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Stability of Randomly Switched Diffusions

Henrik Schioler, John Leth and Mehdi Gholami

Abstract— This paper provides a sufficient criterion for e- Jump Systems are analyzed for stability under deterministi

moment stability (boundedness) and ergodicity for a class of pounds for the number of jumps within time intervals of
systems comprising a finite set of diffusions among which defined lengths.

switching is governed by a continuous time Markov chain. . _ . - .
Stability/instability properties for each separate subsystem are A great vapety of definitions of stochastic stability e_X'St
assumed to be quantified by a Lyapunov function candidate and @S surveyed in e.g. [14] and [15]. For the above mentioned
an associated growth rate equation. For the set of Lyapunov studies, stochastic stability unanimously implies somelki
functions a compatibility criterion is assumed to be fulfilled  of stochastic convergence to an equilibrium state. In [12]
bounding the ratio between pairs of Lyapunov functions. The results are given in the shape of exponertalmoment con-

established criterion is shown to be equivalent to an exact cri- t®) IV imolvi - babilit
terion for the almost sure convergence of an associated process vergence @), generally Implying convergence in probability.

bounding moments of the process under Study. Examp|es are In [15] Stab|l|ty reSUItS for fault tolerant Control SyStSr'are

provided to illustrate the use of the established criterion. given in terms of mean square exponential convergence to
_ Index Terms— stochastic system; switching diffusion; stabil- (0, whereas in [16] 3 different definitions of mean square
ity stochastic stability are considered. In [10] the concept of
input-to-state stability (ISS) is extended to a probatidis
|. INTRODUCTION setting through expectation and applied to SDP.

Randomly Switched Systems, (RSS) with Piecewise De- We find stability definitions based on stochastic conver-
terministic Processes (PDP) [1] as a subclass, denotess cl@ence insufficient for many practically appearing probsbil
of systems where system state evolves in time according # models since such models frequently include a driving
one among a finite set of smooth dynamics selected by (Brocess) noise component preventing even stable systems
discrete mode switching process. RSS have been suggesiéin convergence. Such a term is included in [12], where
for modeling within various fields such as finance, poputatiothe underlying assumptions however force the noise compo-
dynamics’ manufacturing, and fault tolerant control [2] nent to vanish at the equilibl‘ium, as also indicated by the

In [3] general sufficient conditions for the existence an@Xxamples provided. Although theoretically appealing such
uniqueness of stationary distributions of PDPs are pravidedSSumptions seem unrealistic for practical cases, wheipéest
through a basic result of [4]. Markov Jump Linear Systemgperation is characterized by stationary random fluctnatio
(MJLS) as studied in [5], [6] and [7] is the special casedround the equilibrium
of RSS where smooth dynamics are linear and switching is Thus stability definitions based on stationary or ergodic
governed by a continuous time Markov chain with discret@ehavior as studied in [3] seem more suitable from a préctica
state space. In [5], [6] noise free dynamics are assumdé@int of view. For systems with a compact state space the
as the basis of analytical results although [5] more broadipain criteria are of mixing type, i.e. systems almost never
suggests discrete modes governed by linear stochastie-diff Map proper subsets into themselves, which for Markovian
ential equations, i.e. linear diffusions. The work [8] pes ~ Systems corresponds to irreducibility, where all states ar
sufficient conditions for almost sure convergence of 2n@utually reachable. For systems with non-compact state
order MJLS based on projections to the unit circle and thePaces, the main questions is that of stability, whereas the
existence and uniqueness of a stationary distribution ef tinixing/irreducibility property is mostly taken as a preneq
projected process. The work [9] provides general sufficiersite. Ergodicity of non compact systems is studied in [4] and
conditions for convergence in distribution of RSS exprdssd17] for discrete and continuous time respectively.
in terms of switched Stochastic Differential Equations, i. In this paper we give sufficient conditiongh moment
so called Switched Diffusion Processes (SDP). SDPs aR®undedness and ergodicity for switched diffusion proeess
also studied in [10], [11] and [12] where the two former(SDP), where a Lyapunov function candidate has been identi-
treats stability criteria for systems comprising both Eamd fied for each subsystem as in [10]. Our approach is similar to
unstable modes and the latter stability criteria for swiitgh that of [18]in their treatment of 1st order jump linear sysse
among stable systems allowing discontinuous jumps of tHdLS). Our contribution distinguishes from [3] and [9] ireth

