

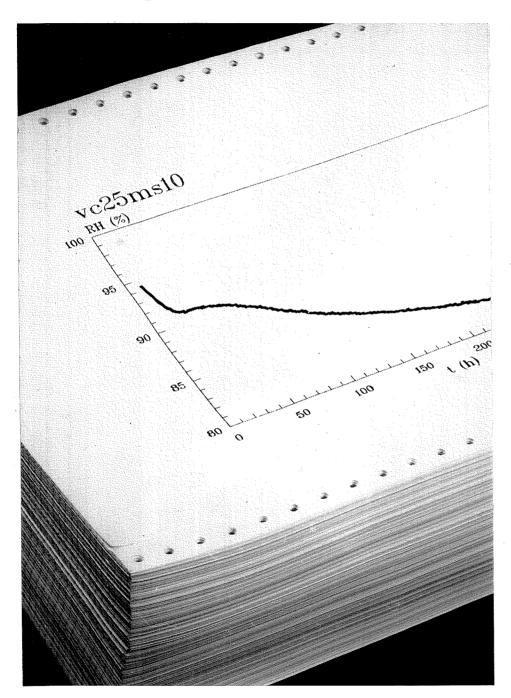
Aalborg Universitet

Autogenous Phenomena in Coment-Based Materials

Autogenous i nenomena in cement-based materials
Jensen, Ole Mejlhede
Publication date:
2005
Document Version Early version, also known as pre-print
Link to publication from Aalborg University

Citation for published version (APA):

Jensen, O. M. (2005). *Autogenous Phenomena in Cement-Based Materials*. Department of Civil Engineering, Aalborg University.


General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Bilag - målinger og notater

Ole Mejlhede Jensen Maj 1993

INDHOLD

1	INDLEDN	ING .	•	• •	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	3
2		DESPÆN Målet Væske	ekn:		•	•		•	•	•	•	•			•	•	•	•		•	•			4 4 5
	2.3	Måler	esu.	ltat	er		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
3	REVNEFO	RSØG .	•				•		•				•	•	•	•		•			•	•	•	7
4	LANGTID	S-FORS	ØG		•					•	•			•									•	9
5	AFBINDI	NGSTID			•		•							•			•			•			•	13
6	6.1	Princ	ip		•	•						•	•											14 14
	6.2	Måler	esu	ltat	er		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
7	TEMPERA	TURUDV	IDE	LSE	AF	F	'RI	SK	. C	EM	EN	TF	AS	ТА	ı	•	•	•	•	•	•	•	•	17
8	LUFTUDS	KILLEL	SE				•		•			•	•	•		•	•	•	•	•	•	•	•	18
9	KEMISK	SVELNI	NG		•	•		•	•			•	•			•			٠	•	•	•	•	19
10	DEFORM	MATION	OG	VÆSK	ŒS	PA	ENE	IN	G	•	•		•	•		•		•			•	•	•	21
1:	1 RF-SÆN	KNING	FRA	SAI	ъTЕ	3							•			•						•		24
1:	2 REVNEE	BEREGNI	NG							•											•			26
1:	3 STOFOM	1SÆTNIN	IG		•		•			•				•				•	•		•		•	30
1	4 STABII	JITET A	F V	AND			٠		•											•				34
S	YMBOLER				•															•				35
R.	EFERENCE	er				•												•		•		•		37
	ÅLINGER				•	•	•	•		•	•	•	•	•	•	•	•	•	٠		•	•	•	38
Α1	UTOGEN F	DE LENTE	TNC	<u>.</u>																				39
Д		=0.25,		mik	· cro	si	.1i	.ca	•	•	•		:	•	•	•	•	•	•	•	•	•		39
	v/c	=0.25,	3%	mik	ro	si	1 i	.ca	ι	•			•	•	•				٠	•	•	٠		39
	-	=0.25,		mik						•		•	•	•	•	•	•	•	•	•	•	•	•	40
	v/c	=0.25,	10	% mi	kr	os	sil	ic	a	•			٠	٠	٠	٠	•	•	•	•	•	•	•	40
	v/c	=0.30,	0%	mik	cro	si	.li	.ca	L	•		•	•	•	•	•	•	•	•	•	•	•	•	41
	v/c	=0.30,	10	% mi	kr	0.5	sil	ic	a	•			•			•			•		•	•		41
		=0.35,		mik							•	•	•	•			•				•		•	42
	v/c	=0.35	3%	mik	αrc	si	1	ca	ι		•												•	42
		=0.35,		mik																			•	43
		=0.35,		% mi								•				•			•	•	•			43
		=0.40,									•							•				•		44
		=0.40,											•	•	•			•	•	•	•			44

v/c=0.45, 0% mikrosilica						•	45
v/c=0.45, 3% mikrosilica			•				45
v/c=0.45, 6% mikrosilica	•				•		46
v/c=0.45, 10% mikrosilica							46
v/c=0.45, 15% mikrosilica						•	47
v/c=0.45, 20% mikrosilica							47
v/c=0.45, 25% mikrosilica							48
v/c=0.45, 30% mikrosilica							48
v/c=0.55, 10% mikrosilica							49
							49
v/c=0.45, 30% flyveaske						•	50
v/c=0.25, 10% mikrosilica med S=50 m ² /g.				•			50
v/c=0.45, 10% mikrosilica uden spc							51
v/c=0.45, 10% agglomereret mikrosilica .			•				51
v/c=0.45, 10% CaCO ₃		•			•		52
v/c=0.25, 10% ler							52
v/c=0.25, 10% Si ₃ N ₄						•	53
v/c=0.25, 10% mikrosilica med NaOH og KOH							53
rapidcement v/c=0.25, 0% mikrosilica							54
rapidcement v/c=0.25, 0% mikrosilica							54
							55
rapidcement v/c=0.40, 0% mikrosilica							55
rapidcement v/c=0.40, 10% mikrosilica							56
langtidsforsøg v/c=0.25, 0% mikrosilica.							56
langtidsforsøg v/c=0.25, 10% mikrosilica	•	•	•	•	•	•	90
AUTOGEN DEFORMATION							57
			•			•	57
·			•		•	•	57
v/c=0.25, $6%$ mikrosilica					•	•	58
v/c=0.25, $0%$ mikrosilica					•	•	58
v/c=0.23, 10% mikrosilica						•	59
						•	59
v/c=0.30, 10% mikrosilica						•	60
v/c=0.35, 0% mikrosilica						•	
v/c=0.35, 3% mikrosilica						•	60
v/c=0.35, 6% mikrosilica							61
v/c=0.35, 10% mikrosilica					٠	•	61
v/c=0.40, 0% mikrosilica		•	•	•	•	•	62
v/c=0.40, 10% mikrosilica	•	•	•	•	•	•	62
v/c=0.35, 30% flyveaske	٠	•	•	٠	•	•	63
v/c=0.25, 10% mikrosilica med S=33 m ² /g .	•	•	•	•	•	•	63
v/c=0.25, 10% mikrosilica med S=50 m ² /g.							64
v/c=0.45, 10% mikrosilica uden spc							64
$v/c=0.25$, 10% Si_3N_4							65
v/c=0.25, 10% mikrosilica med NaOH og KOH							65
rapidcement v/c=0.25, 0% mikrosilica			•				66
rapidcement v/c=0.25, 10% mikrosilica						•	66
rapidcement $v/c=0.40$, 0% mikrosilica						•	67
rapidcement v/c=0.40, 10% mikrosilica						٠	67
v/c=0.35, 0% mikrosilica 2. forsøg							68
v/c=0.30, 0% mikrosilica afluftet							68
langtidsforsøg v/c=0.25, 0% mikrosilica .							69
langtidsforsøg v/c=0.25, 10% mikrosilica			•	•	•		69

1 INDLEDNING

Denne rapport indeholder en række bilag til hovedrapporten: "Autogen Deformation og RF-ændring - selvudtørring og selvudtørringssvind", Teknisk rapport 284/93, maj 1993.

Bilagene omfatter 2 dele:

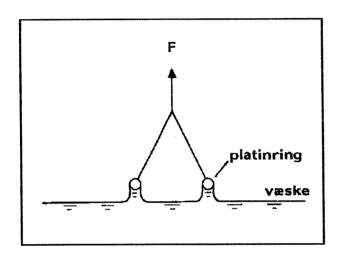
□ Notater, der dels beskriver nogle supplerende forsøg og dels behandler nogle separate teoretiske emner. Denne form har muliggjort mere uddybende beskrivelser, end hvis de skulle inkorporeres i hovedrapporten.

□ <u>Målinger</u> af autogen deformation og autogen RF-ændring gennemført under projektet.

Symboler og forkortelsers betydning fremgår af symbolfortegnelsen efter notaterne. Referencer er opført i listen efter symbolfortegnelsen.

Cand. scient. Jørgen Skibsted, Kemisk Institut, Aarhus Universitet takkes for analyse af NMR-spektre og lektor Klemen Skaarup, Teknisk Sektion, DIA-K for hjælp med måling af overfladespænding.

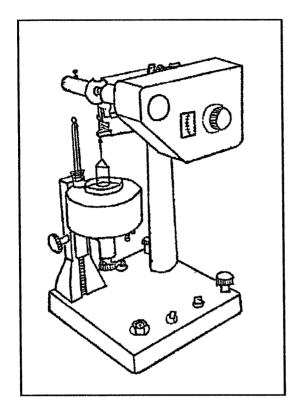
Rapporten er udført som en del af mit licentiatstudium ved Laboratoriet for Bygningsmaterialer.


Maj 1993

Ole Mejlhede Jensen

2 OVERFLADESPÆNDING

2.1 Måleteknik


Væskers overfladespænding kan bestemmes hurtigt og enkelt ved bøjlemetoden. Princippet består i at trække væskeoverfladen op ved hjælp af en platinring, se Figur 1. Overfladespændingen kan beregnes ud fra den maksimale kraft, inden hinden brydes.

Figur 1. Måling af en væskes overfladespænding ved bøjlemetoden. Overfladespændingen bestemmes ud fra den målte optrækskraft.

Målemetoden er ikke særlig nøjagtig; hvis platinringens plan ikke er parallel med væskeoverfladen, giver det anledning til fejl. Det er også vigtigt, at platinringen er ren. Dette sikres ved at dyppe den i ethanol og gløde den over en spritflamme før hver ny væskeprøve.

Ved de gennemførte målinger er anvendt et mekanisk virkende du Noüy tensiometer, vist i Figur 2.

Figur 2. Du Noüy tensiometer til måling af overfladespænding. Skål med væske er placeret på et elevatorbord under platinringen.

2.2 Væsker

Følgende væskers overfladespænding er bestemt under forsøget:

- 1. <u>Monoethylenglykol.</u> Væsken benyttes som reference. Dette muliggør korrektion for systematisk fejl i kraftmålingen fra f.eks. små skævheder i platinringen.
- 2. Destilleret vand fra DtH's anlæg.
- 3. Destilleret vand med superplastificeringsstof. En pasta ved v/c=0.45 og 0% mikrosilica indeholder 275.4 g vand og 22.7 g superplastificeringsstof, jf. blanderecept i rapporten "Forforsøg". Prøven er fremstillet med samme blandingsforhold mellem vand og superplastificeringsstof.
- 4. Porevæske. Sammensætningen af porevæsken i en cementpasta varierer stærkt som funktion af hydratiseringstid, mikrosilicatilsætning m.m. /2/, /3/. En syntetisk fremstillet porevæske på baggrund af målte ionkoncentrationer vil derfor ikke være repræsentativ. I stedet er der ved forsøget benyttet en porevæske fra en pasta ved v/c=1.35 og 10% mikrosilica (uden superplastificeringsstof). Porevæsken er udtrukket efter 3 timers hydratisering ved 20°C. Udtrækningen foregik ved at vakuumfiltrere pastaen gennem et middeltæt og middelhurtigt filterpapir.
- 5. <u>Porevæske med superplastificeringsstof</u>. Porevæske som nævnt under 4 med superplastificeringsstof i blandingsforhold som nævnt under 3.

Prøverne 3, 4 og 5 blev fremstillet dagen før målingen. Indtil da blev de opbevaret i forseglede præparatglas.

2.3 Måleresultater

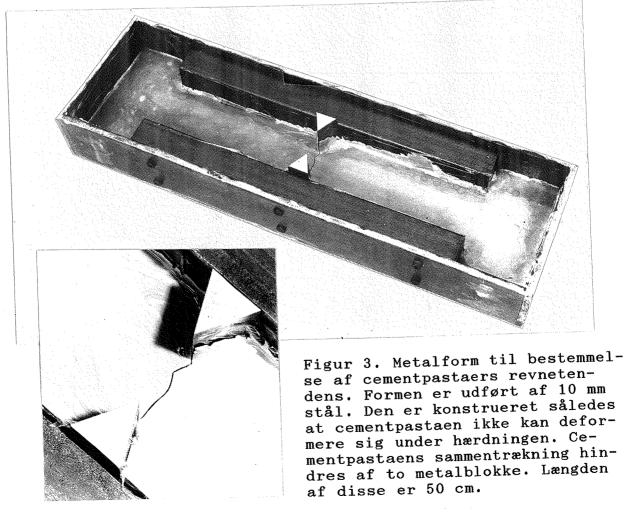
Tabel I angiver måleværdier for overfladespænding.

	1. Mono- ethylengly- kol	2. Destille- ret vand	3. Destille- ret vand + SPC	4. Porevæ- ske	5. Porevæ- ske + SPC
Ukorrige- rede måle- resultater	51 51 51 51 51	63 63 64 64 65	58 59 59 59 60	55 55 54 54 55	59 59 61 60 61
Gennemsnit, korrigeret	48.4	61	56	52	57

Tabel I. Registrerede værdier for overfladespænding i mN/m. Monoethylenglykol er anvendt som reference; 48.4 mN/m er tabelværdi ved 20°C /1/. Ud fra denne beregnes en korrektionsfaktor, der benyttes ved bestemmelse af korrigerede værdier for de øvrige væsker. Målingerne er gennemført ved 21.5°C.

Overfladespændingen for "destilleret" vand, 2, er bestemt til 61 mN/m. Tabelværdien for kemisk rent vand er 72.88 mN/m ved 20°C /1/. Den store afvigelse skyldes næppe målefejl, men opløste stoffer i det destillerede vand; selv ganske små mængder fremmedstoffer kan nedsætte destilleret vands overfladespænding drastisk. Måleusikkerheden for det anvendte apparatur er ca. ±1 mN/m.

Tages dette i betragtning er forskellene mellem måling 3, 4 og 5 ubetydelig. Det benyttede superplastificeringsstof influerer således ikke nævneværdigt på porevæskens overfladespænding.


Som overslagsværdi for porevæskens overfladespænding i en cementpasta kan 55 mN/m antages.

3 REVNEFORSØG

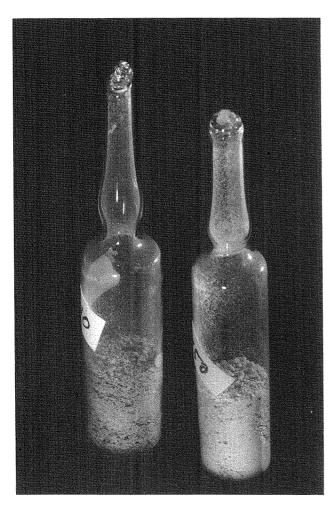
Cementpastas autogene deformation kan give anledning til revnedannelse. Cementpasta revner, hvis det autogene svind overstiger cementpastaens trækbrudtøjning, og svindet forhindres.

Cementpastas tendens til at udvikle revner under hærdningen er undersøgt ved hjælp af en speciel metalform. Cementpastaen udstøbes i en metalform, der er konstrueret således, at cementpastaen ikke kan deformere sig frit, se Figur 3.

Sammentrækningen af den hærdnende cementpasta hindres af to kraftige metalblokke. Før udstøbning er formen påført olie og beklædt med 12 µm polyethylenfolie (husholdningsfilm) - cementpastaen hæfter derfor ikke til formen. På grund af kærvvirkning og formindsket tværsnitsareal sker revneudvikling udelukkende ved to trekantformede revnefrembringere. Polyethylenfolien er overskåret ved revnefrembringerne. Efter udstøbning lukkes formen fugttæt: et gennemsigtigt plexiglaslåg fastlimes med siliconelim.

