

Aalborg Universitet

Enhancing Students' Motivation to Learn Programming by Using Direct Visual
Feedback

Reng, Lars

Published in:
Innovations 2012

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Reng, L. (2012). Enhancing Students' Motivation to Learn Programming by Using Direct Visual Feedback. In WI.
Aung (Ed.), Innovations 2012: World Innovations in Engineering Education and Research (1 ed., Vol. 1, pp. 239-
250). iNEER.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://vbn.aau.dk/en/publications/2355fac3-ae10-490c-97bd-939b66db8aaa

Chapter XX

Enhancing Students’ Motivation to Learn
Programming by Using Direct Visual Feedback

LARS RENG1

1Department of Architecture, Design & Media Technology, Aalborg
University, Denmark. E-mail: lre@create.aau.dk

In several new approaches to interdisciplinary engineering education, students often
see the technical subjects such as mathematics and programming as problematic to
learn. These technical subjects of concern here are within programming, and image-
processing algorithms are used as a means to provide direct visual feedback for
learning basic C/C++. The pedagogical approach is within a Problem Based
Learning (PBL) framework and is based on dialogue and collaborative learning. At
the same time, the intention was to establish a community of practice among the
students and the teachers. A direct visual feedback and a higher level of merging
between the artistic, creative and technical lectures have been the focus of
motivation, as well as a complete restructuring of elements of the technical lectures.
The paper will present test results based on over 400 students, gathered over a
period of five years. The paper will explain different steps of the new programming
courses in detail, and relate students’ test data to each of the initiatives causing the
leaps of improvement. Furthermore, the students’ technical abilities and the
enhanced balance between the interdisciplinary disciplines of the study are analysed.
The conclusion is that the technical courses have attained a higher status for the
students. Students now see them as a very important basis for their further study, and
their learning results have improved to a satisfactory level from the study board’s
point of view.

INTRODUCTION

During the last decade there has been an amazing development in new media and media
platforms. The industry has changed and so has the demand for engineers working in the
content-related fields of the many fast-growing areas. As a natural response to the new
demands of the industry, many universities are trying to establish new programmes to
close the void, by creating a new type of engineer that can meet the new challenges from

industry [1]. The Medialogy master and bachelor programmes were established at
Aalborg University approximately nine years ago. Medialogy is a multidisciplinary
programme aimed first at creating a new type of engineer with a strong skill set and
understanding, ranging from the latest media technologies in both software and hardware
to new and old artistic disciplines, and also at gaining a deep understanding of the human
perceptual system [1, 2]. Traditional technical engineers seem to lack an understanding of
both the human cognitive system and the techniques and problems linked to creating
high-value media content. Equally problematic is the artists’ and media directors’ lack of
realization of how technically challenging their many ideas are for the engineers to
develop. The candidates from Medialogy should be able to close this gap and be a
valuable asset for any company, as a mediator or as part of any of the three groups
mentioned above.

In this article, the author investigates the problems of teaching highly technical
topics to students who are neither technically skilled nor keen on improving their skills in
these topics. The relatively new interdisciplinary engineering programme Medialogy,
within the engineering and science faculty at Aalborg University, has, in resent years,
been drawing a large number of students into the void between the many creative fields
of media, art, design and the technical engineering disciplines. While the numerous
engineering programmes hold a great appeal for those students who are both inclined
towards and passionate about highly technical topics, Medialogy seems to appeal to those
students who are passionate about the creative side of media, art and design. Since the
start of the new Medialogy study programme eight to nine years ago, it has been evident
that the technical level of the more artistic minded part of students was below that
required by the programme.. Studying Medialogy implies a certain level of mathematics
and programming, which has been a great problem for many students. The more artistic-
minded students seem not to be interested in those technical subjects and when they start
the Medialogy programme they cannot see the reason for learning them, with the result
that many students have withdrawn from the course. So a big challenge for the
programme has been to find a pedagogical approach which could stir an interest in the
technical subjects and avoid students pulling out.. The author of this article has, with full
support from the head of studies, taken the initiative to try to fundamentally change the
way technical topics are being taught.