continuous state at mode switching instants. In [13] LinedPore specific setup yielding more specific and operational
results. It contrasts to [8] in its generality to nth ordesteyns
Al authors are with the Department for Elec- and to [18] be including state jumps at switching moments
tronic Systems, Aalborg University, Aalborg, Denmark i i icati i i
henri k@s. aau. dk, j j | @s. aau. dk. nehdi @s. aau. dk ano‘a"”g Its app"cfaﬂon to m.ﬂt'p'e Lyr?puno." "’}”a'ys's' .
J. Leth has been supported by the Danish Council for Tecigyoémd The section to follow provides mathematical prerequisites

Innovation. and main definitions. This is followed by the analytical



results section, where a number of lemmas are given alomNpte that (4) holds for any initial distribution af, hence it
with the main results expressed as theorems. The analytidadlds conditionally forz(0) = z.

results section is preceded by a section devoted to nurhericaWe shall in the sequel assume, as in [10], that the
results of simulations comprising a practically illusivat Lyapunov function candidatel, are compatible, i.e. a real
control system with unstable faulty modes. Results for theumbery > 1 exists such that

method suggested in this paper are compared to results from , n

neighboring methods suggested in [8] and [16]. Finally con- Vo (2) < uVp(z), Vp,p' € P, Vo €R
clusions and discussions are provided along with suggestioa. Switching process

for the direction of future research. The switching process governs the choice of smooth

Il. MATHEMATICAL PREREQUISITES dynamics for the continuous state. The evolutionoofs

We generally have a state spake x P and a statéz, o) specified_ through an infinitesimal generator matéx =
evolving in continuous time, i.gz,0) : Q x R — R* x P, {4;} defined by
wheref) is an appropriate probability space. The process — — N — B
interpreted as the continuous state of the system, whereas t Plo(t+h) = jlo(t) = 1) = haij + O(h)
switching process indicates the discrete state, i.e. normafor j # i and
and faulty modes. A finite number of distinct discrete states . .
is assumed, i.eP={1,..,M}. We generally assume that Plo(t+h) =ilo(t) =i) =1 = hgii + O(h)
the pair(z,0) constitutes a continuous time Markov chain, We say that the processis communicating (irreducible)
where the switching process is assumed to be governed #ffyfor anyi # j a sequence of distinct staték;, ..k, } exist
an independent Markov chain. such that = &, j = k, andgy, .., > 0. Inlooser terms the

The treatment is based on system dynamics in the shapecess is communicating, if any state is reachable from any
of a Stochastic Differential Equation (SDE), where the @oisother state in finite time with a probability greater thanazer
part is modeled as a Brownian motion. For each discret¢ a process is communicating the generator magixhas
modep = o(t) an SDE is defined, i.e. an eigenvalue of multiplicity 1 at 0 and an accompanying

_ one-dimensional eigenspace of solutionsOto= Q. All
d = fp(z)dt + gp(w)dw @) other eigenvalues of) fall in the left complex half plane.

where w is a vector ofn independent standard BrownianThe unique probabilistic (left) eigenvectar is called the
motions andf, : R® — R™ andg, : R® — R™ are appro- stationary distribution of the chain. A finite communicatin
priate mappings satisfying suitable smoothness condition chain is ergodic, i.e.

ensure unique continuous solutions to (1), see e.g. [19]. .
We say that a functional’ : R* — R, is a Lyapunov P,(lim 1 Lpy—idt =m) =1, Vi
function candidate if it is continuous differentiablé(z) > t=o0 b Jo
0 andV~1([0, C]) are compact sets for afl' > 0. whereP, is the probability distribution induced on the space

