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Abstract

Modal specification is a well-known formalism used as an abstraction theory for tran-
sition systems. Modal specifications are transition systems equipped with two types
of transitions: must-transitions that are mandatory to any implementation, and may-
transitions that are optional. The duality of transitions allows for developing a unique
approach for both logical and structural compositions, and eases the step-wise refine-
ment process for building implementations. We propose Modal Specifications with
Data (MSDs), the first modal specification theory with explicit representation of data.
Our new theory includes the most commonly seen ingredients of a specification the-
ory; that is parallel composition, conjunction and quotient. As MSDs are by nature
potentially infinite-state systems, we propose symbolic representations based on effec-
tive predicates. Our theory serves as a new abstraction-based formalism for transition
systems with data.
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1. Introduction

Modern IT systems are often large and consist of complex assemblies of numer-
ous reactive and interacting components. The components are often designed by in-
dependent teams, working under a common agreement on what the interface of each
component should be. Consequently, the search for mathematical foundations which
support compositional reasoning on interfaces is a major research goal. A framework
should support inferring properties of the global implementation, designing and advis-
edly reusing components.

Interfaces are specifications and components that implement an interface are un-
derstood as models, or implementations. Specification theories should support various
features including (1) refinement, which allows to compare specifications as well as to
replace a specification by another one in a larger design, (2) structural composition,
which allows to combine specifications of different components, (3) logical conjunc-
tion, expressing the intersection of the set of requirements expressed by two or more
specifications for the same component, and last (4) a quotient operator that is dual to
structural composition and allows synthesizing a component from a set of assumptions.

Among existing specification theories, one finds modal specifications [2], which
are labeled transition systems equipped with two types of transitions: must-transitions
that are mandatory for any implementation, and may-transitions which are optional
for an implementation. Modal specifications are known to achieve a more flexible
and easy-to-use compositional development methodology for CCS [3], which includes
a considerable simplification of the step-wise refinement process proposed by Milner
and Larsen. While being very close to logics (conjunction), the formalism takes advan-
tage of a behavioral semantics allowing for easy composition with respect to process
construction (structural composition) and synthesis (quotient). However, despite the
many advantages, only a few implementations have been considered so far. One major
problem is that contrary to other formalisms based on transition systems, there exists
no theory of modal specification equipped with rich information such as data variables.

In this paper, we add a new stone to the cathedral of results on modal specifica-
tions [4, 5], that is we propose the first such theory equipped with rich data values.
Our first contribution is to design a semantical version of modal specifications whose
states are split into locations and valuations for possibly infinite-domain variables. For
every component, we distinguish between local variables, that are locally controlled by
the component, and global uncontrolled variables that are controlled by other compo-
nents and can be accessed, but not modified. Combining variables with sets of actions
labeling transitions offers a powerful set of communication primitives that cannot be
captured by most existing specification theories. We also propose a symbolic predicate-
based representation of our formalism. We consider effective predicates that are closed
under conjunction, union, and membership—classical assumptions in existing sym-
bolic theories (e.g. [6]). While the semantic level is possibly infinite-state, the syntac-
tical level permits us to reason on specifications just like one would with the original
modal specifications, but with the additional power of rich data. We see this as the most
important contribution of this paper. We see the potential of handling infinite data do-
mains as the most important contribution of this paper. An important direction of future
work is to establish case studies where infinite data domains are used extensively.
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Continuing our quest, we study modal refinement between specifications. Refine-
ment, which resembles simulation between transition systems, permits to compare sets
of implementations in a syntactic manner. Modal refinement is defined at the semantic
level, but can also be checked at the symbolic level. We propose a predicate abstrac-
tion approach that simplifies the practical complexity of the operation by reducing the
number of states and simplifying the predicates. This approach is in line with the work
of Godefroid et al. [7], but is applied to specification-based verification rather than to
model checking.

We then propose definitions for both logical and structural composition, both on
the level of symbolic representations of specifications and on the semantic level. The
syntactic definitions are clearly not direct extensions of the ones defined on modal
specifications as behaviors of both controlled and uncontrolled variables have to be
taken into account. As usual, structural composition offers the property of independent
implementability, hence allowing for elegant step-wise refinement. In logical compo-
sition, two specifications which disagree on their requirements can be reconciled by
synthesizing a new component where conflicts have been removed. This can be done
with a symbolic pruning of bad states, which terminates if the system is finite-state, or
if the structure of the transition system induced by the specification relies, for instance,
on a well-quasi order [8]. Finally, we also propose a quotient operation, that is the dual
operation of structural composition, which works for a subclass of systems, and we
discuss its limitation. This operator, absent from most existing behavioral and logical
specification theories, allows synthesizing a component from a set of assumptions.

This journal paper is an extended version of the conference paper [1]; it contains
additional semantic definitions of the relations and operations on the level of MSDs,
proofs for all results, more details on predicate abstraction as well as an extended sec-
tion on related work.

In Sect. 2 we introduce modal specifications with data and their finite symbolic
representations, refinement, an implementation relation and consistency. In Sect. 3 we
define the essential operators of every specification theory, that is parallel composition,
conjunction and quotient. For verification of refinement between infinite-state specifi-
cations we propose in Sect. 4 an approach based on predicate abstraction techniques.
We summarize related works in Sect. 5 and conclude and discuss future work in Sect. 6.

2. Modal Specifications with Data

We will first introduce specifications which are finite symbolic representations of
modal specifications with data (MSDs). We will then propose modal refinement and
derive an implementation relation and a consistency notion.

Figure 1 shows the relationship between specifications, MSDs and implementations
(TSD which are introduced later). Figure 2 shows the implications that exists between
the different forms of refinement that are presented in the paper.

In the following, P(M) denotes the powerset of M , P≥1(M) = P(M) \ {∅},
and the union of two disjoint sets is denoted byM]N , which isM∪N withM∩N =
∅.

We assume that variables range over a fixed domain D. For a given set V of vari-
ables, a data state s over V is a mapping s : V → D. If V = {x1, x2, . . . , xn} and
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A 〈A〉sem

Impl(A)
I

I ≤sem 〈A〉sem

Specifications MSDs

TSD
Implementations

Figure 1: Figure showing the relationship between specifications, MSDs (modal spec-
ifications with data) and TSD (implementations).