All programmes at Aalborg University follow the Aalborg University pedagogical
model based on PBL principles [2, 3]. According to the Aalborg PBL model, students use
approximately half of the study time every semester to work in their group on a project
where they have to choose and solve a problem within a field selected from the overall
theme of their semester. The other half of the time is used on courses related to the
project topic or as a prerequisite for courses for an upcoming semester. So each semester
students have to analyse the semester theme, find a relevant problem they want to solve,
use or develop suitable theories, find useful methods, design and develop a product, and
after thorough testing evaluate whether the problem has been solved.

After the first three years it became evident to the Medialogy teachers that the type
of engineer students that were attracted to Medialogy were less technically inclined and
prone to learning hard technical topics. So the consequences were that the teachers’
expectations of the students’ technical level were lowered, and in some areas, where a
technical skill set was the desired goal, only a superficial understanding was expected. It
became clear that the technical parts of the programme needed to be critically evaluated.,

and the results showed an urgent need for improvement of the technical courses,
especially programming.

Four years ago the author of this article was hired to teach programming at the
bachelor level of Medialogy. The paper will describe the stepwise transformation of the
course in the attempt to raise the students’ technical level to the original desired goal. The
paper will focus in particular on the merger between programming, image processing and
the third-semester PBL project, in an attempt to provide direct visual feedback for the
programming course.

METHODS
The author has used the case method combined with action research [4, 5]. All four
programming courses have been followed and analysed over the last five years by the
author. The courses have been developed during the process according to previous
experiences and results. The prosess has included characteristics from continuous
improvement (CI) processes, and the evaluation processes have been inspired by CI
evaluation methods [6]. The data are course assignments, exams, and interviews with
students and project supervisors.

The pedagogical approach was based on the PBL principles [7] and one of the main
focuses of the courses was to relate the course content to understandable problems for the
students so they could see the purpose of the learning [8]. During the process it became
evident that an important part of the pedagogical strategy should be based on motivation.
Students had lots of assignments as well as exams during the semester, so the extrinsic
motivation was established. Test results and interviews showed that one group of students
was very motivated and was almost enjoying programming. The challenge was to find a
pedagogical method so all students could explore and see the benefit of learning
programming. The goal was to find “the code” so this group of students could find their
intrinsic motivation [9, 10]. Another teaching strategy was to emphasize and support
reflection as a means for understanding [11, 12] and to use students’ previous experience
either from programming courses or from related areas to support their learning process
and to maintain motivation. Experiments were used with inspiration from Donald Schôn
[12] when developing different aspects of the courses. But one of the most important
factors was to develop course material and course content “just in time”.

PROGRAMMING IN MEDIALOGY
The bachelor Medialogy programme was originally only a two-year education since the
students could apply after taking a two-year multimedia college education, which would
give them the needed accreditation to skip the first year of the three-year bachelor
education. The programming part of the education was therefore split evenly from the
third to the sixth semester. The third semester introduced the basic concepts of
programming, the fourth added the object-oriented programming (OOP) concepts, the
fifth added 3D graphics programming with OpenGL (GFX), and the sixth finally
introduced artificial intelligence programming (AIP). All four programming courses are
graded using the seven-point scale system. The grades -3 and 00 are failing grades. The
grades 02, 4, 7, 10 and 12 are passing grades (12 = A).

	

FIGURE 1
COURSE OVERVIEW. THE FOUR COLOURED [“SHADED” AFTER

PRINTING?] COLUMNS DEPICT THE FOUR SEMESTERS. THE
NINE ROWS DEPICT THE SEMESTERS OVER THE LAST FOUR

AND A HALF YEARS.

This paper will focus on the
changes made to the third-
semester C/C++ programming
course. The students are
introduced to the basic concepts
of procedural programming in
the third semester. The
curriculum includes elements
such as data types, variables,
loops, branching, arrays, structs,
functions, pointers, searching and
sorting, linked lists, trees, etc.
Object-oriented programming
(OPP) is not taught until the
fourth semester.

	

FIGURE 2
SIX LOW-RESOLUTION VERSIONS OF THE LENNA IMAGE. (1) ORIGINAL, (2) INVERTED, (3) WITH ‘SALT’& ‘PEPPER’

NOISE, (4) BLURRED, (5) EDGE DETECTION, (6) MEDIAN-FILTERED RESULT OF IMAGE (3)[3?]