We assume for eagh € P that there exists a real numberof realizations through the specification of transitioresat
Ap and a Lyapunov function candidatg, : R™ — R, such We shall in the sequel assumeto be irreducible.
that YV, (2)f,(x) < AV, () @) I1l. STOCHASTIC STABILITY

Stability properties ofc(¢) needs to be established in the
context of stochastic stability, where a variety of intdated
definitions exist. Most definitions are based on associated
definitions of convergence, i.e. convergence in probabilit
convergence in mean/moment and almost sure convergence
as listed below.

with VV' denoting the gradient o¥/. For A, < 0, (2)
ensures stability of the associated deterministic systemn;
fp(x)dt. We generally do not assumg < 0, since we allow
instability for some discrete states.

For a sufficiently smooth/ (twice continuous differen-
tiable will do) we conclude from &'s chain rule that the
processV (z(t)) has the stochastic differential limg o0 P(|z(t)] > 6) =0, V5§ >0

dV = VV fydt + g Hy gpdt + VV gpdw 3) limy oo E(|z(t)]) =0

where Hy, denotes the Hessian of and all terms are to be P(limoo 2(f) = 0) =1

evaluated at:(t). Hence we get The two latter cannot be ordered in strength they both
d . imply the former. As mentioned in the introduction most
@EW(w(t))Ix(t) =) = VV(2)fp(z)+gp(z)" Hy (x)gp(x) practically appearing stochastic systems fail to conveoge
any equilibrium. In this case stability definitions shouéd r
flect, not convergence, but stationary behavior. An imntedia
definition based oa-moment can be stated as; for each initial
distribution there exists > 0 and K > 0 such that

EVp(x(t)] < ApEVp(2(1))] + Kp (4) E(z(t)|) < K, Vt>0 (5)

In the sequel we assume thgf (x(t))Hy, (x(t))g,(x(t)) is
globally bounded above by some positive constAptand
that (2) holds for every: € R™. Hence
4
dt



We say that a system ismoment-stable if (5) is fulfilled. we have the following two lemmas whose proof we leave to
In many works focus has been put nd moment stability. the reader.
However second moment stability is generally a stronger Lemma 1:
requirement thar-moment stability fore < 2, so focusing

on second moment (mean and variance) may lead to overly Es[Von (2(t)] = W(t), vt =20 12)
pessimistic analysis and designs in cases where no specifiet W,,,;,, = ming, | x, <0}t —HKp/Ap, Vao)(2)}. It is then
requirements regarding second moment stability have beeasily proved thatV (t) > W,,;,, for all t > 0 if W(0) >

put forth. Winin. Thus foriW (0) > Wiin, t € [ti, tiv1) and0 <e < 1
More generally we define a system tofement-stable in d

the wide senséMSWS) if for any initial distribution there —Wet) =eWHt) (A, W (t) + Kp,)
exists K > 0 and a Lyapunov function candidaté such dt 1
that < GAPiWG( ) K szn

E(V(x(t) <K, Vt=>0 (6)  Now let K = max,{K,}, & = eKWS,!, and define the
Alternatively stable stationary behavior could be define@rOcess by
in terms of the statistics generated by process realization d _
as implied by ergodicity. That is, a stationary probability @U(t) =M U(t) + &, 1€ [t tir)
measured exists such that for all measurable subséts Utiz1) = pU(t;,q)

t €
P(lim / L(meadr = ®(4)) = 1 @ U(0) =w0)
> 0

. Lemma 2:Fore > 0
If both (5) and (7) are fulfilled we have through the Markov

inequality for A = {|z| < C} U(t) > We(t), Yt>0 (13)
D(A) >1— K Moreover, we obtain the following result which is proven in
Ce appendix.
Hence the processt) has to be closer to thanC, infinitely Lemma 3:Define the processesy, by 7,(t) =
often and visits this neighborhood with an average frequends)—=pU () then