Specifications A ≤ B
m

MSDs 〈A〉sem ≤sem 〈B〉sem

⇓
TSD (Implementations) Impl(A) ⊆ Impl(B)

Figure 2: Implications between the two refinement relations and implementation set
inclusion.

d1, d2, . . . , dn ∈ D, we write [x1 7→ d1, x2 7→ d2, . . . , xn 7→ dn] for the data state s
which maps every xi to di, for 1 ≤ i ≤ n. We write JV K for the set of all possible
data states over V . For disjoint sets of variables V1 and V2 and data states s1 ∈ JV1K
and s2∈ JV2K, the operation (s1 · s2) composes the data states resulting in a new state
s = (s1 · s2) ∈ JV1 ] V2K, such that s(x) = s1(x) for all x ∈ V1 and s(x) = s2(x) for
all x ∈ V2. This is naturally lifted to sets of states: if S1 ⊆ JV1K and S2 ⊆ JV2K then
(S1 · S2) = {(s1 · s2) | s1 ∈ S1, s2 ∈ S2} ⊆ JV1 ] V2K.

Like in the work of de Alfaro et al. [9] we define specifications with respect to
an assertion language allowing suitable predicate representation. Given a set V of
variables, we denote by Pred(V ) the set of first-order predicates with free variables in
V ; we assume that these predicates are written in some specified first-order language
with existential (∃) and universal (∀) quantifiers and with interpreted function symbols
and predicates; in our examples, the language contains the usual arithmetic operators
and boolean connectives (∨,∧,¬,⇒). Given a set of variables V we denote by (V )′

an isomorphic set of ’primed’ variables from V : so if x ∈ V then (x)′ ∈ (V )′. We use
this construction to represent pre- and post-values of variables. A variable (x)′ ∈ (V )′

represents the next state value of the variable x ∈ V . Given a formula ϕ ∈ Pred(V )
and a data state s ∈ JV K, we write ϕ(s) if the predicate formula ϕ is true when its free
variables are interpreted as specified by s. Given a formula ψ ∈ Pred(V1 ] (V2)′) and
states s1 ∈ JV1K, s2 ∈ JV2K, we often write ψ(s1, s2) for ψ(s1 · t2) where t2 ∈ J(V2)′K
such that t2((x)′) = s2(x) for all x ∈ V2. Given a predicate ϕ ∈ Pred(V ), we write
(ϕ)′ ∈ Pred((V )′) for the predicate obtained by substituting x with (x)′ in ϕ, for
all x ∈ V ; similarly, for ϕ ∈ Pred((V )′) we write ϕ↓ ∈ Pred(V ) for the predicate
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obtained by substituting every (x)′ ∈ (V )′ with its unprimed version. We write JϕK
for the set {s ∈ JV K | ϕ(s)} which consists of all states satisfying ϕ ∈ Pred(V ) (for
predicates with primed and unprimed variables), and ϕ is consistent if JϕK 6= ∅. We
write ∃V ϕ meaning existential quantification of ϕ over all variables in the set V , and
similar for universal quantification. Finally, for a predicate ψ ∈ Pred(V1 ] (V2)′), we
write ◦ψ for the pre-projection ∃(V2)′ψ, and ψ◦ for the post-projection ∃V1ψ.

Our theory enriches modal transition systems with variables. We use the terms
modal specifications and modal transition systems interchangeably throughout the pa-
per. Specifications not only express constraints on the allowed sequences of actions,
but also their dependence and effect on the values of variables. Like in the loose ap-
proach of modal specifications [2] which allows under-specification using may and
must modalities on transitions, we allow loose specification of the effects of actions
on the data state. From a given location and a given data state, a transition to another
location is allowed to lead to several next data states.

A signature Sig = (Σ, V L, V G) determines the alphabet of actions Σ and the set
of variables V = V L ] V G of an interface. The variables in V L are local (controlled)
variables, owned by the interface and visible to any other component. V G contains the
global (uncontrolled) variables owned by the environment, which are read-only for the
interface.

Specifications are finite modal transition systems where transitions are equipped
with predicates. A transition predicate ψ ∈ Pred(V ] (V L)′) relates a previous state,
determined by all controlled and uncontrolled data states, with the next possible con-
trolled data state.

Definition 1. A specification is a tuple A = (Sig ,Loc, `0, ϕ0, E♦, E�) where Sig =
(Σ, V L, V G) is a signature, Loc is a finite set of locations, `0 ∈ Loc is the initial
location, ϕ0 ∈ Pred(V L) is a predicate on the initial local state, and E♦, E� are finite
may- and must-transition relations respectively:

E♦, E� ⊆ Loc × Σ× Pred(V ] (V L)′)× Loc.

Given a specification A, locations `, `′ ∈ Loc, and action a ∈ Σ, we refer to the set of
transition predicates on may-transitions by Maya(`, `′) = {ψ | (`, a, ψ, `′)∈E♦} and
on must-transitions by Musta(`, `′) = {ψ | (`, a, ψ, `′)∈E�}.

Example 1. Consider a specification of a print server, shown in Fig. 3. Must-transitions
are drawn with solid arrows and may-transitions with dashed ones. Every solid arrow
representing a must-transition has an implicit may-transition shadowing it which is not
shown. Every transition is equipped with a transition predicate over unprimed vari-
ables, referring to the pre-state, and primed variables, referring to the poststate. The
print server receives new print jobs (newPrintJob), stores them and assigns them
either a low or high priority; the numbers of low and high priority jobs are modeled by
controlled variables l and h, respectively; l and h are natural numbers. A job with low
priority can also be reclassified to high priority (incPriority). The print server can
send (send) a job to a printer, and then wait for the acknowledgment (ack). In state `1,
if there is a job with high priority and the uncontrolled boolean variable priorityMode

5



[l + h = 0]
`0 `1 `2

`3

newPrintJob
[(l)′ + (h)′ = 1]

incPriority
[l = 1 ∧ (l)′ = 0 ∧ (h)′ = 1]

send [l + h = 1 ∧ (l)′ + (h)′ = 0]

send
[h = 1 ∧ priorityMode ∧ (h)′ = 0]

ack [(l)′ = 0 ∧ (h)′ = 0]

newPrintJob
send
newPrintJob
incPriority
ack

Figure 3: Abstract specification P of a print server.

is true, then there must be a send transition. The specification is loose in the sense that
if a second print job is received in state `1, then the behavior is left unspecified.

