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L. Darnkilde 
Department of Structural Engineering 

Technical University of Denmark, DK-2800 Lyngby, Denmark 

INTRODUCTION 

In thin-walled beam theory the kinematics of the beam is described by 6 degrees of 

freedom for a rigid body displacement of each cross-section plus an additional degree of 

freedom for cross-section warping. Torsion and warping are coupled, and this coupling 

requires special attention at joints. In general the transfer of warping through a joint 

will create deformation of the cross-section. Although distortion in the form of 

cross-section deformation is not accounted for in classical thin-walled beam theory this 

effect is often local, and for cross-sections containing two main flanges - such as I, U 

and C-profiles - simple joint models compatible with classical thin-walled beam theory 

can be developed. 

A B c D 

Fig. 1. Four different types of I-bearn joints. 

In the present paper models are presented for the four 1-beam joints shown in Fig. 1. 

These joints have been considered by Vacharajittiphan & Trahair (1974), who 

represented the effect of the joint as a numerically calibrated warping restraint stiffness. 

In the present approach the key issue is to identify suitable kinematical continuity 

conditions, and then - if necessary - to include any additional stiffness associated with 

distortion of the beams and torsion of the plates added to the joints of type B, C and D. 



The height of the beams is h1 and h2, respectively. At the joints the warping intensity of 

the beams is denoted by 01 and fh. The warping of a cross-section of beam 1 according 

to classical thin-walled beam theory consists of a relative inclination of the two flanges 

of magnitude h101 in the plane of the flanges as shown in Fig. 2. At the joint the 

continuity of the inside and outside flanges leads to mutual inclination of the flanges of 

magnitude 7/J1 in the plane of the cross-section as shown in Fig. 3. At any of the four 

types of joint the four kinematical parameters Ot, 7/Jt, fh and '1/>J. are related by two 

continuity conditions. Thus the deformation of the beam cross-sections at the joint can 

be expressed in terms of the warping intensities 81 and fh. In joint types B and C an 

additional equation is obtained from the very large in-plane bending stiffness of the 

added plates, while in type D two additional equations are obtained from the plates in 

the joint. Thus type A has two free warping parameters, types B and C have one, while 

warping as well as cross-section deformation is fully restrained in type D. 

Fig. 2. Warping of beam 1. 

Fig. 3. Distortion of beam 1. 
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FLANGE CONTINUITY 

The displacement of a joint may be considered as consisting of a rigid body motion and 

a deformation of the joint permitting warping and distortion of the associated beams. 

The present analysis is only concerned with the latter part. The rotation of the 

intersection line of the inner flanges must be the same whether described in terms of the 

parameters h10t, 7/J1 or h202, 1/J?.. Projection of the rotation vectors shown in Fig. 4 then 

gives the continuity conditions 

[7/Jt] = _J_ [ cosa ht -h2 J [Ut] 
7/J2 sma ht -cosa h2 fh. (1) 

This relation enables elimination of the distortion parameters 7/Jt and 1/J?. locally at the 

joint, provided the beam distortion does not couple to the neighbouring joints. 

i¥'1 
1----~--

ih{lJt' 

Fig. 4. Flange continuity at joint. 
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ENERGY AND LENGTH SCALES 

The elastic energy per unit length of beam associated with warping is 

W 0 = .!. E C 0'2 + .!. G K rf2 
2 2 (2) 

where E is the modulus of elasticity and G is the shear modulus. K is the St. Venant 

torsion constant of the full beam cross-section, and C = h21f/2 is the warping stiffness 

when Iris the in-plane bending stiffness of one flange. 

The elastic energy associated with distortion can be approximated by a similar 

expression. 

W = .!. G 2K (.!.·'·' )2 + .!. 1 D •1•
2 

1/J 2 f 2'f' 2li w 'f' (3) 

Kr is the St. Venant torsion stiffness of one flange, and Dw = Etw3/ 12(1-v2) is the 

bending stiffness of the web. 