above
. . . - d
id:escrete time skeletofiz(nA)},en in regards to ergodicity, %E[’n(t)] = eNEy(t)] + i Z a1 By (t)]
.e. Gl
— - — + Elvi(t)|qu + ri(t 14
P(lim Z Litnayea = ®(A)) =1 (8) i®lqu + ra(t)  (14)
n=0 where0 < x;(t) < %. Or more compactly
IV. STABILITY ANALYSIS p
The analysis is based on the definition of a dominating th[ v(@#®)] = AE[y(t)] + s(t), (15)

processU, for which stability criteria are given. Sindé is

an approximation from above, the presented criteria cay onvhere A = 1°Q + €D'ag()\1a~ ;Am) + (1 — pc)Diag(Q),
be sufficient. Analysis is initially performed conditionea  7(t) = [v1(t), ..., yar()]" ands(t) = [m1(t), .., ks ()]

a specific realizatio of the switching process and the ~ From (12) and (13) we then get

initial cpndmon x(0) = = and subseq_uently turned into an EE [V (2(t))] < U(2) (16)
unconditional result through expectation over the proiigbi
space of realizations and initial conditions. which yields
Let the sequencet;} be the transition instants of a .
particular realizations of the switching process, such BB Vo (z(t)]] < BUM] =Y Elp(®)] A7)
that5(t) = p; for t € [t;,t;+1). We define the conditional
expectationE; by A. Moment stability in the wide sense for continuous time
E,[] = E[|lo = &,2(0) = ] We note that (17) implies, that i£[;(¢)] — 0 for ¢ — oo
and alll € P then E(ES [V, (x(t))]) — 0 for t — oo.
Hence fort € [t;, ;1) we have from (4) that However, due tor;(t) in (14) convergence to zero is not
d possible. Still boundedness of(¢) leads to a bounded
%Eﬁ(vpi (@(0))) < Ap B [Vp, (2(8))] + Ky, moment of £ [V, (x(t))]. Moreover, Jensen’s inequality
Now for the proces$V defined by gives for0 <e <1
th(t) AW + Ky, teftnti) (@ CEVeo @Ol 2 EEVo (#t)]) = Eloq @?)]
- - which in turn leads to the boundedness BfV, (x(t))]
Witis) = pW(tiy), p>1 (10) and in fact moment stability in the wide sense ZMSWS) of

W(0) = Vz(0)(Z) 1) (z,0).



Algebraically, stability of (15) is determined by the Let\ > sup{Re()\) | A eigenvalue ofA}. Then using the
eigenvalues of the matribxd = A(y, A1, .., Aa,€), where fact that there exists a constahtsuch that

Ajl = uqj for j # [ and A;; = e\ + qu. Note
that A(p, A1, .., \ar,0) = Q has (for an irreducibler) an lexp(A t)E[v(0)|z(0) = #,0(0) = 5] <
eigenvalue ab of multiplicity 1, and all other eigenvalues Lexp(At)|E[y(0)|z(0) = z,0(0) = ]|, Vt >0

in the left complex plane.
A sufficient criterion for the existence of an> 0 such With [ - | denoting the 1-norm, we conclude thata> 0,

that A(x, A1,.., Aar, ) is stable is that the root locus of 0 <@ <1 andx >0 exist so that

A for positive ¢ takes the root ad to the left half plane.

Defining I' = -L-A we obtain that stability properties df [E(A)]2(0) = 2,0(0) = 0| <
are equivalent to those of and a|Ely(0)[z(0) = 2,0(0) = 5] + K
_ € . 1—p Now assume thalty(0)| > (x + ¢)/(1 — «) for a positive
F=e+ Edmg(/\l’ )+ diag(Q) constantc. Then
Let D(s,¢€) be the determinant ofl —T" then the implicit |E[v(A)[z(0) = z,0(0) = 5]| <
function theorem gives the following sufficient stabilityi-c o o
orion o [ER(0)]2(0) = 7,0(0) =] — ¢ (20)
D.(0,0 ; ;
%) 18) and since by construction
D,(0.0) " 4o

: . : . |E[v(t) | #(0) = %,0(0) = 7]|
which through the Jacobi formula for determinant deriva-

tives, lemma 1 to 3 and [18, lemma 3.10], leads to the first
main result which is proven in the Appendix =