We now define the kind of transition systems which will be used for formalizing
the semantics of specifications. A specification is interpreted as a variant of modal
transition systems where the state space is formed by the cartesian product Loc×JV LK,
i.e. a state is a pair (`, s) where ` ∈ Loc is a location and s ∈ JV LK is a valuation of
the controlled variables [10, 11]. To motivate the choice of the transition relations in
the semantics of specifications, we first describe the intended meaning of may- and
must-transitions.

A may-transition (`, a, ψ, `′)∈E♦ in the specification expresses that in any imple-
mentation, in any state (`, s) and for any guard g ∈ JV GK (that is a valuation of the
global uncontrolled variables V G) the implementation is allowed to have a transition
with guard g and action a to a next state (`′, s′) such that ψ(s ·g, s′). The interpretation
of a must-transition (`, a, ψ, `′)∈E� is a bit more involved: Any implementation, in
state (`, s), and for any guard g ∈ JV GK, if there is a valuation s′ ∈ JV LK such that
ψ(s · g, s′), then the implementation is required to have a transition from state (`, s)
with guard g and action a to at least some state t′ such that ψ(s · g, t′). The require-
ment expressed by must-transitions cannot be formalized by standard modal transition
systems, but fortunately, a generalization called disjunctive modal transition systems
introduced in [12] can precisely capture these requirements. A may-transition targets
(as usual) only one state, while a disjunctive must-transitions can branch to several
possible next states (thus must-transitions are hypertransitions), with an existential in-
terpretation: there must exist at least one transition with some target state which is an
element from the set of target states of the hypertransition.

Definition 2. A modal specification with data (MSD) is a tuple

S = (Sig ,Loc, `0, S0,−−→♦,−−→�)

where Sig , Loc, `0 are like in Def. 1, S0 ⊆ JV LK is a set of initial data states, and
−−→♦,−−→� ⊆ Loc × JV LK× JV GK×Σ× (Loc ×P≥1(JV LK)) are the may- (♦) and
must- (�) transition relations such that every may-transition targets a single state: if
(`, s, g, a, (`′, S′)) ∈ −−→♦ then |S′| = 1.

A state (`, s) ∈ Loc × JV LK is called syntactically consistent iff targets reachable
by must-transitions are also reachable by may-transitions: if (`, s, g, a, (`′, S′)) ∈−−→�
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(`0, [l 7→ 0, h 7→ 0])

(`1, [l 7→ 1, h 7→ 0])

(`1, [l 7→ 0, h 7→ 1])

. . .

. . .

[prio
rityM

ode 7→
true

]

new
Print

Job

[priorityMode 7→ false]newPrintJob

Figure 4: Excerpt of the semantics of the abstract print server specification.

then (`, s, g, a, (`′, {s′})) ∈−−→♦ for all s′ ∈ S′. S is syntactically consistent iff all
states are syntactically consistent, and the set of initial data states is nonempty, i.e.
S0 6= ∅.

May-transitions (`, s, g, a, (`′, S′)) ∈ −−→♦ are often written (`, s)
g a−−→♦ (`′, S′), and

similarly for must-transitions.
We can now define formally how a specification translates to its semantics in terms

of an MSD. A single may-transition in a specification will give rise to a set of semantic
may-transitions pointing to single admissible target states, and a must-transition gives
rise to (must-)hypertransitions targeting all the admissible poststates.

Definition 3. The semantics of a specification A = (Sig ,Loc, `0, ϕ0, E♦, E�) is given
by the MSD 〈A〉sem = (Sig ,Loc, `0, S0,−−→♦,−−→�) where S0 = Jϕ0K and the tran-
sition relations are defined as follows. For each `, `′ ∈ Loc, s, s′ ∈ JV LK, g ∈ JV GK,
and a ∈ Σ:

i. If (`, a, ψ, `′)∈E♦ and ψ(s · g, s′) then (`, s)
g a−−→♦ (`′, {s′}),

ii. If (`, a, ψ, `′)∈E� and ψ(s ·g, s′) then (`, s)
g a−−→� (`′, {t′ ∈ JV LK | ψ(s ·g, t′)}).

A specification A is called MSD consistent iff its semantics 〈A〉sem is syntactically
consistent. Note that: In the following we will always assume that specifications are
MSD consistent and MSDs are syntactically consistent.

Example 2. An excerpt of the semantics of our abstract specification of the print server
(see Fig. 3) can be seen Fig. 4. As before, we draw must-transitions with a solid arrow,
and have an implicit set of may-transitions shadowing it which are not shown, i.e. for
each target (`, S′) of a must-transition and each s ∈ S′ there is a may-transition with
the same source state and with target state (`, {s}).

The first must-transition (`0,newPrintJob, (l)′+ (h)′ = 1, `1)∈E� of the print
server specification gives rise to the transitions shown in Fig. 4. Any new print job
must be stored in either l or h but which one is not yet fixed by the specification. Thus
in the semantics this is expressed as a disjunctive must-transition to the unique location
`1 and the next possible data states [l 7→ 1, h 7→ 0] and [l 7→ 0, h 7→ 1].

A refinement relation allows to relate a concrete specification with an abstract spec-
ification. Refinement should satisfy the following substitutability property: If A refines
B then replacing B with A in a context C[·] gives a specification C[A] refining C[B].
Refinement will be a precongruence, i.e. it is compatible with the structural and logical
operators on specifications in the above sense.
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(`′′0 , s0) (`′′1 , s1)

g1 a

g3 c

R

(`′0, s0) (`′1, s1)

(`′1, s2)
S g1

a
g4 d

g3 c

(`0, s0)

(`0, s1)

(`1, s1)

(`1, s2)

T g1
a

g2 b

g4 d

g3 c

Figure 5: Successive refinement of an MSD T.

Our definition of refinement is based on modal refinement [13, 12] for (disjunc-
tive) modal transition systems, where the may-transitions determine which actions are
permitted in a refinement while the must-transitions specify which actions must be
present in a refinement and hence in any implementation. We adapt it with respect to
data states.

Example 3. We motivate our adaption of modal refinement to take into account data
states with the help of a small example shown in Fig. 5. We draw may-transitions with
a dashed arrow, and must-transitions with a solid arrow. Every must-transition has an
implicit set of may-transitions shadowing it which are not shown. The MSD T (to the
right) has two initial states, both having `0 as the initial location. The must-transition
starting from (`0, s0) expresses that in any implementation there must be a transition
leading to at least one of the states (`1, s1) and (`1, s2). The MSD T can be refined
to the MSD S (by dropping one may-transition and turning one may-transition to a
must-transition), and then S is refined by the MSD R, by refining the must-transition
(`′0, s0, g1, a, (`

′
1, {s1, s2})) in S to the must-transition (`′′0 , s0, g1, a, (`

′′
1 , {s1})) in R,

and by strengthening the transition with guard g3 and action c to a must-transition.