Efter udstøbning af cementpastaen anbringes formen i et termostateret klimaskab ved 30°C. Formen åbnes efter 18 h, og revnen opmåles med revnelineal. Måleresultater er angivet i Tabel II.

	0% ms		10% ms
v/c=0.45	0	(0)	2.0 (4000)
v/c=0.35	<0.05	(<100)	ikke målt
v/c=0.25	0.9	(1800)	0.7 (1400)


Tabel II. Revnevidde i mm som funktion af v/c og mikrosilicaindhold, ms. Revnevidden er omregnet til tøjning i µstrain (værdi anført i parentes). O betyder urevnet. Blanderecepter fremgår af rapporten "Forforsøg".

Måleresultaterne skal ikke tolkes rigoristisk; cementpastaen har også været påvirket af temperaturtøjninger. Da cementpastaen har et stort volumen, en lille overflade og er i dårlig termisk kontakt med omgivelserne (luft), stiger dens temperatur kraftigt under hærdningen. Denne stigning er konstateret at være på ca. 15°C. Temperaturdeformationer under hærdningen kan derfor have bidraget til revnedannelsen.

4 LANGTIDS-FORSØG

I 4 pastaer er der ved sene terminer målt RF, kemisk bundet og fordampeligt vand. Pastaerne er lagret uden fugtudveksling med omgivelserne i op til $5\frac{1}{2}$ år. De lange opbevaringstider nødvendiggør en særdeles fugttæt forsegling.

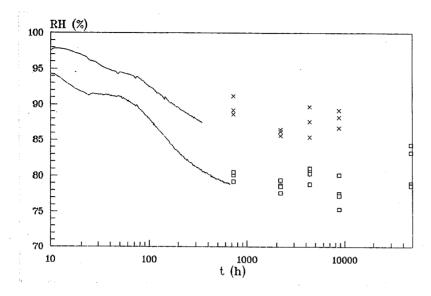
Pastaerne udstøbes, forhærdes og nedknuses som beskrevet i afsnit 5.1.2 i rapporten "Autogen deformation og RF-ændring". Umiddelbart efter nedknusning anbringes ca. 5 g pasta i 10 ml glasampuller, som midlertidigt afproppes. Dette foregår i handsketelt. Herefter lukkes ampullerne med en acetylen-oxygensvejseflamme. Svejseflammens høje temperatur tilsmelter ampulhalsen i løbet af få sekunder. Se Figur 4.

Figur 4. Cementpasta blev opbevaret i forseglede glasam-puller i op til 5½ år. Denne opbevaringsform hindrer fugtudveksling med omgivelserne. RF samt fordampeligt og kemisk bundet vand i pastaerne er undersøgt.

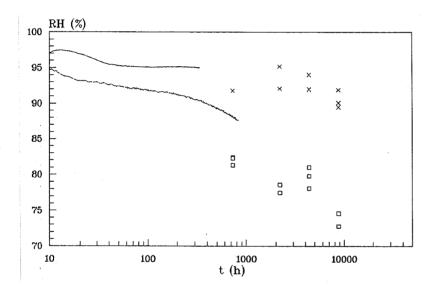
Trods omhyggelig tilsmeltning er der konstateret utætheder i ca. 1/3 af ampullerne. De $5\frac{1}{2}$ år gamle prøver blev kontrolleret på 2 måder: Dels ved vejning før og efter opbevaring, dels ved evakuering af ampullerne under vand.

Evakuering under vand viste sig at være den sikreste og mest enkle måde at konstatere utætheder på; selv en hårfin revne eller en tynd kapillarpore, som ikke kan ses med øjet, afgiver tydelige luftbobler, når ampullen evakueres under vand. Utætte ampuller kan ved evakuering frasorteres med det samme; vejning afslører først utætheder efter længere tids opbevaring. En vejenøjagtighed på 0.01 g viste sig desuden at være utilstrækkelig; de utætte prøvers vægttab var på grænsen af vægtens opløsning. Prøverne ved de øvrige terminer blev derfor udelukkende kontrolleret ved evakuering.

Prøverne var fra udstøbning til måling anbragt i et termostateret klimaskab ved 30°C. De $5\frac{1}{2}$ år gamle prøver blev dog opbevaret ved stuetemperatur, ca. 20°C.


Efter opbevaring ridses ampulhalsen med diamantklinge og knækkes. Den nedknuste pasta anbringes i løbet af få sekunder i fugtmålestationen. I målemæssig henseende indtræder RF-ligevægt inden for ca. $\frac{1}{2}$ h. Ligevægtsværdien aflæses dog først efter min. 3 h.

Efter RF-måling er der foretaget en bestemmelse af fordampeligt og dernæst kemisk bundet vand; vægttabet er registreret efter min. 1 døgns udtørring ved henholdsvis 105 og 1060°C.


Målingerne er foretaget på 2-4 prøver ved hver termin. Pastaernes sammensætning er angivet i rapporten "Forforsøg", dog afviger prøverne ved v/c=0.25 med 10% mikrosilica, $5\frac{1}{2}$ år svagt fra dette: mikrosilicaen er tilsat i tørkompakteret form, og der er anvendt 5% superplastificeringsstof i stedet for $3\frac{1}{2}$ %. Disse prøver er desuden opbevaret ved stuetemperatur, ca. 20°C: Måling er dog sket ved 30°C. Øvrige forhold er identiske. Disse prøver stammer fra /5/ og er venligst stillet til rådighed af Per Freiesleben Hansen, FYM, DIA-B.

Måleresultater er vist i Figur 5 og Figur 6 sammen med de kontinuert registrerede forløb. Som det ses er variationerne på RF-værdierne for ampulprøverne betydelige, op mod ±5% RF. Dette skyldes formodentlig den mere komplicerede tilvirken af disse prøver - mere omhyggelig nedknusning, opfyldning af ampuller og tilsmeltning ved varm svejseflamme. Disse processer indebærer en forøget risiko for fugttab fra pastaen og at den pga. temperaturpåvirkninger bringes ud af sin oprindelige lige-vægtstilstand - cementpastas RF udviser betydelig hysterese.

Forløbene viser, at hovedparten af RF-sænkningen sker inden for de første 2 uger (=336 h). I pastaen ved v/c=0.25 uden mikrosilica fortsætter RF-sænkningen dog tilsyneladende lang tid efter 2 uger. Årsagen til det registrerede RF-fald i pastaen ved v/c=0.25 uden mikrosilica kendes ikke. På grund af måleusikkerhed kan det desuden ikke konstateres, om RF-sænkningen er ophørt eller fortsætter efter f.eks. $\frac{1}{2}$ år. Målinger af fordampeligt og kemisk bundet vand antyder ikke, at denne pasta i højere grad hydratiserer videre efter 2 uger end de øvrige pastaer, se Tabel III.

Figur 5. Autogen RFændring i pasta med 10% mikrosilica ved v/c=0.25 (nederst) og 0.45 (øverst). Ampulmålingerne er foretaget ved 1, 3, 6, 12 mdr og $5\frac{1}{2}$ år.

Figur 6. Autogen RFændring i pasta uden mikrosilica ved v/c=0.25 (nederst) og 0.45 (øverst). Ampulmålingerne er foretaget ved 1, 3, 6 og 12 mdr.

I notatet "NMR-målinger" er cementens hydratiseringsgrad, bestemt ved NMR, sammenlignet med målingerne af kemisk bundet vand i Tabel III. Disse størrelser stemmer overens.

W_e/W_n	1 mdr.	3 mdr.	6 mdr.	12 mdr.	5½ år
v/c=0.45 0% ms	0.27/0.18	0.26/0.19	0.25/0.20	0.24/0.21	-
v/c=0.45 10% ms	0.30/0.16	0.30/0.16	0.29/0.17	0.28/0.18	-
v/c=0.25 0% ms	0.13/0.13	0.11/0.14	0.11/0.15	0.11/0.15	
v/c=0.25 10% ms	0.15/0.12	0.15/0.12	0.14/0.13	0.14/0.12	0,14/-

Tabel III. Fordampeligt (W_e) og kemisk bundet vand (W_n) (g/g cement) i 4 pastaer ved sene terminer. Blanderecepter fremgår af rapporten "Forforsøg". Prøven ved v/c=0.25 med 10% mikrosilica, $5\frac{1}{2}$ år afviger dog let fra dette, se tekst.

 $W_e + W_n$ i Tabel III ses at være typisk ca 0.01 g pr. g cement større end vand-cementtallet. Dette skyldes formodentlig cementens vandindhold (glødetab) på ca. 1%, jf analyseblad for hvid portlandcement i rapporten "Forforsøg".

5 AFBINDINGSTID

Afbindingstiden for en cementpasta fremstillet med den benyttede cement er bestemt efter Dansk Standard for cementprøvning /4/. Pastaen har v/c=0.35 med 0% mikrosilica, blanderecepten fremgår af rapporten "Forforsøg". Ved 30°C begynder afbindingen efter 4^{45} h og afsluttes efter 5^{45} h.

6 NMR-MÅLINGER

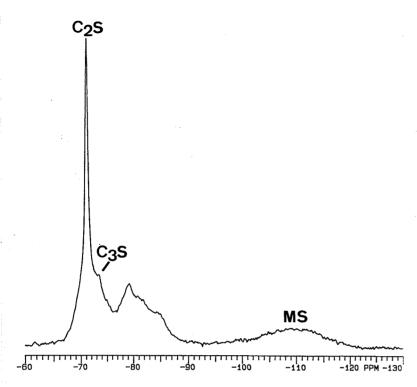
6.1 Princip

Nuclear Magnetic Resonance, NMR, er en måleteknik, som gennem de senere år har fundet stigende anvendelse inden for cementteknologiske undersøgelser.

Teknikken består i at registrere et magnetisk resonansspektrum for et givet grundstof. Spektrets udseende vil afhænge af, hvilke kemiske forbindelser grundstoffet indgår i. En udførlig beskrivelse af måleteknikken er givet i /6/.

For cementpasta har særlig 29 Si NMR og 27 Al NMR interesse. Ved 29 Si NMR optages spektret for siliciumisotopen 29. En efterfølgende spektralanalyse kan bl.a. angive reaktionsgrad for mikrosilica samt klinkermineralerne C_2 S og C_3 S /7/. Ved 27 Al MNR kan aluminatforbindelserne tilsvarende undersøges.

6.2 Måleresultater

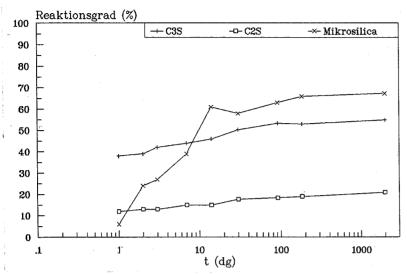

Under projektet er kun anvendt ²⁹Si NMR. Måling og analyse af spektre er foretaget ved Kemisk Institut, Århus Universitet.

Målingerne er udført på 10 prøver, alle ved v/c=0.25 med 10% mikrosilica, men præpareret på forskellig vis:

- 1) $\underline{\text{t=0}}$ h: reference, uhydratiseret cement og mikrosilica i vægtforhold svarende til en pastaprøve med v/c=0.25 og 10% mikrosilica, dog uden vand tilsat.
- 2) <u>t=1, 2, 3, 7 og 14 døgn:</u> efter forseglet hærdning ved 30°C til de angivne terminer pulverknuses prøverne, og hydratiseringen stoppes med alkohol. Alkoholen udskiftes 2 gange med efterfølgende lagring i 1 døgn og sluttelig udtørring ved 105°C.
- 3) $\underline{t=1}$, 3, 6 måneder og $5\frac{1}{2}$ år: efter forseglet hærdning ved 30° C (dog ca. 20° for prøven ved $5\frac{1}{2}$ år) i de angivne terminer udtørres prøverne ved 105° C. Dette stopper hydratiseringen. Prøverne pulverknuses efterfølgende. Prøverne stammer fra måling af langtids-RF, se notatet "Langtids-forsøg".

Eksempel på spektrum for prøve ved 3 døgn er vist i Figur 7. Resultater af spektralanalyse er opført i Tabel IV.

Prøven ved $5\frac{1}{2}$ år indeholder ud over pasta et kvartstilslag. Dette er uden betydning for analysen, idet det blot giver anledning til et skarpt peak omkring -107.4 ppm, der let lader sig eliminere.



Figur 7. 29Si NMRspektrum for cementpasta ved v/c=0.25 med 10% mikrosilica. Pastaen har hydratiseret i 3 døgn. Omkring -110 ppm ses et bredt peak, der skyldes mikrosilica, og ved -71 ppm et højt skarpt peak fra C2S som overlejrer et peak fra C_3S ved -73 ppm. Desuden ses et antal peaks omkring -80 ppm, der skyldes reaktionsprodukter. Intensiteten af disse peaks ændres ved hydratiseringen. Dette benyttes til udregning af reaktionsgrader.

a	C_2S	C ₃ S	Mikrosilica
1 dg	0.12	0.38	0.06
2 dg	0.13	0.39	0.24
3 dg	0.13	0.42	0.27
7 dg	0.15	0.44	0.39
14 dg	0.15	0.46	0.61
1 mdr	0.18	0.50	0.58
3 mdr	0.18	0.53	0.63
6 mdr	0.19	0.53	0.66
5½ år	0.21	0.55	0.67

Tabel IV. Reaktionsgrad, a, for komponenter ved angivne terminer ifølge ²⁹Si NMR. Målingerne er foretaget efter forseglet hærdning ved 30°C på pasta ved v/c=0.25 og 10% mikrosilica. Prøven ved t=5½ år har dog hydratiseret ved ca. 20°C.

Rekationsforløbet er optegnet i Figur 8. C_2S og C_3S ses at reagere betydeligt hurtigere end mikrosilica. Cementreaktionen er stort set ophørt efter ca. 2 dage, hvor mikrosilicareaktionen netop er påbegyndt. Under de givne forsøgsbetingelser har mikrosilica åbenbart en dormantperiode på ca. 1 døgn.

Figur 8. Reaktionsgrad for C_2S , C_3S og mikrosilica bestemt ved NMR. Data fra Tabel IV. Bemærk at mikrosilicaens reaktion først for alvor påbegyndes efter ca. 1 døgn. Målingerne er foretaget efter forseglet hærdning ved 30°C på pasta ved v/c=0.25 og 10% mikrosilica.

Det lave v/c medfører, at cementreaktionen ikke forløber til α =100%. Ved t=6 mdr. kan cementens hydratiseringsgrad på basis af α_{C2S} og α_{C3S} beregnes til:

$$\alpha_{Ce} = \frac{0.742}{0.742 + 0.141} \cdot 0.53 + \frac{0.141}{0.742 + 0.141} \cdot 0.19 = 0.48$$

idet cementen vægtmæssigt består af 74.2% C_3S og 14.1% C_2S ifølge NMR-analyse. (Disse værdier stemmer ikke overens med cementens datablad: 63.9% C_3S og 22.6% C_2S , se bilag II i rapporten "Forforsøg". Afvigelsen skyldes sandsynligvis, at den traditionelle kemiske analyse af cement og efterfølgende beregning af klinkermineralindhold (Bogue) giver ukorrekte resultater).

Den beregnede hydratiseringsgrad stemmer overens med målinger af kemisk bundet vand, jf. notatet "Langtids-forsøg". Den kemisk bundne vandmængde er bestemt til ca. 0.13 g/g cement for cementpasta med v/c=0.25 og 10% mikrosilica ved t=6 mdr. 0.13 g/g svarer til 50% af den opnåelige mængde, ca. 0.26 g/g, og dermed $\alpha_{\rm ce}{\approx}50\%$.

Denne hydratiseringsgrad, $a_{ce} \approx 50\%$, svarer netop til at kapillarvandet er opbrugt. Dette er i overensstemmelse med Powers model, se Figur 15 i notatet "Stofomsætning".

Som det fremgår af Tabel IV og Figur 8 er særlig C_2S reaktion hæmmet; selv efter $5\frac{1}{2}$ år er hydratiseringsgraden kun ca. 0.2.

7 TEMPERATURUDVIDELSE AF FRISK CEMENTPASTA

Den lineære temperaturudvidelse af et stof der påføres en temperaturændring, ΔT , er givet ved $\epsilon_1 = \Delta T \cdot \alpha_1$. ϵ_1 er tøjningen (m/m) og α_1 temperaturudvidelseskoefficienten (K⁻¹).