Theorem 1:Assume that inequality (20) becomes

E[ES [V (o) ((0))]] < o0, V3 €]0,1] E[U(A)](0) = 0—(0) = 5]
and E[U(0)|z ( )=7,0(0)=0]-c
Zm i —log(p)qi;) <0 (19) o V"e(j)
For 0 < e < 1, Jensen’s inequality and (16) then yields
then0 < e < 1 and K < oo exists such that E[U(1)|z(0) =z, 0(0) = 5]
BV (@(®)] < K, V>0 > B(ES (Vo (2(t)))[2(0) = 7,0(0) = 5)

) =
5. Ergodiciy > BV (@(t))[2(0) = 7,0(0) = )

In this section we establish sufficient criteria for ergatglic so that finally

to accompagne the previously establishe_d stability dzgile:r E(VEa)(@(A)](0) = 2,0(0) = 5) < VE(z) —
Ergodicity is generally based on two main characteristics;

recurrence and irredicibility, where the former is in fact a Through [4, Theorem 5.1] we obtain the second main
stability property and the latter is concerned with mutualesult

reachability within the state space. We conjecture that ir- Theorem 2:Assume the proces§r(t),o(t)) to be irre-
redicibilty of the switched proces&, o) is inherited from ducible and (19) is fulfilled then the discrete time process
the irredicibility of o and at least one of the subprocesse§r(nA),o(nd)) is ergodic.

(1) indexed byp € P. Since this paper is devoted to the
study of stability we omit further treatment of irrediciityl
and refer the reader to e.g. [20] for nessesary and sufficientFor K, = 0, consider the dominating proceBs defined

C. Relation to almost sure convergence

criteria for irreducibility of diffusion processes. by (9) to (11). Then
It is readily recognized that the derivation of (15) is t
carried out without reference to the initial distributio o W(t) = W(0) exp( / Aoy dt) N
0

(z(0),0(0)) so that it in fact holds for(x(0),c(0)) con-
centrated on a single elemeiit,5) or in other words where N(t) denotes the number of state switches{(nt].
conditional on the initial conditions(0) = 7 ands(0) =5, The expected sojourn timé; in every statei is inversely

ie. proportional to the sum of rates out of that state, Te=
1/ ZJEPJ# ¢;; = —1/qs;. For an ergodic chain the average
jE[ ()]|z(0) = z,0(0) = 7] = fraction of time in statei approachesr;. Thus the average
t

- - number of returns to statewithin [0, t] is 7; t/T; = —7; tqi;
AE[()|2(0) = Z,0(0) = o] + #(t) such thatV (t) approaches-t 3, cp 7 gii-



Now by taking logarithms 2

angle
steering

fault state

log (W (£)) = 1og(W(0)) + | Aoyt + bog(a) N 1) 0 ” ’

and recalling that for an ergodic chaigfot Ao(pydt =~
tY ,cp TiAi We obtain that (19) is also an exact criterion
for almost sure convergence f to 0.

System state
5

-3
V. EXAMPLES ‘ }
The example comprises a linearized model of a car back- E o Tme R
ing with an attached trailer The stateof the system is the
angle between the directional vectors of car and trailer arftg. 1. Simulation result for?y = 0.2 and my = 0.001,

the input is the anglex between directional vectors of car E(Vo @) (1)) < oo

and front wheels i.e. the steering angle. Due to road and
tire imperfections a random term is included in the system

dynamics to give the following diffusion equation using the YALMIP [21] library for MATLAB, i.e.
— (_ Q. d = sdpvar (2, 2);
do = (z - a)dt + dw 1) Fo[Qd >t 0, A *Q d+Q deA- 2¢1 anbda_d+Q d<=0]
wherew is a standard Brownian motion. sol vesdp(F)

Itis assumed that stegring angia'g §et by a referencé . Aleast conservative value for may be found by solving
through a servo mechanism comprising 1st order dynamlq};’e generalized eigenproblem

i.e.

d
priah —Ca+R (22) Qovi = piQ1v;.