Definition 4. Let T1 = (Sig ,Loc1, `
0
1, S

0
1 ,−−→♦,1,−−→�,1) and T2 = (Sig ,Loc2, `

0
2,

S0
2 ,−−→♦,2,−−→�,2) be MSDs over the same signature Sig = (Σ, V L, V G). A relation
R ⊆ Loc1 × Loc2 × JV LK is a refinement relation iff for all (`1, `2, s) ∈ R:

i. Whenever (`1, s)
g a−−→♦,1 (`′1, {s′}) then there exists (`2, s)

g a−−→♦,2 (`′2, {t′}) such
that s′ = t′ and (`′1, `

′
2, s
′) ∈ R.

ii. Whenever (`2, s)
g a−−→�,2 (`′2, S

′
2) then there exists (`1, s)

g a−−→�,1 (`′1, S
′
1) such

that S′1 ⊆ S′2 and (`′1, `
′
2, s
′) ∈ R for all s′ ∈ S′1.

We say that T1 refines T2, written T1 ≤sem T2, iff S0
1 ⊆ S0

2 and there exists a
refinement relation R such that for any s ∈ S0

1 also (`01, `
0
2, s) ∈ R. A specification A1

refines another specification A2, written A1 ≤ A2, iff 〈A1〉sem ≤sem 〈A2〉sem.

The refinement relation is a preorder on the class of all specifications. Refinement
can be checked in polynomial time in the size of the state space of the MSDs (for
variables with finite domains). In general the domain may be infinite, or prohibitively
large, so in Sect. 4 we revisit the question of refinement checking using abstraction
techniques.

Example 4. The semantics of our abstract print server specification, shown in Fig. 4,
can be refined as shown in Fig. 6. Now, both must-transitions point to the location `1
with the data state [l 7→ 1, h 7→ 0] which means that any new incoming print job is
assigned a low priority, independent of the uncontrolled variable priorityMode.
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(`0, [l 7→ 0, h 7→ 0])

(`1, [l 7→ 1, h 7→ 0])

(`1, [l 7→ 0, h 7→ 1])

. . .

. . .

[priorit
yMode 7→ true]

newPrintJob

[priori
tyMode 7→ false]

newPrintJo
b

Figure 6: Refinement of the MSD shown in Fig. 4.

An MSD for which the conditions (1) −−→♦ = −−→� and (2) |S0| = 1 are satisfied,
can be interpreted as (an abstraction of) an implementation: there are no design choices
left open as (1) all may-transitions are covered by must-transitions and (2) there is only
one initial data state possible. Any MSD for which the conditions (1) and (2) are
satisfied, is called a transition system with data (TSD) in the following. Note that TSD
cannot be strictly refined, i.e. for any TSD I and any MSD S with the same signature,
S ≤sem I implies I ≤sem S.

An implementation relation connects specifications to implementations (given as
TSD) satisfying them. We can simply use refinement as the implementation relation.
Given a specification A and some TSD I, we write I |= A for I ≤sem 〈A〉sem, so our
implementation I is seen as the model which satisfies the property expressed by the
specification A. Now the set of implementations of a specification is the set of all its
refining TSD: given a specification A, we define Impl(A) = {I | I |= A}.

Our implementation relation |= immediately leads to the classical notion of consis-
tency as existence of models. A specification A is consistent iff Impl(A) is non-empty.
Consequently, as modal refinement is reflexive, any specification A for which 〈A〉sem

is a TSD, is consistent. In order to avoid confusion with syntactical consistency of
MSDs we have chosen to call consistency of specifications MSD consistency.

By transitivity, modal refinement entails implementation set inclusion: for speci-
fications A and B, if A ≤ B then Impl(A) ⊆ Impl(B). The relation Impl(A) ⊆
Impl(B) is sometimes called thorough refinement [14]. The concept of defining re-
finement based on implementation set inclusion (known as loose semantics) was first
introduced by C.A.R. Hoare [15] in 1972. Just like for modal transition systems, thor-
ough refinement does not imply modal refinement in general [16]. To establish equiv-
alence we follow [17] by imposing a restriction on B, namely that it is deterministic.
An MSD is deterministic if it is satisfied that

(1) if (`, s, g, a, (`′, S′)), (`, s, g, a, (`′′, S′′)) ∈−−→� then `′ = `′′ and S′ = S′′,

(2) if (`, s, g, a, (`′, {s′})), (`, s, g, a, (`′′, {s′′})) ∈−−→♦ then `′ = `′′.

A specification B is deterministic, if the MSD 〈B〉sem is deterministic. Note that for
may-transitions, determinism only requires that for the same source state, guard and
action, the transition leads to a unique next location. The reason why this is sufficient
is that modal refinement explicitely distinguishes states by their data state part: two
states (`′, s′) and (`′′, s′′) can only be related if their data state parts s′, s′′ coincide.

Now, turning back to the relationship of modal refinement and inclusion of imple-
mentation sets (thorough refinement), we will prove the following theorem. Under the
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restriction of determinism of the refined (abstract) specification we can prove complete-
ness of refinement. This theorem effectively means that modal refinement, as defined
for MSDs, is characterized by set inclusion of admitted implementations.

Theorem 1. Let A and B be two MSD consistent specifications with the same signa-
ture such that B is deterministic. Then A ≤ B if and only if Impl(A) ⊆ Impl(B).

Proof of Thm. 1. This proof is an adaptation of the proof for completeness of refine-
ment in [17]. Let S = 〈A〉sem, T = 〈B〉sem. The implication S ≤sem T =⇒
Impl(S) ⊆ Impl(T) immediately follows from transitivity of refinement.

In this proof, we write (S, (`S, S)) for S where the initial location is replaced
with `S, and the set of initial data states by S. We can observe that the assumption
Impl(S) ⊆ Impl(T) means more precisely Impl((S, (`0S, S

0
S))) ⊆ Impl((T, (`0T, S

0
T))).

Let R ⊆ LocS × LocT × JV LK be the smallest relation satisfying

• for all s ∈ S0
S, (`0S, `

0
T, s) ∈ R,

• if (`S, `T, s) ∈ R and (`S, s)
g a−−→♦,S (`′S, {s′}) and (`T, s)

g a−−→♦,T (`′T, {s′}),
then (`′S, `

′
T, s
′) ∈ R.