Unknown
Formatted: Font:(Default) Arial, 10 pt

Image Processing

The third-semester image-processing (IP) course is a general introduction course to basic
image processing. The course does, however, have a strong focus on basic computer
vision since this is needed for most third-semester project artefacts. This short section
will describe some of the image-processing filter algorithms that enable the students to
get direct visual feedback when programming. The author of this article has a master’s
degree in computer vision and graphics, and has often used images to depict debugging
information and a range of algorithms from physics to artificial intelligence. It was
therefore a most welcome opportunity to have the programming course running in
parallel with a course on image processing. The basic algorithms used for noise
reduction, colour and marker detection and 2D visualization can cover up to 80% of the
material in the programming course if used right. In the figure below, five of the simplest
most used operations are depicted on the world-famous Lenna image.

Inverting (Figure 2 (1)) an image or changing its brightness and contrast requires
very little programming. This makes it a very good exercise when introducing arrays,
since most students have performed these operations in Adobe Photoshop or a similar
graphic program. Operations such as blurring (Figure 2 (4)) or edge detection (Figure 2
(5)) require a little more, and are therefore perfect continuations. The median filter, on
the other hand, requires a sorting method and can therefore be a challenge to most new
programmers.

Detecting the Problem (Spring 2007)

The first course to teach was the Object-Oriented Programming (OOP) course. The
previous teacher had left rather suddenly a month before with no desire to support the
successor; therefore, no exchange of knowledge and experience from previous years was
given. As a result, the course was designed and run in a very traditional engineering
education style. The course, which was the students’ second programming course, was
split into 15 lectures of 2x45 minutes of auditorium lecturing and 2x45 minutes of
assisted exercises, which took place in the students’ own group rooms (each group has a
room for project work). It became evident rather quickly that only a fraction of the
students had mastered the basics of the first programming course which had ended only a
month before. As a result, it was very hard to focus the teaching on the desired
curriculum. To investigate whether this problem had occurred before, and also to see how
well the students performed at the end of their bachelor programme, the entire sixth-
semester Artificial Intelligence Programming (AIP) course was monitored with a focus
on the students’ abilities to apply basic programming to solve the exercises. The results
were shocking. From a whole semester of sixth-semester students, only one student dared
to attempt to solve the final free competition exercise. So even though his simple
artificial intelligence did not work perfectly, he still won. Numerous meetings with the
coordinator of studies concluded that the last four years of changing teachers and choice
of programming language had proven that more extensive changes would be required in
order to break the reoccurring problem of the weak technical level of the majority of the
students. High levels of freedom to initiate new ideas were therefore granted. Also, it was
agreed that the requirements to pass the exam should be raised significantly in the first
year, and then by another 10% the following three to four years, as the new
improvements to the course would hopefully gain full effect.

	

FIGURE 3
RAISING THE BAR (FALL 2007). THE GRADES -3 AND 00 ARE FAILING GRADES. THE GRADES 02, 4, 7, 10 AND 12

ARE PASSING GRADES. (12 = A). THE X AND Y AXES REPRESENT THE GRADE AND FREQUENCY FOR THE FALL
COURSE 2007

Raising the Bar (Fall 2007)

Interviews with the students in their fourth and sixth semesters had revealed that many
had been able to pass the third-semester programming exam using a high level of
memorization of blackboard examples. In order to prepare the students for the
challenging programming courses of later semesters, the severity of the third-semester
course had to be raised. This would clearly result in a much higher number of failed
exams and students dropping out, unless a better way of teaching the curriculum was
found. The students had, for the last four years, since the beginning of the programme,
undertaken a course in image processing in the third semester, and they had built an
interactive installation using this as part of their semester project. This had, however,
been done with tools such as EyesWeb, where the details of the different operations were
hidden and handled by the tool.