where C' > 0 is a design parameter. The loop is closedrhen the least conservatiyecan be found as
through a proportional feedback, i.B.= K z,,, where the
control gain K is also a design parameter ang, is the
measurement of the trailer angle, i®, = x + N, where
N(t) is an independent standard Gaussian measurement 1/13.6231,1/37.8529} = 37.8529.
noise. We assume a simplistic fault model comprising 2
discrete states{0,1}, where the former indicates the faultWe may however scal€), without altering A, and A; in
free situation and the latter a faulty situation in which th€23). The scaling factor yielding the smallest valueyofs
measurement of the system state is not available. In trex lattl / \/maz; {p; ymin; {u; } = 0.044, yielding ;1 = 1.6669.
case we simplistically se® = 0 with resulting system poles  We parametrize the switching process through the station-
s = {1,—C}. We set design parametef§ =4 andC = 2.  ary error probabilityr; = qo1/(q01 +¢g10) and the error state
For both states the resulting continuous time dynamics as®journ timeT} = 1/q10, With go1 andg;o the two transition
linear with matrices4, and A;, where a continuous time rates.
Markov process switches between the two discrete system\e present simulation results for 3 different situations;
state. L1 L1 one where E(V, ) (z(t))) < oo (figure (1)), one where

A = L _2} A = {0 B 2} E(V; ) (x(t))) can be proven finite only for << 1 (figure

(2)) and finally one where no moment(V;7, (z(t))) can
Selecting Lyapunov functionsp and V; is a non trivial be proven finite (figure (3)).

task, for which the systematic study is postponed to future
research. It is readily shown that Lyapunov function candi-
dates may be found such that

1
max{ ;, 17} = max{13.6231, 37.8529,

angle
steering
fault state

d
—Vy <20V, 23
dtdf dVd ( )

where )\; is the largest real part of eigenvaluesAjf. Thus
quadratic Lyapunov function candidates may be found for
which

System state
\

iVo < -1V, and %Vl < 2V;.

dt 0.8 0.9 1 11 12 13 14
Time XlDA
In this case we choos&,(z) = z'Qgz and solve the
following linear matrix inequalities fo), Fig. 2. Simulation result fofy = 1.6 andm; = 0.03, E(V, (z(t))) <

0.

Qe>0 and A'Qu+ QuA —2XQq <0



3000 ‘ : : of [16] the noise intensity is scaled by state value, which is

steering ] not consistent with the example presented above.

fault state

2000

1000

System state

~1000 ] VI. CONCLUSION
—-2000

-3000

A sufficient criterion fore-moment stability (boundedness)
4000, o5 1 i 2 and ergodicity has been established for a class of systems
" o comprising finite set of diffusions among which switching
Fig. 3. Simulation result fof; = 1.6 and7; = 0.3, no guaranteed stable is governed by a continuous time Markov chain. For each
moments. separate diffusion stability/instability properties assumed
to be quantified by a Lyapunov function and an associated
_ growth rate equation. For the discrete set of Lyapunov
It seems clear from figures 1 and 3 that, whereas thgnctions a compatibility criterion is assumed to be fusill
former exhibits evident stable behavior the latter is obvithe established sufficient criterion is shown to be equivale
ously unstable. The intermediate case depicted in 2 would o exact criterion for the almost sure convergence of a

be harder to categorize by inspection. In such a case t@gminating process. Examples are provided to illustrage th
theoretical results obtained in this paper could resohee th,se of the established criterion.

dispute.