Ligningen kan tilsvarende opskrives på volumetrisk form: $\boldsymbol{\varepsilon_v} = \boldsymbol{\Delta} T \cdot \boldsymbol{\alpha_v}$, hvor $\boldsymbol{\varepsilon_v}$ er volumentøjningen (m³/m³) og $\boldsymbol{\alpha_v}$ den volumetriske temperaturudvidelseskoefficient (K⁻¹).

Da temperaturtøjninger er små ($\epsilon \sim 10^{-4}$ til 10^{-5}), kan det ved en geometrisk betragtning vises, at $\epsilon_v \approx 3 \cdot \epsilon_I$ og $\alpha_v \approx 3 \cdot \alpha_I$ for et isotropt materiale, der deformeres frit.

En uhærdnet cementpasta er sammensat af vand og uhydratiseret cementklinker. Pastaens tøjning er en sum af komponenternes tøjninger: $\mathbf{e}_{pasta,v} = \mathbf{v}_{ce} \cdot \mathbf{e}_{ce,v} + \mathbf{v}_{vand} \cdot \mathbf{e}_{vand,v} = \Delta T \cdot (\mathbf{v}_{ce} \cdot \mathbf{\alpha}_{ce,v} + \mathbf{v}_{vand} \cdot \mathbf{\alpha}_{vand,v})$ idet cementens udvidelse fortrænger vandet. v angiver relative volumenandele.

En cementpasta med v/c=0.30 indeholder 0.3 g vand pr. 1 g cement, svarende til 0.3 cm³ vand pr. 0.32 cm³ cement, da cements densitet er ca. $3.15~\rm g/cm³$. Volumenmæssigt består cementpastaen derfor af ca. 50% vand og 50% cement.

 $\alpha_{vand,v}$ =303·10⁻⁶/°C ved 30°C /8/ og $\alpha_{ce,v}$ =30·10⁻⁶/°C. $\alpha_{ce,v}$ er dannet ved vægtet gennemsnit af klinkermineralernes temperaturudvidelseskoefficienter, angivet i /9/.

En temperaturændring på 1°C giver således anledning til en volumentøjning på $\epsilon_{pasta,v} = 1 \cdot (0.5 \cdot 303 + 0.5 \cdot 30) \cdot 10^{-6} = 170 \cdot 10^{-6} m^3/m^3$

Den hertil svarende lineære tøjning er således: $\varepsilon_{pasta,1} = \frac{170 \cdot 10^{-6}}{3} \approx 60 \,\mu strain/^{\circ}C \, ved \, 30^{\circ}C.$

8 LUFTUDSKILLELSE

Gassers opløselighed i vand aftager normalt med voksende temperatur. Dette er bl.a. tilfældet for atmosfærens hovedbestanddele, O_2 og N_2 . Følgende mængder O_2 og N_2 er opløst i vand, der er i ligevægt med atmosfærisk luft, se Tabel V.

mmol/l	02	N ₂
20°C	0.290	0.538
30°C	0.246	0.467

Tabel V. Opløst O_2 og N_2 i vand der er i ligevægt med atmosfærisk luft (p=1 atm og et indhold på 21% O_2 og 78% N_2). Værdierne ved 30°C er interpoleret mellem 25 og 37°C. Fra /10/.

Med idealgasloven (pV=nRT) kan størrelserne i Tabel V omregnes til ml gas pr. l vand. Ved gastrykket 1 atm findes værdierne i Tabel VI.

m1/1	02	N ₂
20°C	6.98	12.93
30°C	6.12	11.62

Tabel VI. Opløst O_2 og N_2 i vand der er i ligevægt med atmosfærisk luft (p=1 atm og et indhold på 21% O_2 og 78% N_2).

Opvarmes vand fra 20 til 30° C, sker der en luftudskillelse på (6.98-6.12)+(12.93-11.62) = 2.18 ml/l vand.

Volumenmæssigt indeholder en uhærdnet cementpasta typisk ca. 50% vand og 50% cement, jf. notatet "Temperaturudvidelse af frisk cementpasta". Luftudskillelsen kan dermed give anledning til en udvidelse på $0.5 \cdot 2.18 \cdot 10^{-3} = 1100 \cdot 10^{-6} \text{ m}^3/\text{m}^3$ volumetrisk, svarende til $1100/3 \approx 400$ µstrain lineært.

Ovenstående beregning er gennemført for opløsning af atmosfærisk luft i rent vand. Porevæsken i en cementpasta indeholder opløste salte. Saltkoncentrationen i porevæsken øges betydeligt i de første timer efter blanding af cementpastaen. Den stigende saltkoncentration medfører en yderligere sænkning af gasopløseligheden, og dermed ekstra luftudskillelse. Den beregnede udvidelse, æ*400 µstrain, må derfor betragtes som en nedreværdi.

9 KEMISK SVELNING

Nogle af de kemiske reaktioner, som foregår i en hærdnende cementpasta, medfører ekspansion. En sådan ekspansion kan skyldes, at de dannede produkter har et større volumen end reaktanterne - omvendt kemisk svind, eller kemisk svelning. De reaktioner, der hyppigt nævnes som årsag til ekspansioner, er bl.a. ettringitdannelse og læskning af kalk og magnesium. Volumenforholdene ved disse reaktioner samt monosulfatdannelse er gennemregnet i det følgende.

Betragtes 1 mol reaktionsskemaer, findes ved benyttelse af data fra Tabel VII:

Ettringit-dannelse:

Totalt omdannes 763 cm3 til 715 cm3, dvs. der sker en kontraktion.

Monosulfatdannelse - konvertering af ettringit:

Totalt omdannes 985 cm³ til 939 cm³, dvs. der sker en kontraktion.

Kalklæskning:

```
C + H \rightarrow CH

56.08 + 18.02 \rightarrow 74.08 g

56.08/3.32 + 18.02/1.00 \rightarrow 74.08/2.23 cm<sup>3</sup>

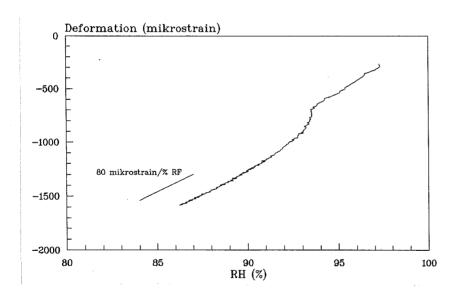
16.89 + 18.02 \rightarrow 33.22 cm<sup>3</sup>
```

Totalt omdannes 35 cm3 til 33 cm3, dvs. der sker en kontraktion.

Magnesiumlæskning:

Totalt omdannes 29 cm3 til 24 cm3, dvs. der sker en kontraktion.

Komponent	Densitet (g/cm³)	Molmasse (g/mol)
$C_6A\overline{S}_3H_{31}$	1.73	1237.22
$C_4A\overline{S}H_{12}$	1.99	622.56
CSH₂	2.32	172.18
C ₃ A	3.00	270.18
С	3.32	56.08
СН	2.23	74.08
М	3.58	40.33
МН	2.40	58.35
Н	1.00	18.02


Tabel VII. Molmasse og densitet af komponenter. Fra /11/.

Beregningsmæssigt giver de gennemregnede reaktioner alle anledning til kemisk svind. De observerede ekspansioner må derfor antages at skyldes krystaltryk fra de udfældede produkter. Se f.eks. /12/ og /13/.

10 DEFORMATION OG VÆSKESPÆNDING

Flere forskellige mekanismer kan være af betydning for sammenhængen mellem selvudtørring og selvudtørringssvind. Mange forskere anser dog kapillareffekter for at være den væsentligste mekanisme i det RF-område, hvor selvudtørring optræder. I det følgende er foretaget en sammenligning mellem eksperimentelt målt svind/RF-ændring og teoretisk beregnet svind/RFændring. Den teoretiske beregning baseres på Kelvins ligning.

De viste RF-&-kurver i hovedrapporten i afsnit 6.1 antages sammensat af flere forskellige mekanismer: RF-sænkning pga. salte, svind pga. opløsning af restrainers og selvudtørring/-selvudtørringssvind. Autogen deformation som funktion af autogen RF-ændring er optegnet i Figur 9 for pasta ved v/c=0.40 med 10% mikrosilica. Pga. det relativt høje v/c er RF-forløbet for denne pasta formodentlig mindst påvirket af salte. Ved en sen termin, f.eks. i slutpunktet 2 uger efter vandtilsætning, er kendskabet til elasticitetsmodul og fordampeligt vandindhold bedst - i de første døgn ændres disse størrelser markant. Ved nedenstående beregning betragtes derfor slutpunktet.

Figur 9. Autogen deformation som funktion af autogen RF-ændring for pasta ved v/c=0.40 med 10% mikrosili-

Ifølge Kelvins ligning er trækspændingen, p₁, i en kapillarbundet væskefase givet ved: $p_1 = \frac{\rho RT}{M} \ln RF$

Trækspændingen i væskefasen medfører en trykbelastning af faststofskelettet i cementpastaen og dermed et svind. Dette svind kan beregnes kompositteoretisk. Følgende formel kan opstilles på basis af /24/:

$$\varepsilon = \frac{\rho RT}{M} \cdot \ln (RF) \cdot \frac{(1-2v)}{E} \cdot \frac{W_e}{W_{e,\text{max}}} \cdot \left[1 - \frac{(1-C)^2}{1 + (\frac{1}{\mu_0} - 1) \cdot C} \right]$$
 (1)

Hvor W_e er indeholdet af fordampeligt vand i pastaen (g vand pr. g cement), $W_{e,max}$ er indholdet af fordampeligt vand i pastaen ved vandmætning, v er Poissons forhold, c cementpastaens porøsitet, og μ_0 er en formfaktor ($0 \le \mu_0 \le 1$), der afhænger af porestrukturens geometri. Talværdier for disse parametre er angivet i det følgende:

 W_e : Indeholdet af fordampeligt vand i den aktuelle pasta ved t=2 uger er ikke målt. Det antages derfor overslagsmæssigt at være det samme som for pasta ved v/c=0.45 med 10% mikrosilica efter 1 måned. På dette tidspunkt er det fordampelige vandindhold målt til 0.30 g pr. g cement, se notatet "Langtids-forsøg", Tabel III.

 $W_{e,max}$: Indholdet af fordampeligt vand i pastaen ved vandmætning er lig det aktuelle indhold af fordampeligt vand plus den vandmængde, der kan være i de luftfyldte porer. Voluminet af de luftfyldte porer kan bestemmes med kendskab til det kemiske svind. Luftporevoluminet i cementpastaen er 0.03 cm³/g ce, hvis det antages, at cementens totale kemiske svind er 5 ml/100 g ce, og hydratiseringsgraden er 0.6. Indholdet af fordampeligt vand i pastaen ved vandmætning bliver således 0.30+0.03=0.33 g pr. g cement.

c: Pastaens porøsitet kan beregnes ud fra indholdet af fordampeligt vand i pastaen ved vandmætning. Det fordampelige vand i pastaen ved vandmætning udgør $C = \frac{0.33}{0.45 + \frac{1}{3.15} + \frac{0.1}{2.2}} = 41\%$ af pastaens volumen.

E: Pastaens elasticitetsmodul er ikke målt. En overslagsmæssig værdi kan dog angives ud fra målinger i /17/ på pasta af hurtighærdnende cement ved v/c=0.40. Ifølge /17/ må korttidse-lasticitetsmodulet antages at være ca. 20 GPa. Denne størrelse skal korrigeres for krybning. /17/ angiver også krybnings-funktion for cementpastaen. Størrelsmæssigt er langtidselasticitetsmodulet ca. 1/3 af korttidselasticitetsmodulet, dvs.:

$$E = \frac{20 \, GPa}{3} \approx 7 \, GPa$$

 μ_0 og v: μ_0 sættes til 0.5 på basis af /24/. v for cementpasta er angivet til 0.25 i /15/.

Den autogene RF-sænkning er forløbet til ca. 86% RF efter forseglet hærdning i 2 uger, jf. Figur 9. Antages dette ude-lukkende at skyldes selvudtørring findes ved differentiation og indsættelse af talværdier i (1):

$$\begin{split} \frac{d\varepsilon}{dRF} &= \frac{\rho RT}{M} \cdot \frac{1}{RF} \cdot \frac{(1-2\nu)}{E} \cdot \frac{W_e}{W_{e,\text{max}}} \cdot \left[1 - \frac{(1-c)^2}{1 + (\frac{1}{\mu_0} - 1) \cdot c} \right] \\ &= \frac{1000 \cdot 8 \cdot 314 \cdot 303 \cdot 15}{18 \cdot 02 \cdot 10^{-3}} \cdot \frac{1}{0 \cdot 86} \cdot \frac{(1-2 \cdot 0 \cdot 25)}{7 \cdot 10^9} \cdot \frac{0 \cdot 30}{0 \cdot 33} \cdot \left[1 - \frac{(1-0 \cdot 41)^2}{1 + (\frac{1}{0 \cdot 5} - 1) \cdot 0 \cdot 41} \right] \\ &\approx 80 \cdot 10^{-4} = 80 \frac{\mu strain}{3RF} \end{split}$$

Ved differentiationen er det antaget, at alle led bortset fra $\ln(\text{RF})$ er konstante mht. RF. Principielt afhænger $\frac{W_e}{W_{e,\max}}$ af RF. Ved hjælp af sorptionsisotermer angivet i /25/ kan der tages hensyn til RF-afhængigheden af dette led. Denne korrektion ændrer den beregnede $\frac{de}{dRF}$ med højst 10%.

Et kurvestykke med den beregnede hældningskoefficient er indlagt i Figur 9. Den teoretisk beregnede værdi ses at stemme udmærket overens med kurveforløbet. Den beregnede værdi må kun betragtes som et overslag - mange af talværdierne, der benyttes ved beregningen, er kun bestemt skønsmæssigt.

Det må konkluderes, at Kelvins ligning tilsyneladende kan redegøre for sammenhængen mellem selvudtørring og selvudtørringssvind.

En mere nøjagtig beregning er vanskelig at gennemføre. Dette vil bl.a. kræve et bedre kendskab til mængden af fordampeligt vand og elasticitetsmodulet som funktion af tiden.

Kommentar til ovenstående beregning:

Beregningen omfatter tilsyneladende kun kapillarspændinger i væskefasen. Faktisk tager beregningen hensyn til både kapillarspændinger og disjoining pressure; Beregningsmæssigt kan det fordampelige vand ikke opdeles i vand med kapillarspændinger og vand, hvor disjoining pressure er virksomt. Dette giver dog ingen problemer, idet udtrykkene for kapillarspændinger og disjoining pressure på differentiel form, $\left(\frac{dp}{dRF}\right)$, er ens. Beregningen vil da blot omfatte samtlige trykændringer, der sker i væskefasen som følge af RF-ændringer, dvs. både kapillareffekter og disjoining pressure.

Dette forhold ændrer dog ikke på, at Kelvins ligning selvstændigt kan benyttes til f.eks. beregning af meniskradius:

Kelvin-radius kan ved 86% RF beregnes efter følgende formel, se rapporten "Autogen deformation og RF-ændring", afsnit 3.2.2.2:

$$r_{K} = -\frac{2\sigma\cos\theta}{p_{1}} = -\frac{2\sigma\cos\theta\cdot M}{\rho RTlnRF} = -\frac{2\cdot55\cdot10^{-3}\cdot\cos\left(0^{\circ}\right)\cdot18.02^{-3}}{1000\cdot8.314\cdot303.15\cdot\ln\left(0.86\right)} = 5\,nm$$

Det adsorberede vandlag ved denne RF er ca. 1 nm /14/. Diameteren af de største vandfyldte porer er dermed (5+1)·2=12 nm (hvis porerne antages at være cirkulærcylindriske). Til sammenligning er middeldiameter på mikrosilicapartikler ca. 100 nm og bredden af gelporerne efter Powers' beskrivelse ca. 1.5 nm /12/.

11 RF-SÆNKNING FRA SALTE

Eksperimentelt er RF-sænkningen ved afbinding bestemt til ca. 1.5% i en cementpasta ved v/c=0.25, se afsnit 6.1 i rapporten "Autogen deformation og RF-ændring". Denne RF-sænkning skyldes antagelig opløste salte. I det følgende beregnes RF-sænkningen teoretisk med Raoults lov.