We will show that R is a relation witnessing S ≤sem T.
First, we prove that (`S, `T, s) ∈ R implies

Impl(S, (`S, {s})) ⊆ Impl(T, (`T, {s})). (1)

For (`0S, `
0
T, s) ∈ R, this holds by assumption. Now, assume (`S, `T, s) ∈ R and

(`S, s)
g a−−→♦,S (`′S, {s′}) and (`T, s)

g a−−→♦,T (`′T, {s′}). Let I′ ∈ Impl(S, (`′S, {s′})).
Since A is MSD consistent we know that S is syntactically consistent. Then, since S
is syntactically consistent there exists I ∈ Impl(S, (`S, {s})) such that (`0I , s)

g a−−→�,I

(`′I, {s′}) and (I, (`′I, {s′})) ≤sem I′, hence also I′ ≤sem (I, (`′I, {s′})). From (1) it
follows that I ≤sem (T, (`T, {s})), and since T is deterministic we can conclude that
(I, (`′I, {s′})) ≤sem (T, (`′T, {s′})), and then I′ ∈ Impl(T, (`′T, {s′})) by transitivity
of refinement.

We now show that R is a relation witnessing S ≤sem T. Let (`S, `T, s) ∈ R.

1. Assume (`S, s)
g a−−→♦,S (`′S, {s′}). Then there exists an implementation

I ∈ Impl(S, (`S , {s}))

such that (`0I , s)
g a−−→♦,I (`′I, {s′}). By the assertion above, we know

I ≤sem (T, (`T, {s})),

hence there exists (`T, s)
g a−−→♦,T (`′T, {s′}). By definition of R, we finally get

(`′S, `
′
T, s
′) ∈ R.

2. Assume (`T, s)
g a−−→�,T (`′T, T

′). Then for all I ∈ Impl(T, (`T, {s})) there
exists (`I, s)

g a−−→�,I (`′I, {s′}) for some s′ ∈ T ′. Since by the above observation
(1), Impl(S, (`S, {s})) ⊆ Impl(T, (`T, {s})), we know that every implementa-
tion of (S, (`S, {s})) must implement this transition, which implies that there is
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a must-transition (`S, s)
g a−−→�,S (`′S, S

′) with s′ ∈ S′. We still have to show that
S′ ⊆ T ′. To see this, assume s′ ∈ S′\T ′, then there is an I ∈ Impl(S, (`S, {s}))
such that (`I, s)

g a−−→�,I (`′I, {s′}), and there is no other must-transition with this
guard. It also holds that I ∈ Impl(T, (`T, {s})), but since T is deterministic,
the transition (`I, s)

g a−−→�,I (`′I, {s′}) must match with (`T, s)
g a−−→�,T (`′T, T

′),
hence s′ ∈ T ′ and this contradicts our assumption. Thus S′ ⊆ T ′, and by defini-
tion of R, (`′S, `

′
T, s
′) for each s′ ∈ S′; this follows from the fact that there exist

underlying may-transitions in S and T, respectively, which allows us to reach
every s′ ∈ S′.

Thus having proved that our refinement is thorough we move on to defining and
proving theorems about: Parallel composition, pruning and logical composition.

3. Compositional Reasoning

In this section we propose all the essential operators on specifications a good spec-
ification theory should provide. We will distinguish between structural and logical
composition. Structural composition mimics the classical composition of transition
systems at the specification level. Logical composition allows to compute the intersec-
tion of sets of models and hence can be used to represent the conjunction of require-
ments made on an implementation. Furthermore we will introduce a quotient operator
which is the dual operator to structural composition.

From now on, we assume that for any two specifications with the signatures Sig1 =
(Σ1, V

L
1 , V

G
1 ) and Sig2 = (Σ2, V

L
2 , V

G
2 ), respectively, we can assume that Σ1 = Σ2

and V L1 ] V G1 = V L2 ] V G2 . This is not a limitation, as one can apply the constructions
of [5] to equalize alphabets of actions and sets of variables.

Parallel composition. Two specifications A1 and A2 with Sig1 = (Σ, V L1 , V
G
1 ) and

Sig2 = (Σ, V L2 , V
G
2 ), respectively, are composable iff V L1 ∩ V L2 = ∅. Then their

signatures can be composed in a straightforward manner to the signature

Sig1 × Sig2 =def (Σ, V L1 ] V L2 , (V G1 ∪ V G2 ) \ (V L1 ] V L2 ))

in which the set of controlled variables is the disjoint union of the sets of controlled
variables of A1 and A2, and the set of uncontrolled variables consists of all those
uncontrolled variables of A1 and A2 which are controlled neither by A1 nor by A2.

Definition 5. Let A1 and A2 be two composable specifications. The parallel compo-
sition of A1 and A2 is defined as the specification

A1 ‖ A2 = (Sig1 × Sig2,Loc1 × Loc2, (`
0
1, `

0
2), ϕ0

1 ∧ ϕ0
2, E♦, E�)

where the transition relations E♦ and E� are the smallest relations satisfying the rules:

1. if (`1, a, ψ1, `
′
1)∈E♦,1 and (`2, a, ψ2, `

′
2)∈E♦,2 then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E♦,
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2. if (`1, a, ψ1, `
′
1)∈E�,1 and (`2, a, ψ2, `

′
2)∈E�,2 then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E�.

We will also define the parallel composition of two specifications at the semantic
level and prove that the symbolic notion of parallel composition is identical to the
semantical.

The parallel composition of two composable MSDs S1 and S2 is defined as the
MSD

S1 ‖sem S2 = (Sig ,Loc1 × Loc2, (`
0
1, `

0
2), (S0

1 · S0
2),−−→♦,−−→�)

where Sig is like in Def. 5 and where the transition relations are the smallest relations
satisfying the rules

(`1, s1)
(g·s2) a−−−−−→♦,1 (`′1, S

′
1) (`2, s2)

(g·s1) a−−−−−→♦,2 (`′2, S
′
2)

((`1, `2), (s1 · s2))
g a−−→♦ ((`′1, `

′
2), (S′1 · S′2))

[may‖]

(`1, s1)
(g·s2) a−−−−−→�,1 (`′1, S

′
1) (`2, s2)

(g·s1) a−−−−−→�,2 (`′2, S
′
2)

((`1, `2), (s1 · s2))
g a−−→� ((`′1, `

′
2), (S′1 · S′2))

[must‖]

The following theorem characterizes the relation between syntactic and semantic
parallel composition.