In order to bring more focus to the programming part of the semester it was decided
to remove the tools, and instead the students were required to program the entire project
artefact in C/C++. The open computer vision library (OpenCV) was all the external
software they were allowed to use. The programming course was run in parallel with the
early stages of their semester project and the image-processing course. The programming
course was run in a classical style, using two hours of lecturing and another two for
exercises. The students came poorly prepared to the programming lectures and almost
half of them seemed to lack any motivation to learn programming, or do the exercises
required. More than half of the students were unable to apply what had just been taught in
the lecture only minutes before the exercises. There was almost no flow in the exercises,
and most students seemed to be stuck as soon as the teaching assistants had left them.
The semester project artefacts were programmed by the project groups in C/C++ (each
project group had four to six students). Project exams unfortunately revealed that only the
strongest programmers in the group were able to explain the source code, indicating that
not all students had benefitted from the extended programming practice possibility which
their work on the semester projects should have offered. On the other hand, those that had
programmed major parts of the projects could explain in a very high level of detail how
the different image-processing algorithms affect an image. The level of difficulty of the
programming exam questions was greatly increased, as previously agreed. This
unfortunately resulted in more than 50% failing the course (see Figure 3).

Merging the Courses (Fall 2008)

Interviews with supervisors and skilled students the previous year had indicated that
programming all the algorithms from the image-processing course would greatly improve
the students’ understanding of how and why they worked the way they do. Another
interesting observation made during the breaks of the programming courses was that
many of the students who lacked the motivation to learn programming were using their
breaks to continue to work on the more artistic courses. It was therefore decided to
attempt to merge the image-processing and programming courses, and to use all the
filters used in the more artistic classes as programming exercises. If the more artistic-
minded students were asked to recreate some of the effects they liked from software such
as Adobe Photoshop, it might increase their motivation to understand how these filters
were programmed, and thereby learn more programming. Another important benefit was
that changes in images often seemed to make more sense for the students than just
numbers from a program.

It was therefore decided to completely merge the two courses: programming and
image processing. Instead of starting with a two-hour lecture and then two hours of
exercises, the students were taken out of the auditorium and into a large seminar room.
This allowed the lecture and exercise time to be interleaved in 15–20 minute intervals,
thereby allowing students to implement each new method directly after it had been
presented and discussed. The teacher was close to the students during lecture time and
could move around between them. This made it easier for students to ask questions, but
also for the teacher to askwhether the students had understood what was going on.
According to interviews with students and supervisors, the effect of this merger not only
had a positive effect on the students’ knowledge on image processing but it also resulted
in better semester project artefacts. The difficulty level of the programming exam was
raised by approximately 10%. Even under these conditions the results of the exam
indicated that the changes from the previous year had had a positive effect on the level of
the students’ programming skills (see Figure 4).

The Semester Spirit (Fall 2009)

A phenomenon that is discussed daily among teachers but is still a bit of a mystery is the
semester spirit. Even though we know there is a great difference between the best and

	

FIGURE 4
MERGING THE COURSES (FALL 2008). THE GRADES -3 AND 00 ARE FAILING GRADES. THE GRADES 02, 4, 7, 10

AND 12 ARE PASSING GRADES. (12 = A). THE X AND Y AXES REPRESENT THE GRADE AND FREQUENCY FOR THE
FALL COURSE 2008

weakest students and a great difference between the most and least dedicated students,
everybody knows that semesters can be very different. Something can make students at
one semester accept lazy behaviour, or they can work harder than those the year before
them. Even though only minor changes were added to the image-processing and
programming course, the students in the fall semester seemed to be less motivated and
more reluctant to do all the exercises. This had an overall effect on both semester projects
and the programming exam. Again the difficulty level of the programming exam had
again been raised by approximately 10% (see Figure 5).

Focus on the Artists (Fall 2010)

In order to do everything possible to avoid another year with a collective lack of
motivation, several of the master’s students that had passed the exam two years earlier
were invited to talk to the new third-semester students at the very beginning of the
course. It was not only the strong programmers that were invited, as a few very artistic-
minded master’s students explained how they used their programming skills to improve
their work daily.