It may be argued that since the established criterion is
A. Comparison of results only sufficient it may provide overly pessimistic conclu-
Application of the method proposed in [8] would requireSionS- H_owe_ver the equ_iva_lence to the e?@_:t crite_rion for
the dominating process indicates the possibility of tigiss
(Ao(i) — A11(i))? + 4421 (1) A1 2(i) <0 for i€ {0,1}  for special cases. Another source of conservatism is the

which is not fulfiled in this case. An immediate reason-CTPalIbIlity criterion for Lyapunov functions appliedhit

for this, is that the criterion proposed in [8] additionallycr'ter'on may be refined such that a separate criterion is

. . . o . .~ expressed for each pair of discrete neighboring modes in
ts]zrgtlons ireducibility, which is left out of considerati the transition graph. Finally the stability criteria edisibed

A comparison of results may also be conducted witﬁhoum not stand alone in the analysis of practically appgar

the exact criteria proposed in [16] for so call&tochastic systems.. .
Stability (SS) andMean Stochastic StabilityMSS), which ~ Analysis of the eigenvalues of the matixcould be use

are both strongly related to second moment stability. SS fer identifying a particulae > 0 for which moment stability
achievediff is guaranteed. This particular value indicates the natfire o

o the resulting marginal state distribution, i.e. the powkit®
E[/ |Qj(t>|2dt|x07o‘o] < T(z0,00) tail. Such results are valuable in the qualitative assessme
0 of stability properties. The refinement of the compatipilit
for all initial conditions g, oy, Whereas MSS is equivalent criterion and the use of tail powers for stability assesgmen
to define important directions for future research.
lim E[|z(t) |20, 00] = 0

for all initial conditions. Thus SS and MSS both refer

to the behaviour of 2nd moments. Disregarding noise in VII. APPENDIX
the example above yields a system of the type defined in

equation (2.1) of [16] for which both SS and MSS are

equivalent to the following coupled LMIs being feasible forA. Proof of lemmg3)

symmetric and positive definite matricés,: € P

A K + KA + ) i K; <0 (24)
J

as specified in theorems 2 and 4 of [16]. Application of ~;(t+ h) = IUtJrh:l[hZG)‘jIUt:j +MEZI@:J‘
(24) to the example above has been conducted also with the j J#£l
YALMIP tool. Only the first parameter setting, i.#; = 0.2 + Ly, U (t) + Loy, —the KWL
and m; = 0.001 yields feasible LMIs, corresponding well ' o
to the fact that in this case our method guarantees a finite
second moment, i.&Z(V,, ) (x(t))) < oo. Theorem 7 of [16] taking expected values (i.e. averaging over the space of
treats the noisy case. However as specified in equation)(2.5Witching process realizations) and neglecting higheeiord



truncation errors, gives
E[ wt+h) |

= hZG)\jE[IgtJrh:an:jU(t)]
J

+ 1> Bl —ils,—U(1)]

J#
+ E[Iat+h—l lU( )] [ Ut+h_l}h6KW'r€anL
= h hzd\jqleUm:jU(t)]
J#l
+ M=) qy)Ell,=U(t)])
J#l
+ Y B, —U ()]
j#l
+  (A=hY_ a)El,~U()
j#l
+ E[ Ott+h= ]hEKWEMn

~  heME[Ly, U b)) + hp Y giE[ly,—;U(1)]

il
+ (L=h) aj)Elle,2U ()] + Elly, ., <he KWy
il

min

so that subtractind’[I,, ;U (t)] and taking limits forh — 0
gives

S EO] = eAEm@)] + > g Bl (t)]
J#l
+ Eln(®)lqu + lim Elly, = JeKWro,

min

B. Proof of Theorem (1)
From the Jacobi formula
or
Oe
such that D.(0,0) = tr(adj(Q)%-) and Dy(0,0) =

—tr(adj(Q)) with 2L evaluated at(0,
diagonal matrix it follows that

D, = —tr(adj(sI —T)—), Ds =tr(adj(sI —T))

M or M
— ZMM(E)M’ D4(0,0) = — ZM”
i=1 —

where M;; are the diagonal minors @). From [18, lemma

3.10], there is a positive constantso that
Mii = (—1)”1_107('7;

hence

g

|
(]
2
S

D.(0,0) _
D,(0,0)

Next fors =e¢ =10

or )
(7) = dzag()‘la 7>\M) -

e log(p)diag(Q)

0). Since & is a

which yields

— log(11)qii)

D0,0) &
D,(0,0) _;”"(Az

Thus from lemmas (1) to (3) and (18) the theorem follows.
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