Theorem 2. Let A1, A2 be two composable specifications. Then 〈A1 ‖ A2〉sem =
〈A1〉sem ‖sem 〈A2〉sem.

Proof of Thm. 2. In order to prove 〈A1 ‖ A2〉sem = 〈A1〉sem ‖sem 〈A2〉sem, we will
show that a must-transition is in 〈A1 ‖ A2〉sem if and only if it is in 〈A1〉sem ‖sem

〈A2〉sem. The proof for may-transitions in similar and is not included here.
Consider a must-transition

((`1, `2), s1 · s2)
g a−−→�,〈A1 ‖ A2〉sem ((`′1, `

′
2), S′) ∈ 〈A1 ‖ A2〉sem

Then there exists a transition ((`1, `2), a, ψ, (`′1, `
′
2)) ∈ E�,A1‖A2

such that
S′ = {s′1 · s′2 | ψ(g · s1 · s2, s

′
1 · s′2)}. This means that there exist the two transi-

tions
(`1, a, ψ1, `

′
1)∈E�,A1

and (`2, a, ψ2, `
′
2)∈E�,A2

such that S′ = S′1 · S′2 where S′1 = {s′1 ∈ JV L1 K | ψ1(g · s1 · s2, s
′
1)} and

S′2 = {s′2 ∈ JV L2 K | ψ2(g · s1 · s2, s
′
2)}, and ψ ≡ ψ1 ∧ ψ2. From this we get the

two MSD transitions

(`1, s1)
(g·s2) a−−−−−→�,〈A1〉sem (`′1, S

′
1) and (`2, s2)

(g·s1) a−−−−−→�,〈A2〉sem (`′2, S
′
2)

which implies (by the rules of parallel composition)

((`1, `2), s1 · s2)
g a−−→�,〈A1〉sem ‖sem 〈A2〉sem ((`′1, `

′
2), S′1 · S′2).

All the above implications are in fact equivalences, thus every must-transition in
〈A1〉sem ‖sem 〈A2〉sem is also a must-transition in 〈A1 ‖ A2〉sem.
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Composition of specifications, similar to the classical notion of modal composition
for modal transition systems [13], synchronizes on matching shared actions and only
yields a must-transition if there exist corresponding matching must-transitions in the
original specifications. Composition is commutative (up to isomorphism) and associa-
tive. Our theory supports independent implementability of specifications, which is a
crucial requirement for any compositional specification framework [18].

Theorem 3. Let A1,A2,B1,B2 be specifications such that A2 and B2 are compos-
able. If A1 ≤ A2 and B1 ≤ B2, then A1 ‖ B1 ≤ A2 ‖ B2.

Proof of Thm. 3. By Thm. 2 it suffices to prove the claim for MSDs S′,S,T′,T. As-
sume a relation R1 proving S′ ≤sem S and a relation R2 which demonstrates T′ ≤sem

T. We show that the following relation R demonstrates S′ ‖sem T′ ≤sem S ‖sem T:

R = {((`S′ , `T′), (`S, `T), s · t) | (`S′ , `S, s) ∈ R1, (`T′ , `T, t) ∈ R2}

Here we show the proof for may-transitions, for must-transitions the proof is analogous.
Assume

((`S′ , `T′), s · t)
g a−−→♦,S′ ‖sem T′ ((`′S′ , `

′
T′), {s′ · t′}).

Then, by the rules of parallel composition, we have

(`S′ , s)
(g·t) a−−−−→♦,S′ (`S′ , {s′}) and (`T′ , t)

(g·s) a−−−−→♦,T′ (`T′ , {t′}).

By assumption, (`S′ , `S, s) ∈ R1 and (`T′ , `T, t) ∈ R2, implying that there exist

(`S, s)
(g·t) a−−−−→♦,S (`′S, {s′}) and (`T, t)

(g·s) a−−−−→♦,T (`′T, {t′})

such that (`′S′ , `
′
S, s
′) ∈ R1, (`′T′ , `

′
T, t
′) ∈ R2, thus ((`S′ , `T′), (`S, `T), s′ · t′) ∈

R.

Remark 1. Interface theories based on transition systems labeled with input/output
actions usually involve a notion of compatibility, which is a relation between interfaces
determining whether two components can work properly together. Since the present
theory does not have a notion of input/output it is enough to require that two com-
ponents are composable, i.e. that their local variables do not overlap. A pessimistic
input/output compatibility notion has been proposed in previous work [19]. Optimistic
input/output compatibility based on a game semantics allows computing all the envi-
ronments in which two components can work together. Following our recent works in
[20, 5], one can enrich labels of transitions in the present theory with input and output
and apply the same game-based semantics in order to achieve an optimistic composi-
tion.

Syntactical consistency. Our next two specification operators, conjunction and quo-
tient, may yield specifications which are syntactically inconsistent, i.e. either there is
no legal initial data state or there are states with a must-transition but without corre-
sponding may-transition.
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In general, given a specification A, MSD consistency implies classical consistency,
i.e. Impl(A) 6= ∅, but in general, the reverse does not hold. However, every consistent
specification can be “pruned” to a MSD consistent one, by pruning backwards from
all MSD inconsistent states, removing states which are required to reach some of the
“bad” states through must-transitions. Pruning will be shown to preserve the set of
implementations.

For a specification A = (Sig ,Loc, `0, ϕ0, E♦, E�), the pruning of A, denoted by
ρ(A), is done as follows. Let B : Loc → Pred(V L) be a mapping of locations to
predicates over the local variables. We define a predecessor operation, iteratively com-
puting all states that are forced to reach a “bad” state. Define a weakest precondition
predicate, for ψ ∈ Pred(V ] (V L)′), ϕ ∈ Pred(V L), by

wpψ[ϕ] =def ∃V G.◦ψ ∧ (∀(V L)′.ψ ⇒ (ϕ)′)

which computes the largest set of local states such that there exists an uncontrolled
state g ∈ JV GK such that ψ maps to at least one next state, and all next states satisfy ϕ.
Then

predec(B)(`) =def B(`) ∨
∨
a∈Σ,`′∈Loc,ψ∈Musta(`,`′) wpψ[B(`′)]

and predec0(B) =def B, predecj+1(B) =def predec(predecj(B)) for j ≥ 0, and
predec∗(B) =def

⋃
j≥0 predec

j(B). Define bad : Loc → Pred(V L), for ` ∈ Loc, by

bad(`) =def

∨
a∈Σ,`′∈Loc,ψ∈Musta(`,`′)

∃V G.◦ψ ∧

∀(V L)′.ψ ⇒
∧

ψ′∈Maya(`,`′)

¬ψ′


and thus bad(`) is satisfied by a valuation s ∈ JV LK iff there is a must-transition for
which no choice of the next data state is permitted by the may-transitions.