Den anvendte hvide portlandcement indeholder:

0.14% Na₂O, M=61.98 g/mol ~
$$2 \cdot \frac{0.14 \cdot 10^{-2}}{61.98} = 4.52 \cdot 10^{-5} \frac{mol \ Na^{+}}{g \ Ce}$$

0.03 %
$$K_2O$$
, M=94.20 g/mol ~ $2 \cdot \frac{0.03 \cdot 10^{-2}}{94.20} = 6.37 \cdot 10^{-6} \frac{mol \ K^+}{g \ Ce}$

En pasta med v/c=0.25 indeholder ved afbinding 0.25 g vand pr. g cement forudsat, at ingen hydratisering har fundet sted.

Ved kontakt med vand reagerer alkalioxiderne ifølge: $Na_2O(s) + H_2O(1) \rightarrow 2Na^{\dagger}(aq) + 2OH^{-}(aq)$

Antages al alkalien at være opløst, bliver ionkoncentrationen (Na^{\dagger} , K^{\dagger} , og OH^{-}) i porevæsken:

$$1000 \cdot \frac{2 \cdot (4.52 + 0.64) \cdot 10^{-5}}{0.25} = 0.41 \frac{mol}{1}$$

Ved anvendelse af Raoults lov kan RF beregnes til:

$$\frac{55}{55+0.41} = 99.3 \% RF$$

Forudsætningen, om at al alkalien er gået i opløsning, er formodentlig ikke korrekt. Kun den del af alkalien, der ligger bundet som letopløselige alkalisulfater, går umiddelbart i opløsning. Resten frigøres først under cementens reaktion. Dette medfører, at den beregnede RF-sænkning er for stor.

Ved beregningen er det antaget, at alkalierne opløses i 0.25 g vand pr. g cement. Denne værdi er for stor: vandmængden er reduceret, fordi en del af hydratiseringsreaktionerne er forløbet ved afbinding. Desuden er måske kun en del af den resterende vandmængde tilgængelig for opløsning af alkalierne, jf. afsnit 3.3.4.4 i rapporten "Autogen deformation og RF-ændring". Den reelle saltkoncentration er derfor muligvis højere end den beregnede. Dette medfører, at RF-sænkningen skønnes for lille.

Den beregnede RF-sænkning på ca. 1% RF må derfor kun betragtes som et overslag. Denne stemmer størrelsesmæssigt overens med den eksperimentelt bestemte på ca. 1.5% RF.

RF-sænkningen fra salte på et senere tidspunkt af hydratiseringen vil ikke blive beregnet – kendskabet til ionkoncentrationen i porevæsken er for dårligt. Den tilgængelige væskemængde for

opløsning af salte kendes ikke: hvor stor en vandmængde er bundet af cementen, og hvor meget af restvandet er tilgængeligt for opløsning af salte? Saltmængden, der er opløst, kendes heller ikke, bl.a. fordi hydratiseringsprodukterne binder en del af alkalierne.

12 REVNEBEREGNING

Autogen deformation af cementpasta medfører en spændingsopbygning, hvis deformationen hindres. Dette er tilfældet i beton og mørtel. Tilslags elasticitetsmodul er typisk 10 gange større end cementpastas /12/ og kan derfor betragtes som udeformerbart. Cementpastaen omkring en tilslagspartikel kan derfor ikke deformeres - cementpastaens autogene deformation omsættes dermed til spændinger. I det følgende betragtes specielt trækspændingerne i cementpasta som følge af svind ved autogen deformation.

Cementpasta er et udpræget viskøst materiale. De spændinger, som opstår pga. den hindrede deformation, vil med tiden mindskes; cementpastaen relakserer.

Antages cementpasta at være lineær-viskoelastisk, kan spændingsforløbet ifølge /16/ beskrives ved:

$$\sigma(t) = \int_{\tau=0}^{t} r(t-\tau,\tau) \cdot \frac{d\epsilon(\tau)}{d\tau} d\tau$$

hvor t er tiden målt fra vandtilsætning og τ en integrationsparameter, som gennemløber det tidsrum, hvor belastningen sker i. $r(t-\tau,\tau)$ er pastaens relaksationsfunktion, der principielt afhænger af belastningstidspunktet, τ , fordi cementpasta er et ældende materiale. $\epsilon(t)$ er den autogene deformation og $\sigma(t)$ den resulterende spænding.

For cementpasta kan relaksationsfunktionen som tilnærmelse sættes lig den reciprokke krybningsfunktion:

$$r\left(t-\tau,\tau\right)\approx\frac{1}{C\left(t-\tau,\tau\right)}=\frac{E\left(\tau\right)}{1+\varphi\left(t-\tau,\tau\right)}$$

Relaksationen er indeholdt i leddet $\varphi(t-\tau,\tau)$. Med denne formel beskrives materialet lineær-viskoelastisk. Negligeres relaksation, svarende til $\varphi(t-\tau,\tau)=0$, fås det rent lineær-elastiske forløb.

/17/ angiver bl.a. eksperimentelle målinger af E(t), $\sigma_{\rm ut}(t)$ og $\phi(t-\tau)$ for hurtighærdnende cementpasta ved v/c=0.30 op til t=3 døgn. Denne pasta er tilnærmelsesvis identisk med pastaer anvendt under dette projekt. Disse forløb er derfor anvendt ved beregning af spændingsopbygning som følge af autogen deformation. Som antydet tager den angivne krybningsfunktion kun højde for ældning via elasticitetsmodulet, E(τ), idet $\phi(t-\tau,\tau)=\phi(t-\tau)$. Dette er inden for det betragtede tidsrum en god tilnærmelse ifølge /17/.

Forløbene for E(t), $\sigma_{ut}(t)$ og $\phi(t-\tau)$ er angivet grafisk i /17/. Til analytisk brug er forløbene beskrevet med følgende funktionsudtryk, hvor t og τ regnes i timer:

$$E(t) = 22.5 \cdot \exp\left[-\left(\frac{10.1}{t}\right)^{2.25}\right] MPa$$

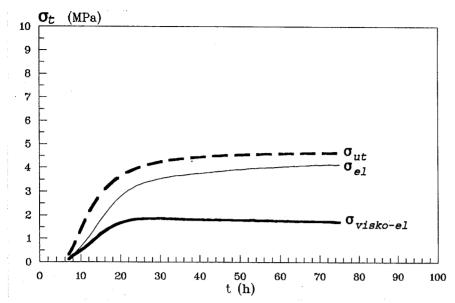
$$\sigma_{ut}(t) = 4.7 \cdot \exp\left[-\left(\frac{10.9}{t}\right)^{2.25}\right] MPa$$

$$\Phi(t-\tau) = 0.434 \cdot (t-\tau)^{\frac{1}{3.36}} \qquad \tau \le t \le \tau + 70 h$$

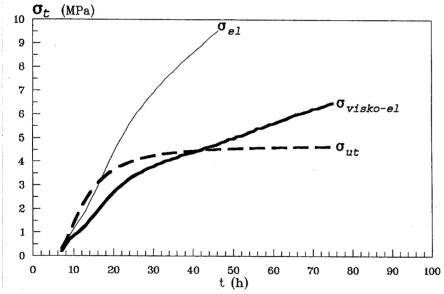
Trækbrudspændingen er målt som bøjetrækspænding. Denne er omregnet til ren trækbrudspænding ved division med 2 /15/. De opgivne data for elasticitetsmodul, brudspænding og krybningsfunktion gælder for afbunden pasta. Spændingsberegningen gennemføres derfor kun på deformationer efter afbinding. Afbindingen afsluttes ved t≈6 h, jf. notatet "Afbindingstid". På dette tidspunkt sættes spænding og tøjning i cementpastaen til 0. Det endelige udtryk er dermed:

$$\sigma(t) = \int_{\tau=6}^{t} \frac{E(\tau)}{1 + \varphi(t - \tau)} \cdot \frac{d\mathbf{e}(\tau)}{d\tau} d\tau$$

Da forløbet af autogen deformation er givet ved en række diskrete målinger, udregnes spændingen i stedet ved summation. Benyttes måledata fra hver hele time, fås følgende udtryk:


$$\sigma(t) = \sum_{\tau=7}^{t} \frac{E(\tau) \cdot [\varepsilon(\tau) - \varepsilon(\tau-1)]}{1 + \varphi(t-\tau)}$$

Mikrosilicatilsætning medfører sandsynligvis ændringer i E(t), $\sigma_{\rm ut}(t)$ og $\phi(t-\tau)$. På grund af mangel på måledata anvendes de samme udtryk uanset mikrosilicaindhold.


Det beregnede spændingsforløb skal sammenlignes med trækbrudspændingen. Når denne overskrides, bryder cementpastaen omkring tilslaget, og der fremkommer mikrorevner. Forløbene ved 0 og 10% mikrosilica er vist i Figur 10 og Figur 11. De anvendte tøjningsforløb, som benyttes ved beregningen, er fra dette projekt.

På basis af de viste kurveforløb må det forventes, at den autogene deformation medfører mikrorevnedannelse i pastaerne med 10% mikrosilica. Den beregnede spænding i denne pasta overskrider trækbrudspændingen, se Figur 11. I det betragtede tidsinterval, perioden efter afbinding, er deformationerne i pastaerne uden mikrosilica derimod for små til at kunne medføre revnedannelse.

Bemærk at beregningen kun er fremført til t-3 døgn. Det videre forløb er dog til yderligere ugunst for den mikrosilicaholdige pasta, idet denne fortsætter med at svinde, mens deformationerne i pastaen uden mikrosilica ophører efter ca. 1 døgn.

Figur 10. Trækspændingsopbygning i cementpasta som følge af hindret autogen deformation. Trækbrudspændingen er indlagt stiplet. Den beregnede spænding med hensyntagen til relaksation er givet ved den lineær-viskoelastiske løsning vist med fed streg. Den lineær-elastiske spænding er til sammenligning indlagt med tynd streg. Pastaen har v/c=0.30 uden mikrosilica.

Figur 11. Trækspændingsopbygning i cementpasta som følge af hindret autogen deformation. Trækbrudspændingen er indlagt stiplet. Den beregnede spænding med hensyntagen til relaksation er givet ved den lineær-viskoelastiske løsning vist med fed streg. Den lineær-elastiske spænding er til sammenligning indlagt med tynd streg. Pastaen har v/c=0.30 med 10% mikrosilica. Omkring t=40 h overskrider pastaens trækspænding. Beregningsmæssigt er det således påvist, at denne pasta vil revne ved fastholdelse.

Ovenstående vejledende beregninger omfatter dannelse af mikrorevner i pastaen omkring tilslagspartikler. En fuldstændig tilsvarende beregning kan gennemføres ved en ydre fastholdelse af beton. Denne kan f.eks. opstå som følge af forme eller tilstødende konstruktionsdele. En sådan beregning vil oplyse om makrorevnedannelse analogt med f.eks. den termorevnedannelse, der kan ske ved sammenstøbning med et koldt fundament. Det har dog ikke været muligt at opspore de fornødne mekaniske data: E(t), $\sigma_{ut}(t)$ og $\phi(t-\tau)$ for beton.

Overslagsmæssigt er betons svind ca. $\frac{1}{5}$ af pastaens /12/. Det registrerede svind i en afbunden cementpasta med 10% mikrosilica, ca. 1500 µstrain på 2 uger, vil derfor medføre et svind på ca. 300 µstrain for beton. Betons typiske korttidstrækbrudtøjning er ca. 50-150 µstrain /18/. Den frie deformation ses at overskride trækbrudtøjningen, men pga. relaksation er forholdet dog ikke så ugunstigt, som det umiddelbart kan synes.

Som nævnt mangler der mekaniske data for en mere præcis beregning på beton. Hvorvidt brudspændingen overskrides under denne svindbelastning er således ukendt; med de anførte størrelser må det imidlertid forventes, at en betydelig del af brudkapaciteten er opbrugt af autogen deformation. Under hærdningen kan termobelastninger alene ligeledes opbruge en stor del af brudkapaciteten. Den samlede påvirkning af termobelastning og autogen deformation kan dermed medføre makrorevnedannelse i beton.

13 STOFOMSÆTNING

I dette notat angives udtryk til beskrivelse af stoffordelingen i en hærdnende mikrosilicaholdig cementpasta, der ikke fugtudveksler med omgivelserne dvs. et lukket system. Dette er en udvidelse af formlerne anført i /19/ for ren cementpasta. En detaljeret gennemgang af baggrund og forudsætninger er givet i denne reference.

En væsentlig forudsætning ved formeludledningen i det følgende er, at reaktionsgraden for mikrosilica er lig reaktionsgraden for cement: $\alpha = \alpha_{ms} = \alpha_{ce}$. Forudsætningen stemmer dårligt overens med virkeligheden, se f.eks. notatet "NMR-målinger", men er nødvendig for ikke at gøre formeludtrykkene og den grafiske fremstilling særdeles kompliceret. Ved vurdering af resultater bør det reelle reaktionsforløb inddrages.

Stoffordelingen i en hærdnende mikrosilicaholdig cementpasta kan beregnes med kendskab til følgende størrelser /19/, /20/:

cementens faststofdensitet, $\rho_{ce} \approx 3100~kg/m^3$ mikrosilicas faststofdensitet, $\rho_{ms} \approx 2200~kg/m^3$ vands densitet, $\rho_v \approx 1000~kg/m^3$ cementens kemiske svind, $\Delta V_{ce} \approx 6.5 \cdot 10^{-5}~m^3/kg$ ce mikrosilicas kemiske svind, $\Delta V_{ms} \approx 22 \cdot 10^{-5}~m^3/kg$ ms kemisk binding af vand ved cements reaktion, $W_{k,ce} \approx 0.26$ g/g ce kemisk binding af vand ved mikrosilicas reaktion, $W_{k,ms} \approx 0$ g/g ms gelvandsmængden i cements reaktionsprodukter, $W_{g.v,ce} \approx 0.19$ g/g ce gelvandsmængden i mikrosilicas reaktionsprodukter, $W_{g.v,ms} \approx 0.5$ g/g ms vægtforholdet vand:cement, v/c vægtforholdet mikrosilica:cement, s/c

Ved beskrivelse af stoffordelingen i det følgende benyttes relative volumenandele, V_i . Der vil således gælde, at $\sum_i V_i = 1$.

