PDP I
——TRec(G) PDP 11

--Ref. 1 PDP II

12 461OG 100 30C

(b)

BER performance of different receiver schemes (a3useSNR for

PDP Il at SNR= 12 dB.
The BER values converge in
ithm for allz > 4.

Il
D WIRELESSOFDM SYSTEM

smoother [6]. Therefore, the chgnnel estimation complexitsypcarrier spacing

with the approximate model (2) i©(G*Q) = O(G*(M +  Number of active subcarriers
N)), while the complexity with the exact model(= M + N, shlngber of regularly spaced pilots
Q =1)is O((M + N)?). ForG < M + N, the complexity — p oy socen's

- > . Modulation scheme for data symbol
is linear in the number of transmitted symbols. Modulation scheme for pilot symbol

Convolutional channel code
PDP I:
IV. SIMULATION RESULTS PDP II:

Af = 15kHz
M 4+ N = 300
M =15
Afp = 300 kHz
5 16 QAM (L = 4)
5 QPSK
R =1/3; (133,171, 165)s
P=20; A=100s"1
P=10; A=2-108s"1
|2 Wc(gh ~ WC(:)'% ~ Afp

The BER performance of the proposed receiver algorithnf-oherence bandwidth of the channg
is evaluated via Monte Carlo simulations of an OFDM system
with parameters given in Table Il. We refer to the receiver as
RedG) to stress that it depends on the design parandetéve
assume a static zero-mean complex Gaussian WSSUS channel; X !
with P multipath components equispaced in delay. Thus, #LCVides a flexible way to adj
impulse response readgr) ZZZI o 8(7 — 7o) Where estimation. S|mulat|9n results
T =m AT, m €[0: P—1], andA7 = 120ns87 Addition- state-space dimension of the
ally, we assume that the channel power-delay profile (PDP)t ) )
exponentially-decaying, i.eE[|a2,|] = C exp(—AT.,), where closely to the receiver using
A is the decay rate and the positive constahensures that
g(7) has unit average power. The parameters of the PDPs used
in the simulations are indicated in Table II.

We also evaluate the performance of two reference el
ceivers: one that knowls and~ (Ref.1) and one that knows [2]
and performs pilot-based LMMSE channel estimation (REf.
Fig. 2(a) shows that the performance of Réc= 3) is ﬁ]
limited, meaning that the algorithm is unable to cope wit
the high mismatch introduced by selecting too low values of
G. However, the performance of R&e = 6) is significantly
improved over Ref2, and the gap to Retl. and Re¢G = 300)
is small. The dependency of the BER 6his illustrated in
Fig. 2(b) for the two channeld(( ) ~ 2 W{.); basically all
the benefit of increasing is already exhausted when = 5—
6, in both cases. Note that the complexity of R&c= 6) is
drastically reduced, compared to the receiver using thetexs!
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