The Euler equations corresponding to (2) and (3) are 

ECO"-GK0-0 (4) 

G ~Kr 1/J" - (Dw/h) 1/J = 0 (5) 

These equations have exponential solutions with parameters given by 

k2 GK k2 2Dw 
0 = E"C ' 1/J = GKrh (6) 

The parameters ko and k1/J determine the attenuation of warping and distortion with 

distance from the joint, respectively. Usually k1/J is greater than k0 implying faster 

attenuation of the distortion mode. 

In the following the distortion modes are assumed to be local. The elastic distortion 

energy in each of the beams can then be represented by the value corresponding to a 

semi-infinite beam, e.g. 

E1/Jt 
_
2
1 I Tiwl GK .,,2 

~ 2li1 fl 'f'l (7) 
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This expression is accurate to within 10 pet for k'l/11 ~ 1.5. 

UNSTIFFENED JOINTS, TYPE A 

In the unstiffened joint of type A the warping intensities 01 and fh are used as 

independent parameters, while the distortion parameters 'I/J1 and 1h, are expressed by the 

relation ( 1) as 

(8) 

The distortion energy associated with the joint then follows from (7) in the form 

(9) 

When the diagonal stiffness matrix is denoted [DJ, the distortion energy is expressed in 

terms of the warping parameters as 

(10) 

Thus the unstiffened joint of type A acts in warping as a hinge with two independent 

warping parameters ( 01,/h) and an additional 2 by 2 elastic spring stiffness matrix given 

by the matrix product in (10). 

STIFFENED JOINTS, TYPE B 

In stiffened joints of type B the in-plane bending stiffenss of the cross plate in the joint 

is usually sufficiently stiff to effectively prevent in-plane deformation. This leaves only 

one parameter to describe the combined warping and distortion of this type of joint. 

The geometry of the joint is shown in Fig. 5, where the parameters are determined by 

a1 = (h2 - htcosa)/sina (11) 

(12) 
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and 

(13) 

(14) 

The length of the cross plate is 

(15) 

Fig. 5. Geometry of type B joint. 

It is convenient to introduce the parameters Oc and '1/Jc representing warping and 

in-plane bending of the cross plate, see Fig. 6. Projection of the rotation vectors gives 

the following expression for the parameters of beam 1. 

(16) 

The similar formula for (h282, 1/12) follows by exchange of a1 with -ll'2· 
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Fig. 6. Joint warping De and in-plane bending '1/Jc. 

In practice the in-plane bending stiffness of the cross plate is much larger than the 

warping stiffness, and thus 1/Jc = 0 is a good approximation. By (16) and the similar 

formula for beam 2 this implies 

(17) 

Elimination of h1 and h2 by use of (15) then gives the continuity condition 

(18) 

Thus constraint of the in-plane bending of the cross plate - 1/Jc = 0 - implies that the 

two beams have identical warping parameters at the joint - Dt = fh.. 

There are two stiffness contributions associated with the warping parameter De -
warping of the cross plate and distortion of the beam cross-sections. The elastic energy 

required for warping of the cross plate with dimensions hcxbcxtc is 

(19) 
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The distortion parameters '1/-'1 and '1/>2 follow from (1) with B1 = fh = Be. When the 

geometric parameters a1 and a2 shown in Fig. 5 are introduced from (11) and (12) 

[ ~] = [:~] Be (20) 

This relation is substituted into the energy expression (9) to give the energy of 

distortion 

(21) 

The only dependence on the joint angle a is through the lengths a1 and a2. 

STIFFENED JOINTS, TYPE C 

In stiffened joints of type C the warping is conveniently expressed in terms of the 

out-of-plane displacement ±A of the four points of flange intersection. The analysis has 

been carried out by Krenk et al. (1990). The result is that there is a single warping 

parameter 

(22) 

where A = h1h2/sina is the web area enclosed by the flanges. The warping at the beam 

ends is determined by 

{23) 

Thus warping is of the same magnitude, but of different sign in the two beams. 

There are two stiffness contributions - warping of the additional flange lengths, and 

distortion of the beam cross-sections. The additional energy from warping of flanges 

with dimensions b1xt1 and b2xt2 is 

E = ! {!a h2b 1 t3 + ~ .h!ht3} if. B 2 3 Slllfr 1 3 Slllfr 2 e 
(24) 

8 



The distortion energy is computed by introducing the common warping parameter Oc 

from (23) into (1) and (9). Experience indicates that the main point is the enforcement 

of the continuity condition (23), while the additional stiffness contributions are of 

secondary importance. 