I formlerne benyttes en hjælpestørrelse, θ , der er identisk med udgangssystemets porøsitet. Da systemet i udgangssituationen udelukkende består af vand, cement og mikrosilica, gælder der, at θ er lig vandets volumen, V_v . Idet udgangssystemet betragtes kan θ beregnes ud fra v/c og s/c:

$$\theta = V_{v} = \frac{V_{v}}{V_{v} + V_{ce} + V_{ms}} = \frac{V_{v} \cdot \left(\frac{\rho_{v}}{\rho_{ce} \cdot V_{ce}}\right)}{V_{v} \cdot \left(\frac{\rho_{v}}{\rho_{ce} \cdot V_{ce}}\right) + V_{ce} \cdot \left(\frac{\rho_{v}}{\rho_{ce} \cdot V_{ce}}\right) + V_{ms} \cdot \left(\frac{\rho_{v}}{\rho_{ce} \cdot V_{ce}}\right)}$$

$$= \frac{V/C}{V/C + \frac{\rho_{v}}{\rho_{ce}} + \frac{\rho_{v}}{\rho_{ms}} \cdot S/C} = \frac{V/C}{V/C + 0.323 + 0.455 \cdot S/C}$$

Det initiale faststofvolumen, (1- θ), skal fordeles mellem cement og mikrosilica med hensyntagen til mikrosilica:cement-forholdet. Da V_{ce} og V_{ms} endvidere aftager proportionalt med reaktionsgraden haves:

$$V_{ce} = (1-\theta) \cdot \frac{1/\rho_{ce}}{1/\rho_{ce} + (s/c)/\rho_{ms}} \cdot (1-\alpha) = (1-\theta) \cdot \frac{1}{1+1.41 \cdot s/c} \cdot (1-\alpha)$$

$$V_{ms} = (1-\theta) \cdot \frac{(s/c)/\rho_{ms}}{1/\rho_{ce} + (s/c)/\rho_{ms}} \cdot (1-\alpha) = (1-\theta) \cdot \frac{1}{1+0.710/(s/c)} \cdot (1-\alpha)$$

Det fordampelige vands volumen er lig udgangssystemets vandvolumen minus det vand, som er bundet kemisk af cement og mikrosilica. Da mikrosilica ikke binder vand kemisk, $W_{k,ms} \approx 0$ g/g ms /20/, er det kun cementen, der bidrager. Volumenet af det hydratiserede cement er jf. ovenstående $(1-\theta) \cdot \frac{1}{1+1.41 \cdot s/c} \cdot \alpha$. Ved

hydratiseringen bindes $W_{k,ce}$ vægtdele vand. Hermed er det resterende vandvolumen:

$$V_{v} = \theta - (1 - \theta) \cdot \frac{1}{1 + 1 \cdot 41 \cdot s/c} \cdot W_{k,co} \cdot \frac{\rho_{co}}{\rho_{v}} \cdot \alpha = \theta - (1 - \theta) \cdot \frac{0.806}{1 + 1 \cdot 41 \cdot s/c} \cdot \alpha$$

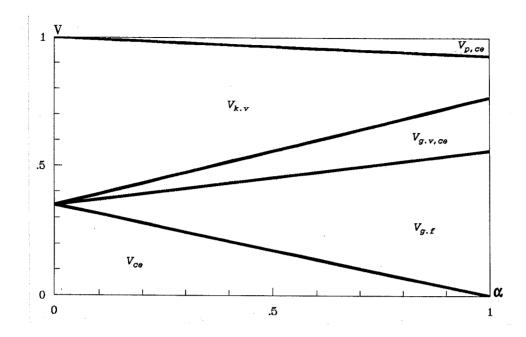
Dette vandvolumen udgøres af gelvand og kapillarvand. Gelvandet er adsorberet dels på cements reaktionsprodukter, dels på mikrosilicas:

$$V_{g.v,ce} = (1-\theta) \cdot \frac{1}{1+1.41 \cdot s/c} \cdot \frac{\rho_{ce}}{\rho_{rr}} \cdot W_{g.v,ce} \cdot \alpha = (1-\theta) \cdot \frac{0.589}{1+1.41 \cdot s/c} \cdot \alpha$$

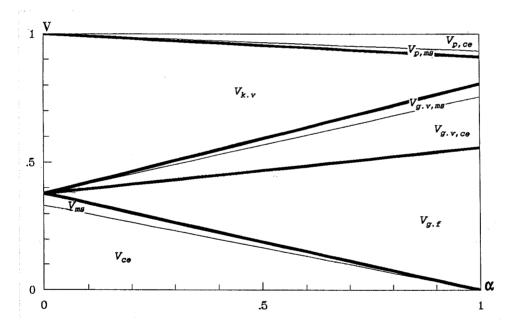
$$V_{g.v,ms} = (1-\theta) \cdot \frac{1}{1+0.710/(s/c)} \cdot \frac{\rho_{ms}}{\rho_{v}} \cdot W_{g.v,ms} \cdot \alpha = (1-\theta) \cdot \frac{1.10}{1+0.710/(s/c)} \cdot \alpha$$

Kapillarvandet udgøres af fordampeligt vand minus gelvand: $V_{k.v} = V_v - V_{g.v,ce} - V_{g.v,ms}$

Kemisk svind ved cements hydratisering og mikrosilicas puzzolane reaktion medfører dannelse af indre luftfyldte porer. Volumnet af disse kan beregnes ved:


$$V_{p,ce} = (1-\theta) \cdot \frac{1}{1+1.41 \cdot s/c} \cdot \rho_{ce} \cdot \Delta V_{ce} \cdot \alpha = (1-\theta) \cdot \frac{0.202}{1+1.41 \cdot s/c} \cdot \alpha$$

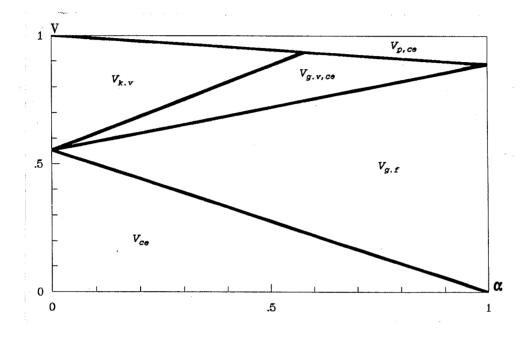
$$V_{p,ms} = (1-\theta) \cdot \frac{1}{1+0.710/(s/c)} \cdot \rho_{ms} \cdot \Delta V_{ms} \cdot \alpha = (1-\theta) \cdot \frac{0.484}{1+0.710/(s/c)} \cdot \alpha$$


Det totale volumen udgøres af porer, kapillarvand, gelvand, cement, mikrosilica og gelfaststof. Gelfaststoffets volumen kan dermed beregnes ved:

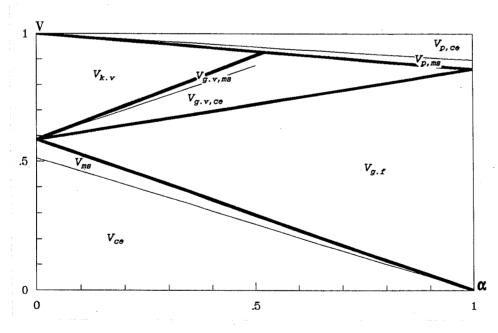
$$V_{g.\,f} = 1 - V_{p,\,ce} - V_{p,\,ms} - V_{k.\,v} - V_{g.\,v,\,ms} - V_{g.\,v,\,ce} - V_{ce} - V_{ms}$$

Ovenstående analytiske udtryk gælder principielt kun så længe, der er kapillarvand til stede. Ved høje v/c vil dette være tilfældet for alle a. Dette er vist i Figur 12 og Figur 13.

Figur 12.
Volumenandele af
komponenter
som funktion af
reaktionsgraden i
pasta ved
v/c=0.60 og
med 0% mikrosilica.



Figur 13.
Volumenandele af komponenter som funktion af reaktionsgraden i pasta ved v/c=0.60 og med 10% mikrosilica.


En pasta med 0% mikrosilica vil ved v/c≈0.45 netop opbruge alt kapillarvandet under fuldstændig hydratisering. Diagrammet ændrer karakter for lavere v/c. Denne grænse-v/c ændres i øvrigt ikke særlig meget af mikrosilicaindhold på op til f.eks. 10%. I Figur 14 og Figur 15 er vist eksempler på forløb ved lave v/c. Kurverne er formelt ekstrapoleret således, at cementen efter at have opbrugt kapillarvandet fortsætter reaktionen med gelvandet.

I praksis er det konstateret, at cementens reaktion stort set ophører når kapillarvandet er opbrugt /21/. Dette forhold stopper derimod ikke mikrosilicas reaktion; den fortsætter, jf. notatet "NMR-målinger".

Totalt set udgør mikrosilicas bidrag til luftporedannelsen, det kemiske svind, kun en mindre del i Figur 15. I denne sammenligning skal det dog inkluderes, at cementreaktionen ophører omkring α =0.5, mens mikrosilicareaktionen i højere grad løber til ende. Herved er cements og mikrosilicas bidrag nogenlunde lige store.

Figur 14.
Volumenandele af komponenter som funktion af reaktionsgraden i pasta ved v/c=0.25 og med 0% mikrosilica.

Figur 15.
Volumenandele af komponenter som funktion af reaktionsgraden i pasta ved v/c=0.25 og med 10% mikrosilica.

14 STABILITET AF VAND

En makroskopisk vandmængde, H_2O (1), er ustabil ved tryk lavere end partialtrykket af mættet vanddamp. Ved disse tryk er vanddamp, H_2O (g), makroskopisk set den stabile tilstand.

Betragt en luftfri makroskopisk vandmængde, $\rm H_2O$ (1), hvor trykket sænkes under mættede dampes. Omdannelsen fra vand, $\rm H_2O$ (1), til vanddamp, $\rm H_2O$ (g), må nødvendigvis ske ved, at en lille mikroskopisk dampboble tilfældigt dannes i vandet.

To modsat rettede fænomener vil søge at ændre en sådan dampbobles størrelse:

- 1) Makroskopisk set repræsenterer gasfasen den stabile tilstand. Dette medfører en væksttendens for dampboblen.
- 2) Vandets overfladespænding vil søge at kontrahere dampboblen, således at radius mindskes.

For dampbobler med radius mindre end en vis kritisk radius dominerer kontraktionstendensen (punkt 2), og for dampbobler med radius større end denne kritiske radius dominerer væksttendensen (punkt 1) - små dampbobler er dermed ustabile og vil forsvinde, mens store dampbobler vokser.

Den skitserede problematik betegnes inden for materiallæren som kimdannelse. En uddybende termodynamisk beskrivelse af kimdannelse findes f.eks. i /22/.

Faseomdannelse kan forsinkes betydeligt som følge af kimdannelsesproblemer. I en makroskopisk vandmængde fri for urenheder og luft kan der således frembringes trækspændinger på op mod 50 atm., før den med et smæld omdannes til gas /23/. Dette skyldes, at omdannelsen fra vand, $\rm H_2O$ (1), til vanddamp, $\rm H_2O$ (g), ikke forløber frivilligt, før der tilfældigt er dannet en dampboble med tilstrækkelig stor radius – den såkaldte kritiske radius.

Kimdannelsesproblemer er også årsagen til fænomener som underafkøling af vand og stødkogning.

Betragt en mikroskopisk vandmængde bundet i en snæver pore - kapillarbundet vand. Som følge af meniskdannelse kan der være store trækspændinger i en sådan vandmængde. Til trods for trækspændingerne er det kapillarbundne vand stabilt. På grund af ovennævnte kimdannelsesfænomen kan det ikke omdannes til vanddamp. En tilfældigt dannet dampboble i det kapillarbundne vand vil forsvinde igen, hvis dampboblens radius er mindre end kritisk radius. Kritisk radius for dampbobler er identisk med Kelvinradius. Kapillarbundet vand er derfor stabilt, hvis kapillarrørets radius er mindre end Kelvinradius.

SYMBOLER

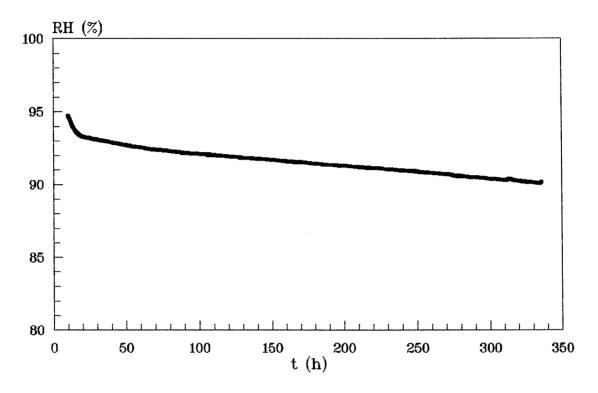
SYMBOL	FYSISK STØRRELSE/BETEGNELSE	SI-ENHED
c	krybningsfunktion	Pa
c	porøsitet	[]
${f E}$	elasticitetsmodul	Pa
M	molmasse	kg/mol
n	stofmængde	mol
p	spænding	Pa
r	relaksationsfunktion	Pa ⁻¹
${f r}$	radius	m
R	gaskonstant, 8.314	$J/(mol \cdot K)$
RH	relativ luftfugtighed (RF)	[]
s/c	mikrosilica-cementforhold	kg/kg
S	specifik overflade	m ² /kg
SPC	mængde superplastificeringsstof	kg
${f T}$	absolut temperatur	. К
t	tid	S
v, V	volumenandel, volumen	[] og m ³
v/c	vand-cementforhold	kg/kg
W	vægtdel	kg/kg
a	hydratiseringsgrad el. reaktionsgrad	ſ1
a	temperaturudvidelseskoefficient	к ⁻¹
Δ	ændring	•
ΔV	kemisk svind	m³/kg
e	tøjning	[]
$\mu_{oldsymbol{0}}$	formfaktor	[]
v	Poissons forhold	[]
θ	kontaktvinkel	٥
θ	udgangsporøsitet	[]
ρ	densitet	kg/m ³
σ	overfladespænding	N/m
σ	spænding	Pa
τ	tid	h
φ	krybningstal	[]

INDEX

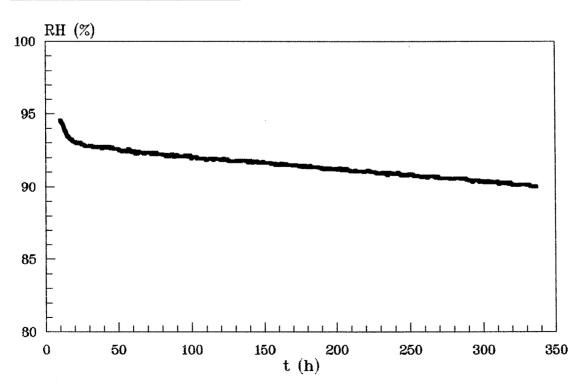
```
ce
             cement
             evaporabel (fordampeligt)
el
             elastisk
             gas
g
g.f
             gelfaststof
             gelvand
g.v
             kemisk bundet
k
K
             Kelvin
             kapillarvand
k.v
             liquid (væske), lineær
1
max
             maximal
             mikrosilica
ms
             non-evaporabel (ikke fordampeligt)
n
\mathbf{p}
t
             tensile (træk)
             ultimate (brud)
ut
             volumetrisk, vand
             viskoelastisk
visko-el
```

Sædvanlig cementkemisk nomenklatur for oxider er benyttet: C=CaO, S=SiO₂, H=H₂O, A=Al₂O₃, F=Fe₂O₃ osv.

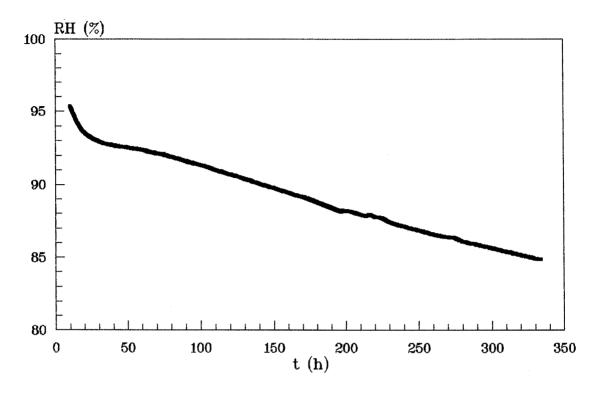
REFERENCER

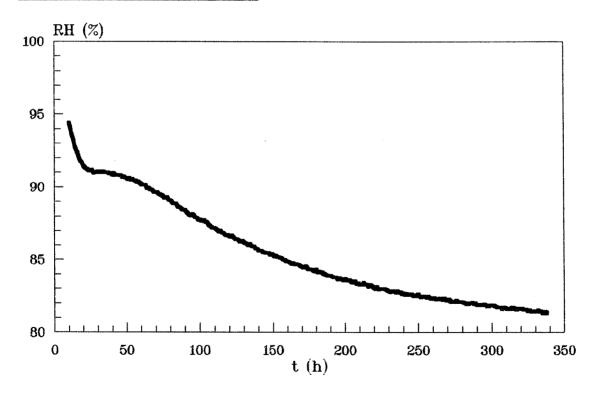

- /1/ J A Dean (ed.): "Lange's handbook og chemistry", 13 ed., McGraw-Hill Book Compagny, 1985
- /2/ C L Page, \emptyset Vennesland: "Pore solution composition and chloride binding capacity of silica-fume cement pastes", Materials and Structures, vol 16, nr 91, 1983, p 19-25
- /3/ C D Lawrence: "Changes in composition of the aqueous phase during hydration of cement paste and suspensions", Highway research board, special report 90, symposium on structure of portland cement paste and concrete, 1966, p 378-391
- /4/ Dansk Ingeniørforenings norm for portlandcement, DS 427, 1. udgave, Teknisk forlag, 1973 /5/ B S Nielsen, F L Kronholm: "Fysisk binding af vand i hærdnet cementpasta", DIA-B, FYM, 1987
- /6/ G W Ewing: "Instrumental methods of chemical analysis", McGraw-Hill, 3. ed., 1969
- /7/ J Hjort, J Skibsted, H J Jakobsen: "29Si MAS NMR studies of portland cement components and effects of microsilica on the hydration reaction", Cement and concrete research, vol 18, p 789-798, 1988
- /8/ R C Weast (ed.): "Handbook of Chemistry and Physics", Chemical Rubber Compagny, 1984
- /9/ S P Clark: "Handbook of physical constants", Geological society of America, p 81 & 83, 1966
- /10/ A E Nielsen: "Kemiske data", FADLs forlag, 3. udg., 1984
- /11/ F M Lea: "The chemistry of cement and concrete", Edward Arnold Ltd, 1970
- /12/ I Soroka: "Portland cement paste and concrete", Macmillan press 1td, 1979
- /13/ F Henkel: "Zum Kristallisationsdruck betonzerstörender Sulfate", Zement und Beton, 85-86, p 26-28, 1975
- /14/ T C Powers: "Mechanisms of shrinkage and reversible creep of hardened cement paste", Conference on the structure of concrete, London, p 319-344, 1965
- /15/ A D Herholdt, C F P Justesen, P Nepper-Christensen, A Nielsen (ed.): "Beton-Bogen", Aalborg Portland, Cementfabrikkernes tekniske Oplysningskontor, 2 udg., 1985
- /16/ L F Nielsen: "Materialemekanik", Laboratoriet for Bygningsmaterialer, Teknisk rapport 169/86, DtH, 1986
- /17/ S Ziegeldorf, H S Müller, J Plöhn, H K Hilsdorf: "Autogenous shrinkage and crack formation in young concrete", International conference on concrete of early ages, RILEM, vol 1, p 83-88, 1982
- /18/ Y Kaisa, K Okamula: "The Initial Tensile Strength of Concrete", 22. general meeting, Cement Association of Japan, p 172-176, 1968
- /19/ P F Hansen: "Hærdeteknologi-1", BKF-centralen, 1978
- /20/ O M Jensen: "Mikrosilicas puzzolane reaktion", Laboratoriet for Bygningsmaterialer, DtH, Teknisk rapport 229/90, 1990
- /21/ T C Powers: "A discussion of cement hydration in relation to the curing of concrete", Proceedings of the Highway Research Board, 27, p 178-188, 1947
- /22/ J H Brophy, R M Rose, J Wulff: "Structure and Properties of Materials, Vol. II: Thermodynamics of Structure", John Wiley & Sons, 1964
- /23/ E S Johansen: "Varmelære", 3. udg. Gjellerups forlag, 1960
- /24/ L F Nielsen: "Notater til 6108: Porøse Bygningsmaterialer", Laboratoriet for Bygningsmaterialer, DtH, 1993
- /25/ E Atlassi: "Desorption isotherms of silica fume mortar", Preliminary paper, to be presented at the 9th international symposium on the chemistry of cements, New Delhi, 1992