In general, for infinite-domain variables, the computation of predec∗(bad) may
not terminate. In [8], it was shown that reachability and related properties in well-
structured transition systems with data values, that are monotonic transition systems
with a well-quasi ordering on the set of data values, is decidable. This result can
be used for specifications with infinite-domain variables to show that under these as-
sumptions, there is some j ≥ 0 such that for all ` ∈ Loc, Jpredecj(bad)(`)K =
Jpredecj+1(bad)(`)K. In the following, for the specification operators conjunction and
quotient (which may result in a syntactically inconsistent specification and hence need
to be pruned) we assume that such a j ≥ 0 exists.

The pruning ρ(A) of A is defined if ϕ0 ∧ ¬predecj(bad)(`0) is satisfiable; and
in this case, ρ(A) is the specification (Sig ,Loc, `0, ϕ0 ∧ ¬predecj(bad)(`0), Eρ♦, E

ρ
�)

where, for χbad = predecj(bad),

Eρ♦ =
{

(`1, a,¬χbad(`1) ∧ ψ ∧ ¬(χbad(`2))′, `2) | (`1, a, ψ, `2)∈E♦
}
,

Eρ� =
{

(`1, a,¬χbad(`1) ∧ ψ ∧ ¬(χbad(`2))′, `2) | (`1, a, ψ, `2)∈E�
}
.

Crucially the pruning operator has the expected properties:
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Theorem 4. Let A be a deterministic, possibly MSD inconsistent specification. Then
ρ(A) is defined if and only if A is consistent. And if ρ(A) is defined, then

1. ρ(A) is a MSD consistent specification,

2. ρ(A) ≤ A,

3. Impl(A) = Impl(ρ(A)), and

4. for any MSD consistent specification B, if B ≤ A, then B ≤ ρ(A).

Proof of Thm. 4. First we sketch the proof of the initial claim. That ρ(A) is defined if
and only if A is consistent.
Assume that ρ(A) is not defined, then for any s ∈ JV LK such that ϕ0(s), we have that
predec∗(bad)(`0)(s). We will show by induction on j ≥ 0 that for any state s ∈ JV LK
and any location ` ∈ Loc,

s ∈ Jpredecj(bad)(`)K implies Impl(〈A〉sem, (`, {s})) = ∅

where (〈A〉sem, (`, {s})) is 〈A〉sem in which `0 is replaced by ` and S0 by {s}.
For the base case j = 0, observe that any state (`, s) for which the data state

s ∈ JV LK satisfies predec0(bad)(`) = bad(`), that is

∨
a∈Σ,`′∈Loc,ψ∈Musta(`,`′)

∃V G.◦ψ ∧

∀(V L)′.ψ ⇒
∧

ψ′∈Maya(`,`′)

¬ψ′
 ,

cannot be implemented, i.e. Impl(〈A〉sem, (`, {s})) = ∅, because there is a must-
transition enabled for which there is either no may-transition at all (the empty conjunc-
tion is true) or there are may-transitions but there is no legal next data state.

For the induction step, j > 0, we assume

s ∈ Jpredecj(bad)(`0)K = Jpredec(predecj−1(bad(`0)))K.

This means that either s ∈ Jpredecj−1(bad(`0))K or s satisfies∨
a∈Σ,`′∈Loc,ψ∈Musta(`,`′)

wpψ[predecj−1(bad(`′))].

In the first case, by the induction hypothesis, it follows that Impl(〈A〉sem, (`, {s})) =
∅. In the second case, this means that there exists (`, a, ψ, `′)∈E� and g ∈ JV GK and
s′ ∈ JV LK such thatψ(s·g, s′), and for all s′ ∈ JV LK, wheneverψ(s·g, s′) then s′ satis-
fies predecj−1(bad(`′)); again by the induction hypothesis, Impl(〈A〉sem, (`

′, {s′})) =
∅, and thus, any implementation in Impl(〈A〉sem, (`, {s})) must implement the must-
transition (`, a, ψ, `′)∈E� which necessarily leads to a state (`′, {s′}) for which there
cannot exist an implementation. Thus Impl(〈A〉sem, (`, {s})) = ∅.

We briefly sketch the other direction. If ρ(A) is defined, then we can easily define
an implementation of A, by refining all must-transitions to lead to a data state which is
not satisfying the predicate predec∗(bad)(`) for the current location `, which is possible
(otherwise this state would have been pruned).

In the following we also sketch the proofs for the numbered claims of the theorem.
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1. ρ(A) is trivially syntactically consistent because of the definition of the pruned
transition relations Eρ♦, E

ρ
� and the fact that the initial state predicate

ϕ0 ∧ ¬predec∗(bad)(`0)

is consistent.

2. It can be easily shown that the relation

R = {(`, `, s) | ` ∈ Loc, s ∈ JV LK \ Jpredec∗(bad)(`)K}

is a relation witnessing ρ(A) ≤ A.

3. The inclusion of implementations Impl(ρ(A)) ⊆ Impl(A) follows from the
fact that ρ(A) ≤ A. Let I ∈ Impl(A), then there is a relation witnessing
I ≤sem 〈A〉sem, and now it is straightforward to show that the same relation also
witnesses I ≤sem 〈ρ(A)〉sem; note that the relation cannot contain any inconsis-
tent states (i.e. having no implementations) because this would contradict with
the fact that I is an implementation.

4. The same argumentation as in the previous point also applies here. (Except for
the note about inconsistent states.)

In the following we define pruning at the semantic level of MSD and prove that it
is equivalent to pruning as defined for specifications.