The aim of this special effort was to try and motivate “the hard to reach” and more
artistic-minded new students. Another initiative added this year was that the last part of
the image-processing course was delayed and delivered at the time when the students

	

FIGURE 5
THE SEMESTER SPIRIT (FALL 2009). THE GRADES -3 AND 00 ARE FAILING GRADES. THE GRADES 02, 4, 7, 10 AND

12 ARE PASSING GRADES. (12 = A). THE X AND Y AXES REPRESENT THE GRADE AND FREQUENCY FOR THE
FALL COURSE 2009

	

FIGURE 6
FOCUS ON THE ARTISTS (FALL 2010). THE GRADES -3 AND 00 ARE FAILING GRADES. THE GRADES 02, 4, 7, 10

AND 12 ARE PASSING GRADES. (12 = A). THE X AND Y AXES REPRESENT THE GRADE AND FREQUENCY FOR THE
FALL COURSE 2010

were implementing their semester project artefact. Instead of traditional course teaching,
these hours were used as an open support for any image-processing or programming
problem related to the semester project. The programming exam had the desired level of
difficulty at approximately another 10% harder than the year before. The results were
better than expected (see Figure 6).

The Will to Succeed (Fall 2011)

Observing the students in the seminar room as well as in their group work, it was evident
that while some students could not stop programming, others could not wait for
programming to stop. Informal interviews with this group revealed that they did not see
programming as an important part of their future education, nor their future job. The
author therefore decided to use a large part of the first couple of lectures to help the
students find an intrinsic motivation to follow the courses. Guest lecturers from both the
master programme and media industry were invited to explain the importance of
programming for programmers, designers, managers and also artists. After trying to
establish the need for programming skills or a knowledge of programming principles, a
new experimental addition was added to the course. Principles from motivational coaches
were tried out in the form of neuro-linguistic programming (NLP)-style goal setting [13].
Finally, a small Facebook group was created for the students so they could cry for help
when most fellow students would notice it, after school hours. To further explore the
possibilities of direct visual feedback, a few examples and exercises were given in the 3D
graphics environments that most students hope to work with in their future jobs. The
feedback from these were very positive, and the motivation among the more artistic-
minded students seemed to be increasing. The programming exam difficulty was raised to
the final level of approximately 10% harder than the year before. The level was now fully
in line with the study plan and equal to purely technical engineering programmes. The
results were better than expected (see Figure 7).

	

FIGURE 7
THE WILL TO SUCCEED (FALL 2011). THE GRADES -3 AND 00 ARE FAILING GRADES. THE GRADES 02, 4, 7, 10

AND 12 ARE PASSING GRADES. (12 = A). THE X AND Y AXES REPRESENT THE GRADE AND FREQUENCY FOR THE
FALL COURSE 2011

RESULTS
Students are graded using the seven-point scale system. The grades -3 and 00 are failing
grades. The grades 02, 4, 7, 10 and 12 are passing grades (12 = A). The figure below
(Figure 8) depicts the total sum of grades given according to the seven-point scale. The x-

axis represents the grade and the y-axis the frequency in percentage for the fall courses
2007–2011. As mentioned earlier, the 2009 results bring doubt to the results and
conclusion. It is therefore important to keep in mind that the exam tests have been
gradually made more difficult, so the students would have to score approximately 40%
better in 2011 to earn the same grade as another student from 2007. The final year shows
that the pedagogical approach was good for the students’ learning. The combination of
motivation and the untraditional teaching methods, especially the opportunity students
had to work with programming problems in their projects, were proven to enhance the
general level of programming.

CONCLUSION AND PERSPECTIVES
The merging of the programming and image-processing courses was carried out as a
natural support to the students’ new requirement of having to implement an image-
processing-based interactive artefact through the use of C/C++ in their semester projects.
When this initiative was approved five years ago there was no or little actual
programming in the projects in the bachelor semester (sixth). The artificial intelligence
programming course was rarely used in any semester projects. Today this has changed
dramatically. Several bachelor groups are today implementing advanced algorithms for
artificial intelligence in their semester projects. Numerous projects are being programmed
in industry-standard game engines, and students are starting to program full-scale
commercial productions in their early master’s semesters. The ideas for improving the
course were good, and the use of programming in the students’ semester project
supported motivation as well as learning.

The direct visual feedback achieved by using images as an output for most of the
exercises in the programming course has been observed as a strong motivator and potent

	

FIGURE 8
GRADE DISTRIBUTION IN PERCENTAGE BETWEEN 2007 AND 2011. THE X-AXIS REPRESENTS THE GRADE AND

THE Y-AXIS THE FREQUENCY IN PERCENTAGE FOR THE FALL COURSES 2007–2011

debugger for the very graphically minded students of Medialogy. The direct visual
feedback is not the only initiative applied to the third-semester programming course. For
the moment it is therefore not possible to conclude the effect based on the exam results
depicted in the results section.