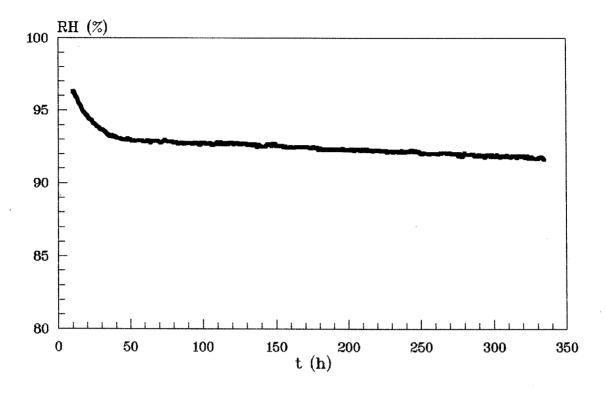
MÅLINGER

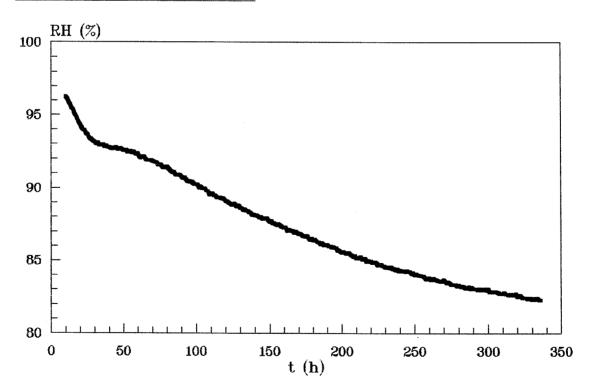

Samtlige måleforløb af autogen RF-ændring og autogen deformation vises på de følgende sider. Bemærk at aksernes inddeling varierer.