STIFFENED JOINTS, TYPED 
The stiffened joints of type D must satisfy the continuity conditions of joints of type B 

as well as joints of type C. This implies that 

81 = ~ = 0 (25) 

for joints of type D. The distortion determined by (1) then also vanish, and the typeD 

joint can be considered as a full warping and distortion restraint. 

EXAMPLES AND FINITE 'ELEMENT RESULTS 

Fig. 7. Cantilever and simply supported angle beams. 
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The continuity and stiffness conditions for warping of thin-walled I-beam joints of 

types A and B have been investigated using the angle beam configurations shown in Fig. 

7a and 7b for joint type B. Two identical 1-beams of length l are joined at an angle a, 

and a transverse load P is applied at the point C. Two support conditions are 

considered: in case a) the beam AB is rigidly fixed at A, and in case b) the flanges of the 

beam AB are simply supported at A, while a single simple support is introduced at B. 

In the classical theory for thin-walled beams of open cross-section warping is 

determined by vanishing shear strain in the mid-surface. The warping parameter (} then 

equals minus the rate of twist r.p' . 

(} = -r.p' (26) 

Torsion and warping of the beams AB and BC in Fig. 7 are then governed by the 

differential equation 

(ECr.p")" - (GKr.p)" 0 (27) 

and the appropriate boundary and continuity conditions. 

In the following the accuracy of the continuity conditions and stiffness contributions for 

joints of type A and type B is evaluated by comparing the rotation r.p
8 

of beam AB at B 

predicted by the present theory with three-dimensional finite element calculations. The 

results are normalized with respect to the rotation that would result if the beam AB 

were free to warp at both ends and loaded by the torsional moment 

Mo = P lsina (28) 

Thus the results are expressed in terms of the non-dimensional parameter r.pBGK/ fMo. 

The cross-section dimensions in all cases are h = 200 mm, b = 100 mm and tf = 8.5 

mm, tw = 5.6 mm. With v = 0.3 the k-parameters are 

k
0 

= 1.36 10-3 mm - 1 k7/J = 4.88 10-3 mm - 1 
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Thus the approximation of distortion as a local effect can be used for k rf ~ 0.4 for this 

cross-sect ion. 

0.8 

0 

~ 0.6 ..... 
~ ... ---
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~ 

0.2 + FEM-results 

1 10 
Length kl 

Fig. 8. Normalized angle 'PB from beam theory and FEM, a= goo. (- -) type A, 

( · · ·) type B without joint stiffness, (-) type B with full stiffness. 
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Fig. 9. Normalized angle 'Ps from beam theory and FEM, a= 450. (- -) type A, 

( · ·) type B without joint stiffness, (--) type B with full stiffness. 
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The results according to the present theory have been evaluated in closed form for joints 

of type B by Krenk et al. (1990), and all four joint models have been incorporated in a 

finite element program for thin-walled frames by Damkilde et al. (1990). These results 

are given by curves in Figs. 8 and 9 for a= 900 and 450, respectively. Note the limited 

influence of the angle a. 

The results of the beam theory have been compared with three-dimensional finite 

element analyses using he P AFEC program. Three different lengths were considered 

with kef= 1.25, 2.5, 4.0. The element model used four approximately square 8-node 

shell elements for the web and four similar elements across each flange. A typical mesh 

is shown in Fig. 10. 

Fig. 10. Finite element mesh. 

CONCLUSIONS 

Continuity conditions and stiffness properties have been derived for warping and 

distortion of the four types of thin-walled !-beam joints shown in Fig. 1. The 

unstiffened joint, type A, has two independent warping parameters, and distortion of the 

joint appears as a 2 by 2 spring stiffness matrix. The stiffeners in joints of type B and C 

enforce warping of equal magnitude in both beams. In addition there are stiffness 

contributions from the added plates and disortion. Joints of type D act as full warping 

constraints. 
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The theory is expressed in terns of simple, explicit formulas suitable for use in 

connection with classical thin-walled beam theory. Three dimensional finite element 

calculations indicate high accuracy of the beam-type models of the joints. 
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