The course will soon be running for its sixth year, and once again the positive trends
from the previous years are being used to full effect. The specially targeted group of
artistic-minded students are still not being fully motivated. To achieve this goal, several
new initiatives have been initiated and will be explored in more depth. The students will
be presented with members from the media industry to inspire them and inform them of
the demand for programming-educated employees. The students have been asked to write
down their goals for the course, as well as how they intend to reach these. Finally, a few
small assignments will try to expand the use of direct visual feedback by moving the
students into 3D programming using OpenGL or a 3D game engine such as Unity, Ogre
or Unreal. There is no doubt that the journey started five years ago will continue to
improve the technical teaching and success in general for all students, and especially for
the students not motivated by technical subjects. It is my hope and belief that this method
can be used in numerous fields of teaching. The concept of bringing intrinsically
motivating elements from other fields into a course, and trying to explore what can
trigger a drive and will to learn, should be applicable to almost any field.

ACKNOWLEDGEMENTS

The development of this article would not have been what it is today without the support
and counselling of supervisor and mentor Lise Busk Kofoed. A great deal of respect and
gratitude is therefore given as well as deserved.

REFERENCES

1. R. Nordahl and L. B. Kofoed, “Medialogy – Design of a Transdisciplinary Education using
Problem-based Learning,” Proceedings from SEFI 36th Annual Conference, 2008, Aalborg.

2. L. B. Kofoed and R. Nordahl, “Learning Lab – Teaching Experienced Students PBL,”
Proceedings of the 18th Conference of the Australasian Association for Engineering
Education, Melbourne, Department of Computer Science and Software Engineering,
University of Melbourne, 2007.

3. L. B. Kofoed, S. Hansen, and A. Kolmos, “Teaching Process Competencies in a PBL
Curriculum,” A. Kolmos, Flemming K. Fink, and L. Krogh (eds.), The Aalborg Model:
Progress, Diversity and Challenges, 2004, Aalborg University Press, Aalborg.

4. K. E. Weick, K. M. Sutchcliffe, and D. Obstfeld, “Organizing and the Process of
Sensemaking,” Organization Science, 16(4), 409-421, 2005.

5. D. Schön, The Reflective Practitioner. How Professionals Think in Action, Ashgate Publishing
Limited, 2009, England.

6. F. Jørgensen and L. B. Kofoed, “Integrating the Development of Continuous Improvement and
Innovation Capabilities into Engineering Education,” European Journal of Engineering
Education, 32(2), 181-191, 2007.

7. E. de. Graaff, and A. Kolmos, “Characteristics of Problem-based Learning,” International
Journal of Engineering Education, 5(19), 657-662, 2003.

8. D. A. Kolb, Experiential Learning: Experience as the Source of Learning and Development,
Prentice Hall, 1984, Englewood Cliffs.

9. M. Csikszentmihalyi and K. Rathunde, “The Measurement of Flow in Everyday Life: Towards
a Theory of Emergent Motivation,” in J. E. Jacobs, Developmental Perspectives on
Motivation, 60. Nebraska Symposium on Motivation, University of Nebraska Press, 1993,
Lincoln.

10. M. Csikszentmihalyi, S. Abuhamdeh, and J. Nakamura, “Flow,” in A. Elliot, Handbook of
Competence and Motivation, 598-698. The Guilford Press, 2005, New York.

11. J. Cowan, On Becoming an Innovative University Teacher: Reflection in Action, Open
University Press, McGraw-Hill Education, 2006.

12. D. Schön, Educating the Reflective Practitioner – Toward a New Design for Teaching and
Learning in the Professions, Jossey-Bass Publishers, 1990, San Francisco.

13. A. Robbins, Unlimited Power: The New Science of Personal Achievement, Free Press, 1997.

Lars Reng received an MSE in Computer Vision and Graphics form Aalborg
University in 2003. Since 2007, he has been a Teaching Assistant Professor of
Medialogy at the Department of Architecture, Design & Media Technology,
Aalborg University, Copenhagen.

	