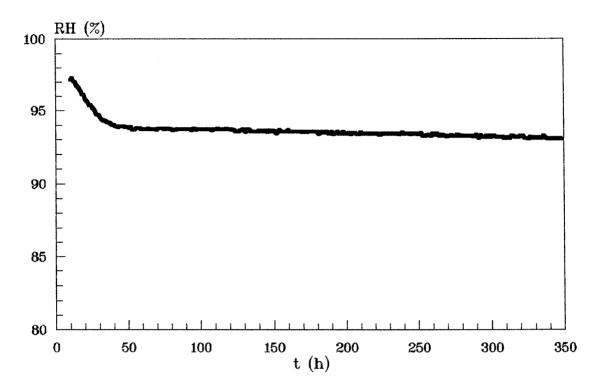
AUTOGEN RF-ÆNDRING

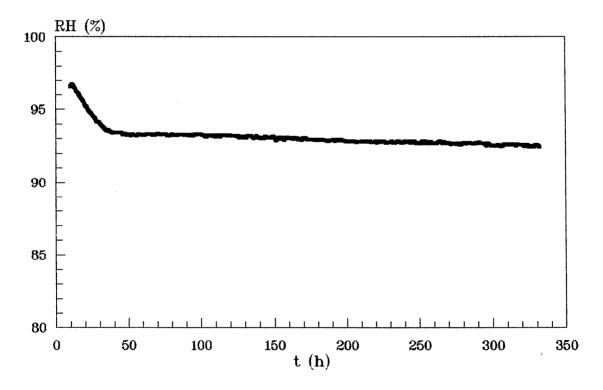

v/c=0.25, 0% mikrosilica

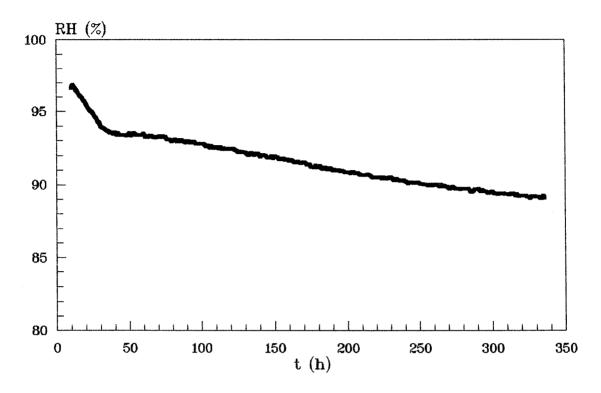

v/c=0.25, 3% mikrosilica

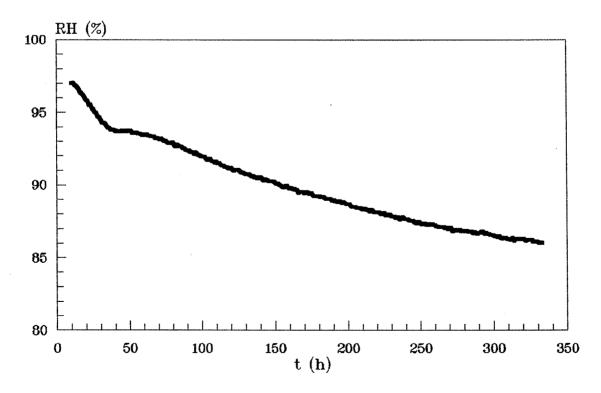

v/c=0.25, 6% mikrosilica

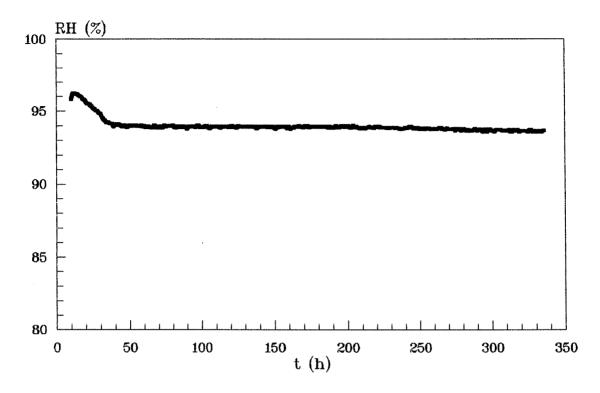

v/c=0.25, 10% mikrosilica

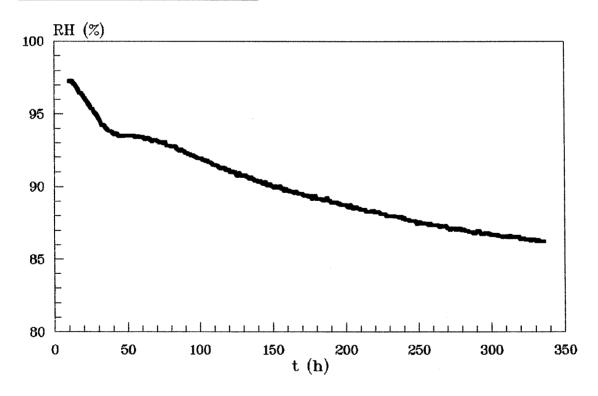

v/c=0.30, 0% mikrosilica

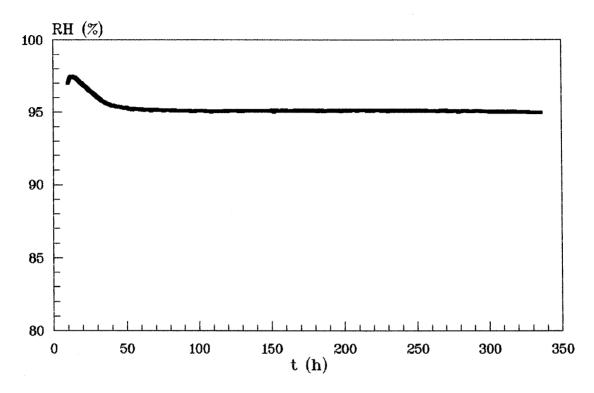

v/c=0.30, 10% mikrosilica

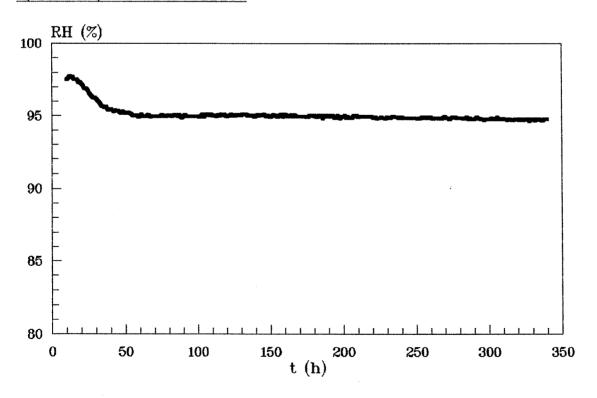

v/c=0.35, 0% mikrosilica

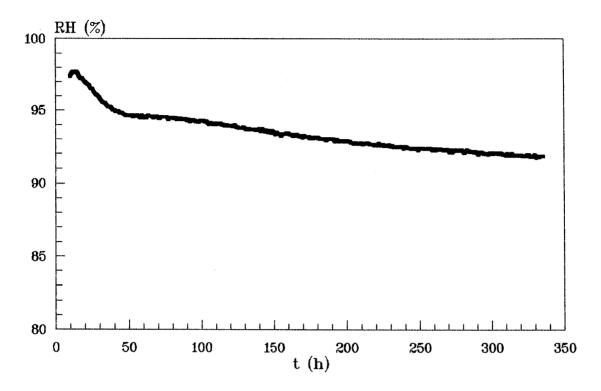

v/c=0.35, 3% mikrosilica

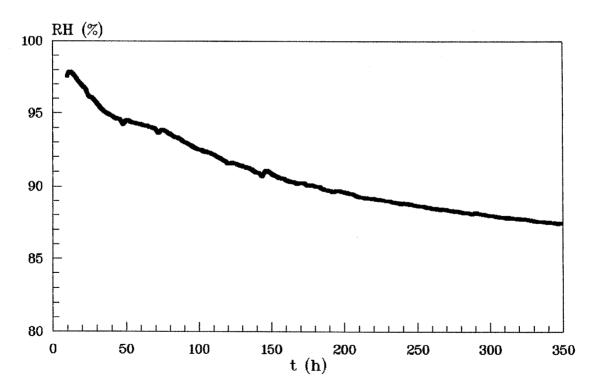

v/c=0.35, 6% mikrosilica

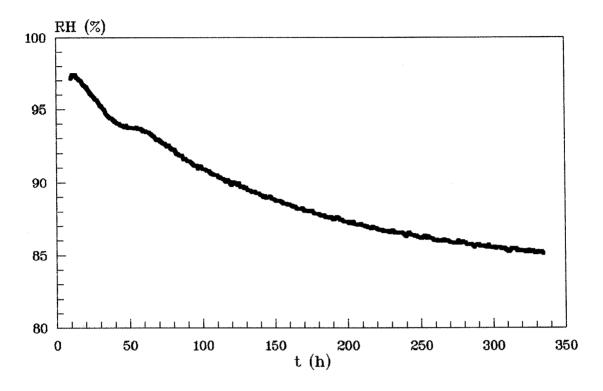

v/c=0.35, 10% mikrosilica

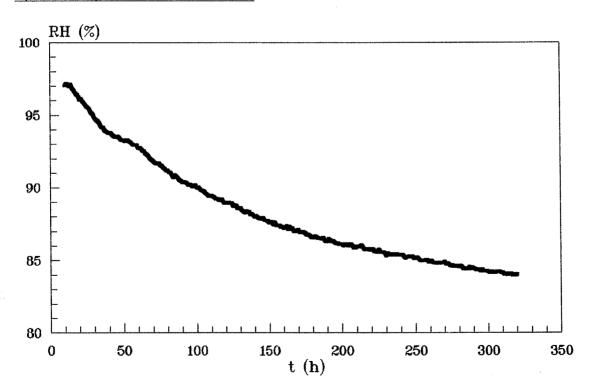

v/c=0.40, 0% mikrosilica

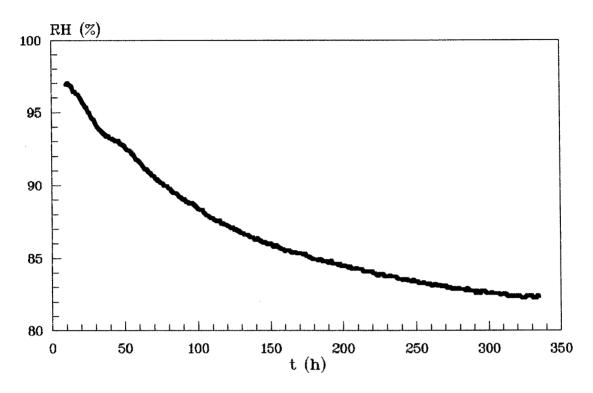

v/c=0.40, 10% mikrosilica

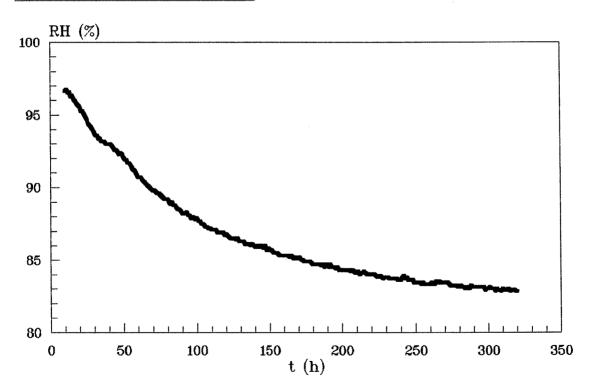

v/c=0.45, 0% mikrosilica

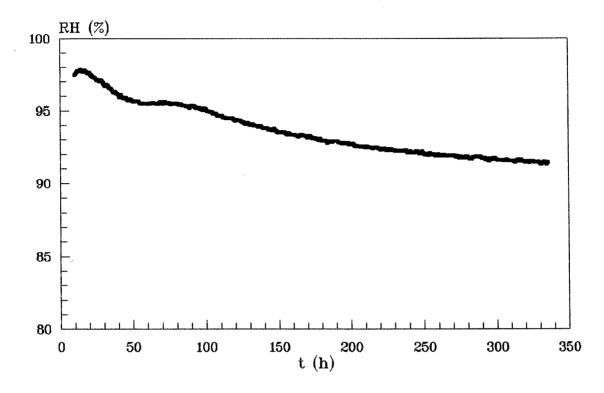

v/c=0.45, 3% mikrosilica

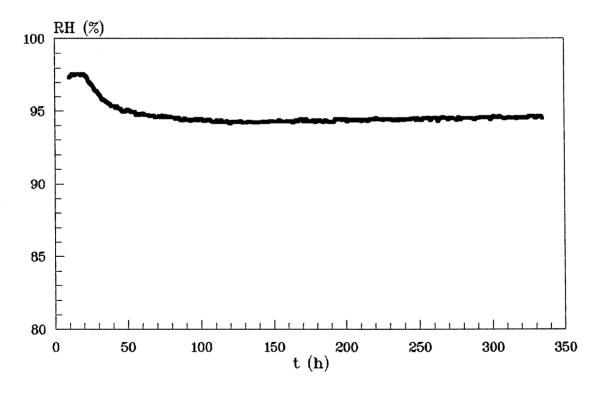

v/c=0.45, 6% mikrosilica

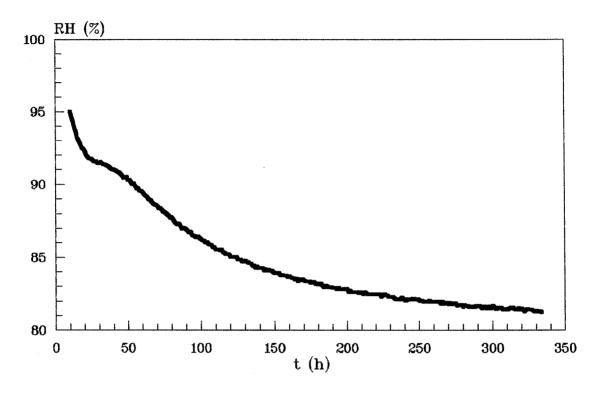

v/c=0.45, 10% mikrosilica

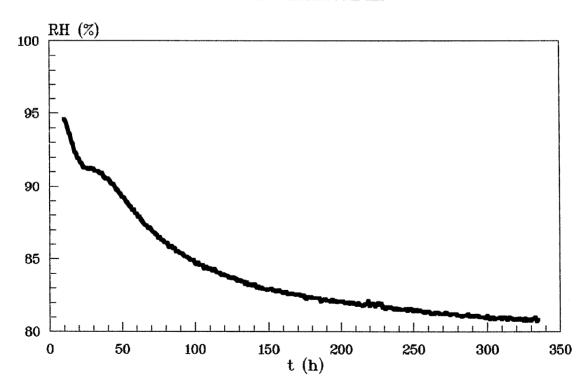

v/c=0.45, 15% mikrosilica

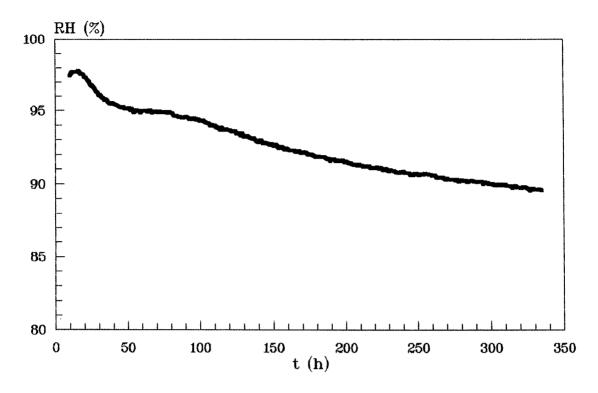

v/c=0.45, 20% mikrosilica

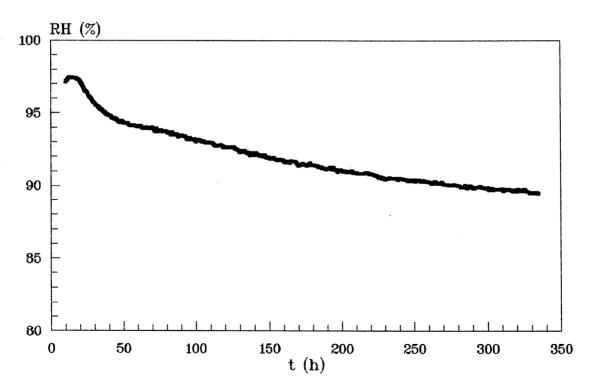

v/c=0.45, 25% mikrosilica


v/c=0.45, 30% mikrosilica

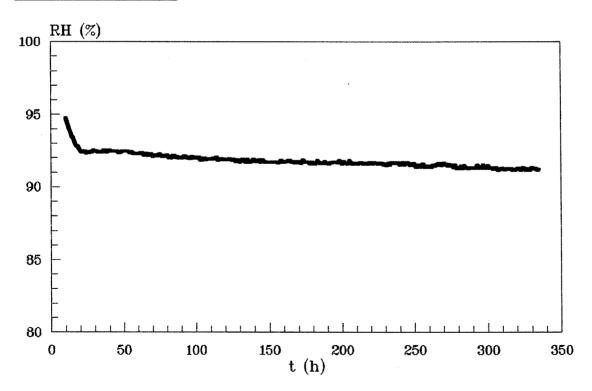

v/c=0.55, 10% mikrosilica

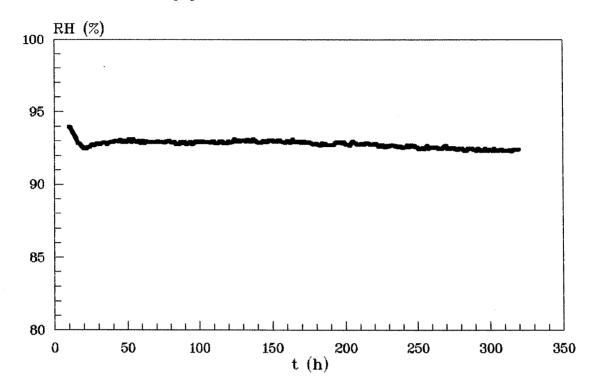

v/c=0.45, 30% flyveaske

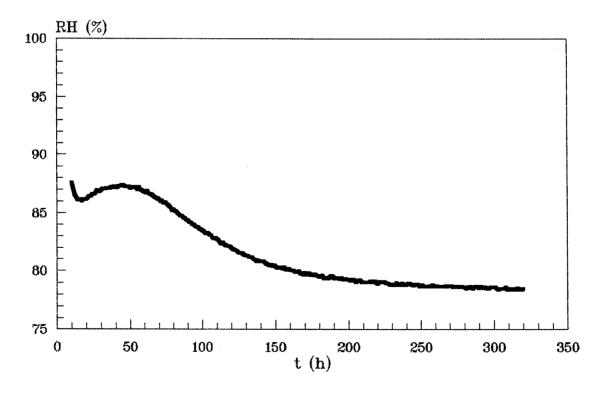

v/c=0.25, 10% mikrosilica med S=33 m²/g

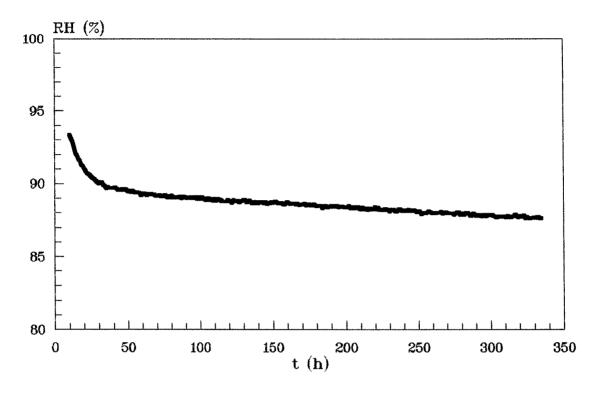

v/c=0.25, 10% mikrosilica med S=50 m²/g

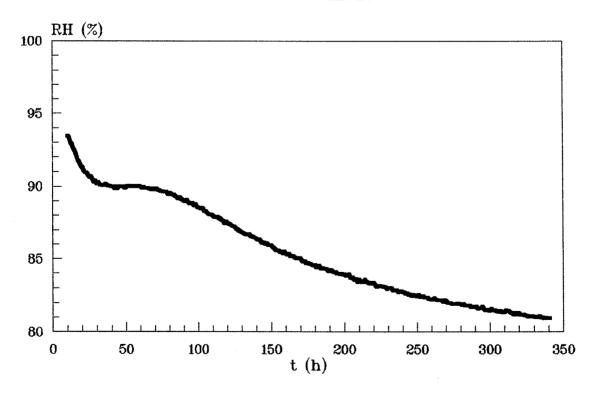

v/c=0.45, 10% mikrosilica uden spc

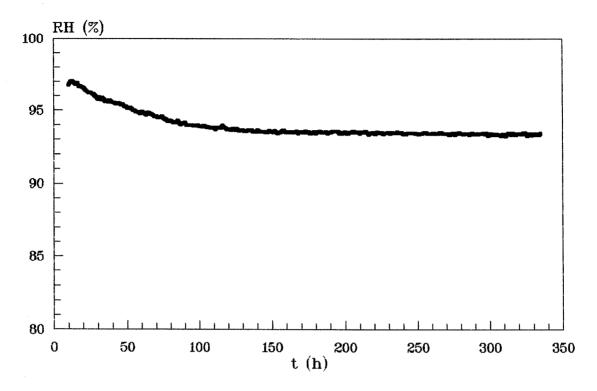

v/c=0.45, 10% agglomereret mikrosilica

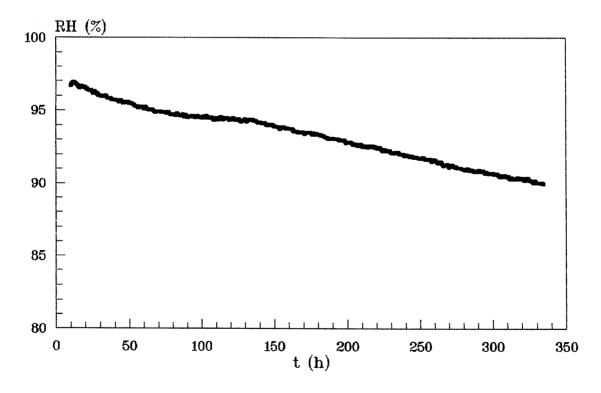

v/c=0.45, 10% $CaCO_3$

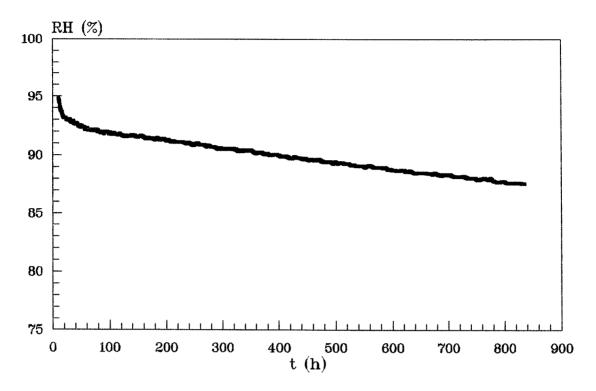

v/c=0.25, 10% ler

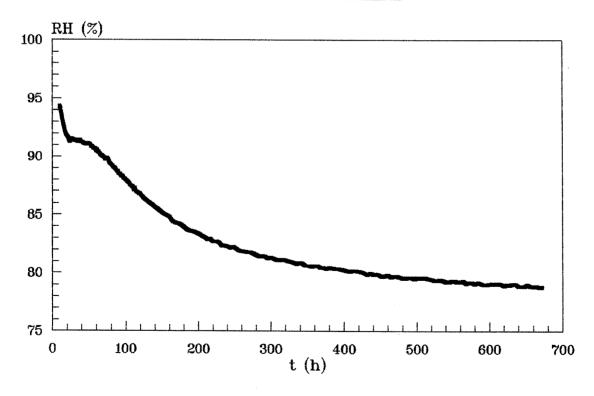

v/c=0.25, 10% Si_3N_4


v/c=0.25, 10% mikrosilica med NaOH og KOH

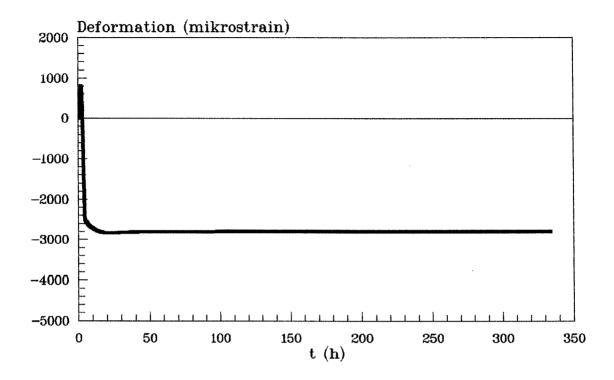

rapidcement v/c=0.25, 0% mikrosilica


rapidcement v/c=0.25, 10% mikrosilica

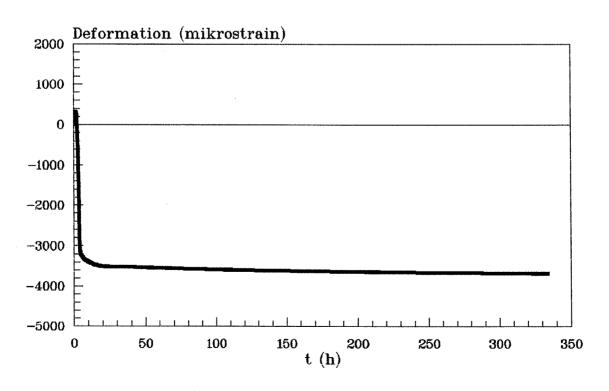

rapidcement v/c=0.40, 0% mikrosilica


rapidcement v/c=0.40, 10% mikrosilica

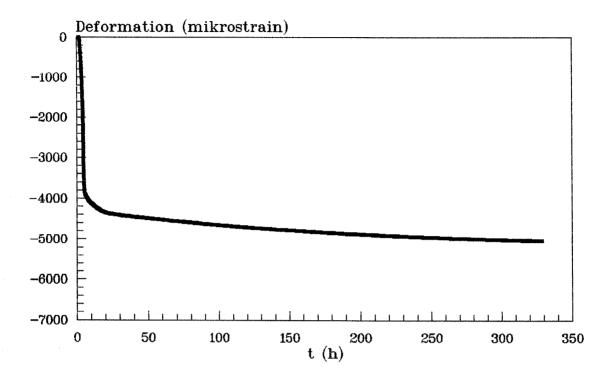
langtidsforsøg v/c=0.25, 0% mikrosilica

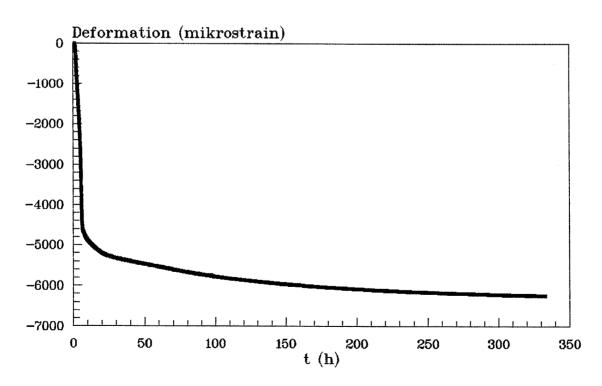


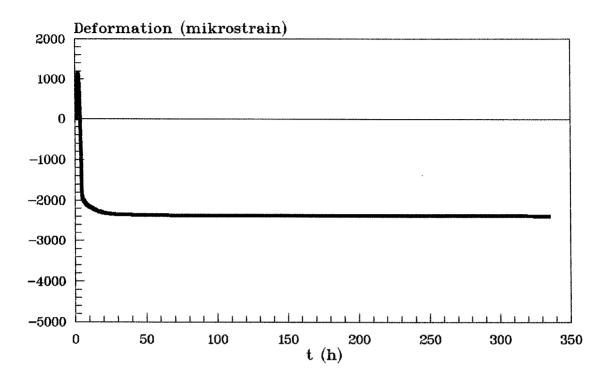
langtidsforsøg v/c=0.25, 10% mikrosilica

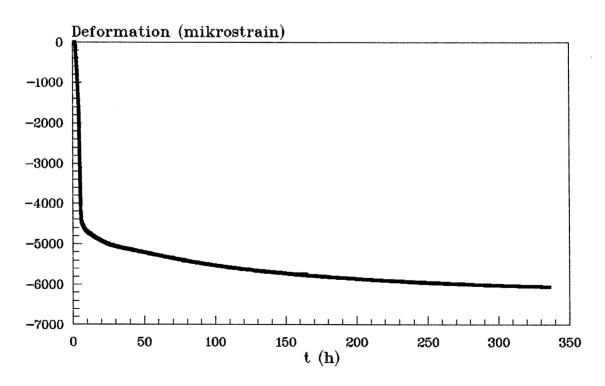


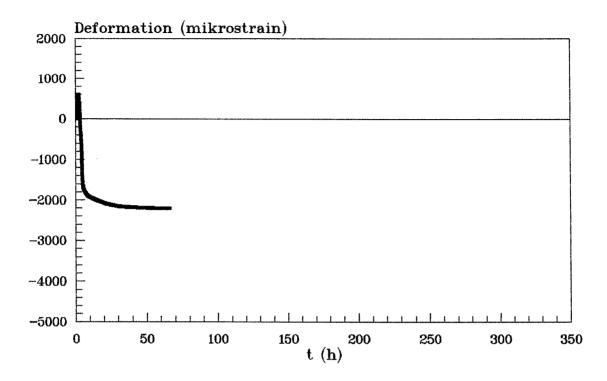
AUTOGEN DEFORMATION

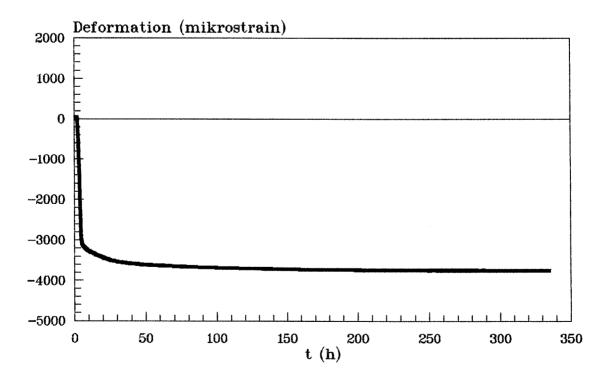

v/c=0.25, 0% mikrosilica

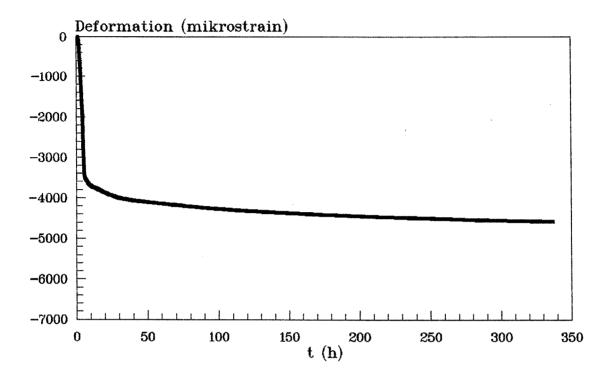

v/c=0.25, 3% mikrosilica

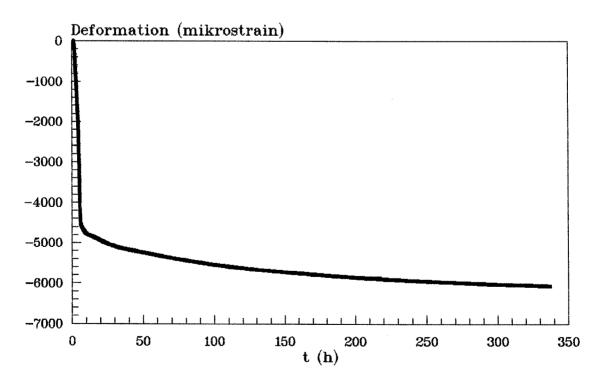

v/c=0.25, 6% mikrosilica

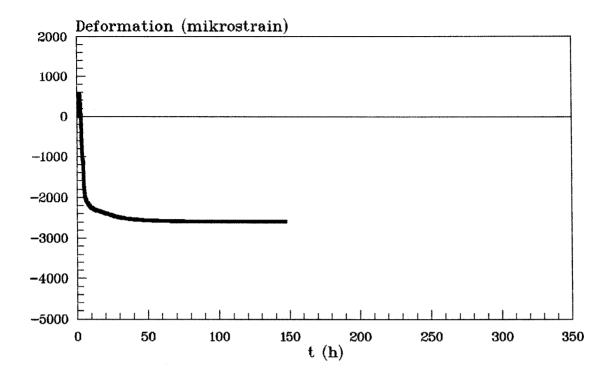

v/c=0.25, 10% mikrosilica

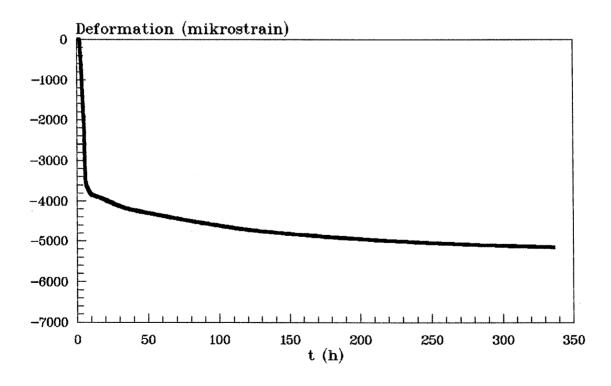

v/c=0.30, 0% mikrosilica

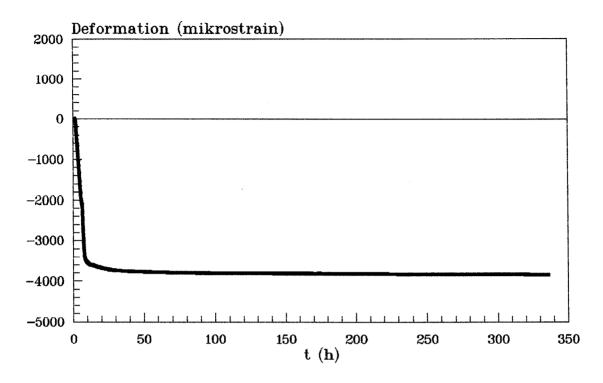

v/c=0.30, 10% mikrosilica


v/c=0.35, 0% mikrosilica

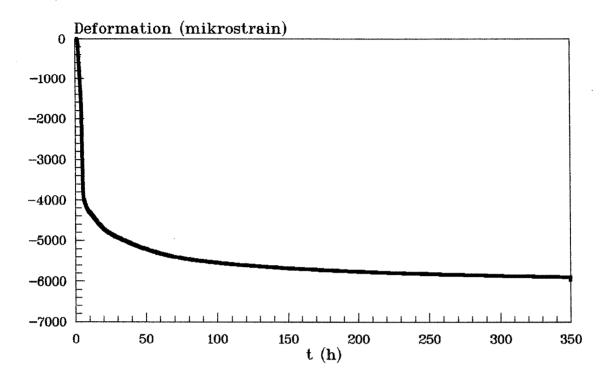

v/c=0.35, 3% mikrosilica

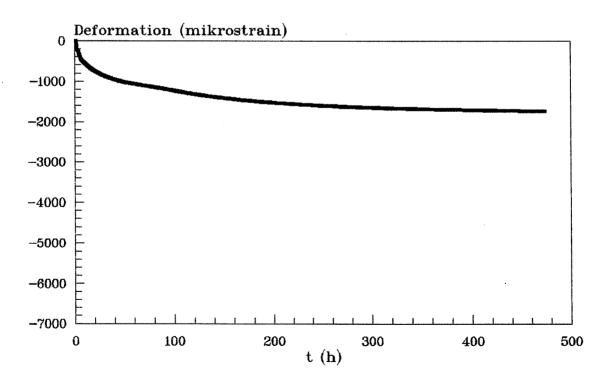

v/c=0.35, 6% mikrosilica

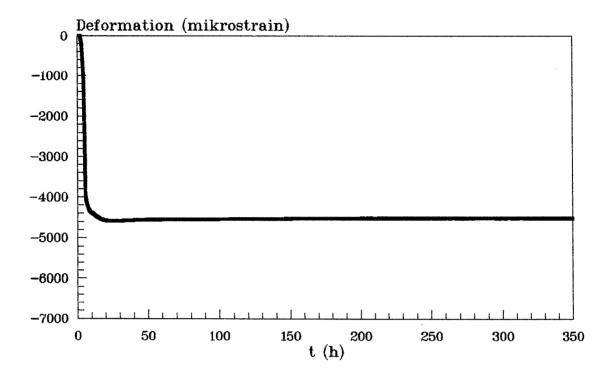

v/c=0.35, 10% mikrosilica

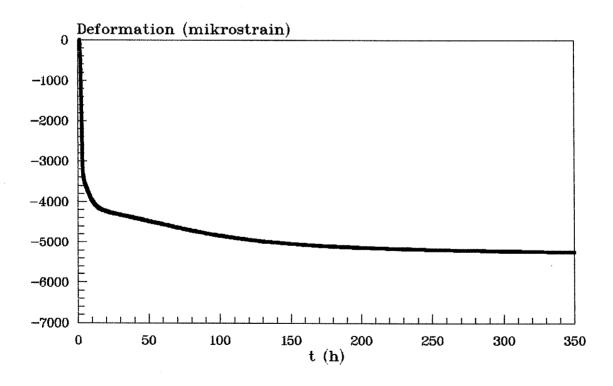

v/c=0.40, 0% mikrosilica

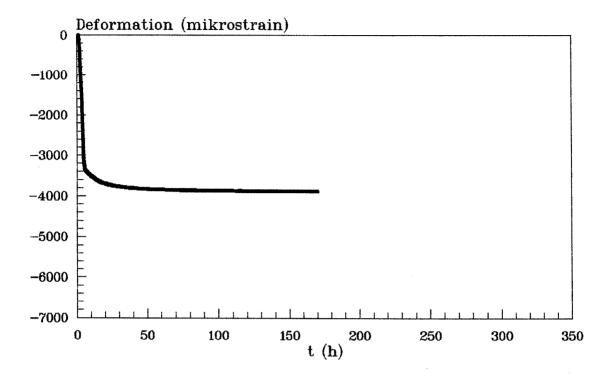

v/c=0.40, 10% mikrosilica

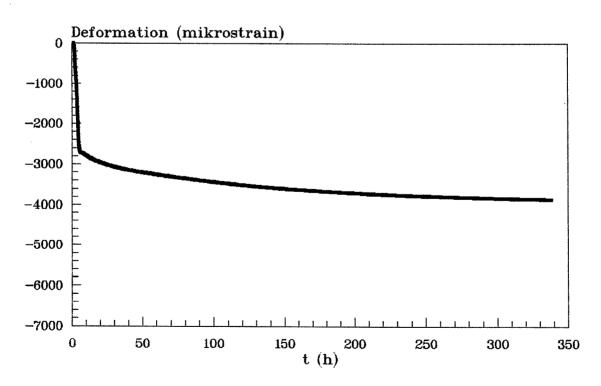

v/c=0.35, 30% flyveaske

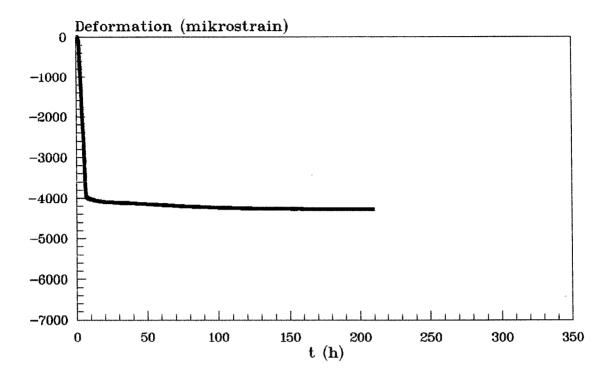

v/c=0.25, 10% mikrosilica med S=33 m²/g

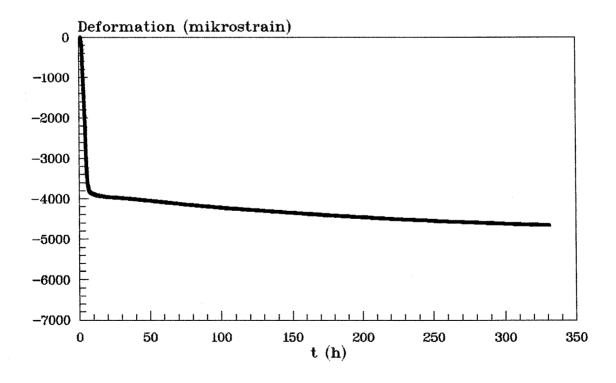

v/c=0.25, 10% mikrosilica med S=50 m²/g

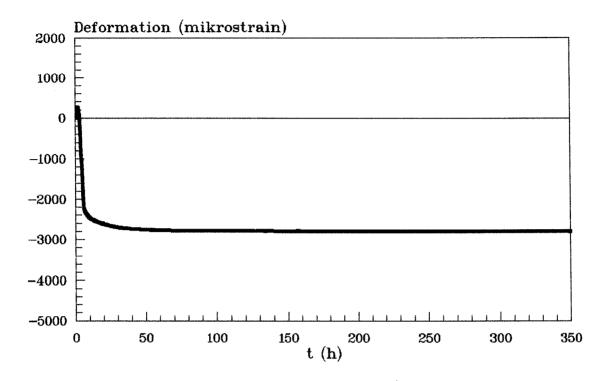

v/c=0.45, 10% mikrosilica uden spc

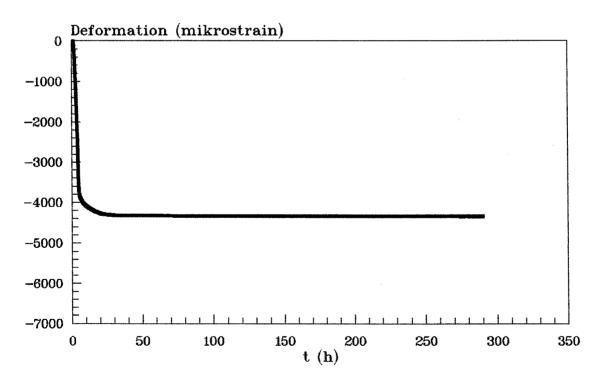

$v/c=0.25, 10\% Si_3N_4$

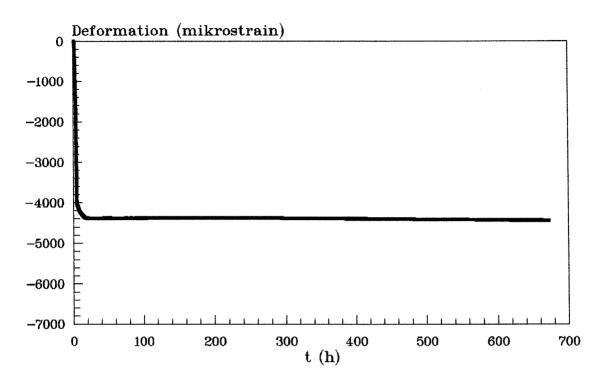

v/c=0.25, 10% mikrosilica med NaOH og KOH

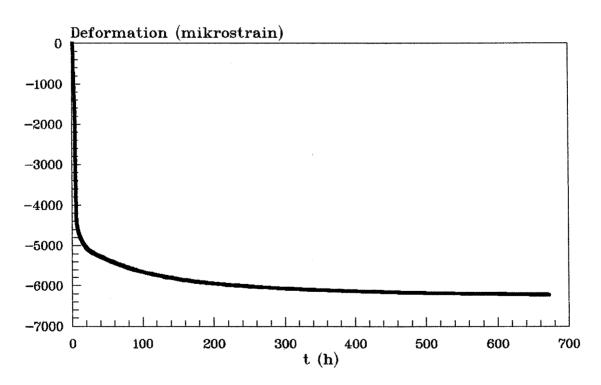

rapidcement v/c=0.25, 0% mikrosilica


rapidcement v/c=0.25, 10% mikrosilica


rapidcement v/c=0.40, 0% mikrosilica


rapidcement v/c=0.40, 10% mikrosilica


v/c=0.35, 0% mikrosilica 2. forsøg


v/c=0.30, 0% mikrosilica afluftet

langtidsforsøg v/c=0.25, 0% mikrosilica

langtidsforsøg v/c=0.25, 10% mikrosilica