For an MSD S = (Sig ,Loc, `0, S0,−−→♦,−−→�), the pruning of S, denoted by
ρsem(S), is done as follows. Let B ⊆ (Loc× JV LK) be a subset of its states. We define
a predecessor operation, iteratively computing all states that are forced to reach a set B
of “bad” states.

predec(B) = {(`, s) ∈ (Loc × JV LK) | (`, s, g, a, (`′, S′)) ∈−−→� such that
for all s′ ∈ S′ : (`′, s′) ∈ B}

predec0(B) = B

predecj+1(B) = predec(predecj(B)) for j ≥ 0

predec∗(B) =
⋃
j≥0

predecj(B)

The pruning ρsem(S) of S is defined iff {s ∈ S0 | (`0, s) /∈ predec∗(bad)} 6= ∅ where
bad = {(`, s) ∈ (Loc× JV LK) | (`, s) immediately syntactically inconsistent }, and in
this case, ρsem(S) is the syntactically consistent MSD

(Sig ,Loc, `0, S0 ∩ (JV LK \ predec∗(bad)),−−→ρ
♦,−−→ρ

�)

where

−−→ρ
♦ =

{
(`, s, g, a, (`′, {s′}) ∈−−→♦| (`, s) /∈ predec∗(bad), (`′, s′) /∈ predec∗(bad)

}
−−→ρ

� =
{

(`, s, g, a, (`′, S′)) ∈−−→�| (`, s) /∈ predec∗(bad),

for all s′ ∈ S′ : (`′, s′) /∈ ϕ∗(bad)
}
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The pruning on the level of MSDs is in fact equivalent to the pruning on the level of
specifications.

Theorem 5. For any (possibly syntactically inconsistent) specification A, it holds that
〈ρ(A)〉sem = ρsem(〈A〉sem).

The proof of Thm. 5 is not very difficult and is therefore omitted.

Logical composition. Conjunction of two specifications yields the greatest lower bound
with respect to modal refinement. Syntactic inconsistencies arise if one specification
requires a behavior disallowed by the other.

Definition 6. Let A1 and A2 be two specifications with the same signature Sig =
(Σ, V L, V G). The conjunction of A1 and A2 is defined as the possibly syntactically
inconsistent specification

A1 ∧A2 = (Sig ,Loc1 × Loc2, (`
0
1, `

0
2), ϕ0

1 ∧ ϕ0
2, E♦, E�)

where the transition relations E♦, E� are the smallest relations satisfying the rules, for
any `1, `′1 ∈ Loc1, `2, `′2 ∈ Loc2, a ∈ Σ,

1. If (`1, a, ψ1, `
′
1)∈E♦,1, (`2, a, ψ2, `

′
2)∈E♦,2, then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E♦,

2. If (`1, a, ψ1, `
′
1)∈E�,1, then

((`1, `2), a, ψ1 ∧ (
∨
ψ2∈Maya

2 (`2,`′2) ψ2), (`′1, `
′
2))∈E�,

3. If (`2, a, ψ2, `
′
2)∈E�,2, then

((`1, `2), a, ψ2 ∧ (
∨
ψ1∈Maya

1 (`1,`′1) ψ1), (`′1, `
′
2))∈E�,

4. If (`1, a, ψ1, `
′
1)∈E�,1 then

((`1, `2), a, ◦ψ1 ∧
(
∀(V L)′.ψ1 ⇒

∧
ψ2∈M ¬ψ2

)
, (`1, `2))∈E�,

where M =
⋃
`′2∈Loc2

Maya2 (`2, `
′
2),

5. If (`2, a, ψ2, `
′
2)∈E�,2 then

((`1, `2), a, ◦ψ2 ∧
(
∀(V L)′.ψ2 ⇒

∧
ψ1∈M ¬ψ1

)
, (`1, `2))∈E�,

where M =
⋃
`′1∈Loc1

Maya1 (`1, `
′
1).

The first rule composes may-transitions (with the same action) by conjoining their
predicates. Rule (2) expresses that any required behavior of A1, as long as it is allowed
by A2, is also a required behavior in A1 ∧A2. Rule (3) is identical but with A1 and
A2 swapped. Rule (4) captures the case when a required behavior of A1 is not allowed
by A2. Again rule (5) is identical but with A1 and A2 swapped. There are two ways in
which the required behavior of A1 can be dis-allowed by A2: either there is no may-
transition at all enabled (left part of the formulas), or the local next states specified by
ψ2 implies the negation of every next local states of the may transitions in A2.
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Let S1 = (Sig ,Loc1, `
0
1, S

0
1 ,−−→♦,1,−−→�,1) and S2 = (Sig ,Loc2, `

0
2, S

0
2 ,−−→♦,2,

−−→�,2) be two MSDs. The conjunction of S1 and S2 is defined as the possibly syn-
tactically inconsistent MSD

S1 ∧sem S2 = (Sig ,Loc1 × Loc2, (`
0
1, `

0
2), S0

1 ∩ S0
2 ,−−→♦,−−→�)

where the transition relations are the smallest relations satisfying, for all `1, `′1 ∈ Loc1,
`2, `

′
2 ∈ Loc2, s ∈ JV LK, g ∈ JV GK and a ∈ Σ:

(`1, s)
g a−−→♦,1 (`′1, {s′}) (`2, s)

g a−−→♦,2 (`′2, {s′})
((`1, `2), s)

g a−−→♦ ((`′1, `
′
2), {s′})

[may∧]

(`1, s)
g a−−→�,1 (`′1, S

′
1) S′ = {s′ ∈ S′1 | (`2, s)

g a−−→♦,2 (`′2, {s′})} 6= ∅
((`1, `2), s)

g a−−→� ((`′1, `
′
2), S′)

[must1∧]

(`2, s)
g a−−→�,2 (`′2, S

′
2) S′ = {s′ ∈ S′2 | (`1, s)

g a−−→♦,1 (`′1, {s′})} 6= ∅
((`1, `2), s)

g a−−→� ((`′1, `
′
2), S′)

[must2∧]

(`1, s)
g a−−→�,1 (`′1, S

′
1) S′ = {s′ ∈ S′1 | (`2, s)

g a−−→♦,2 (`′2, {s′})} = ∅
((`1, `2), s)

g a−−→� ((`′1, `2), S′)
[error1∧]

(`2, s)
g a−−→�,2 (`′2, S

′
2) S′ = {s′ ∈ S′2 | (`1, s)

g a−−→♦,1 (`′1, {s′})} = ∅
((`1, `2), s)

g a−−→� ((`1, `′2), S′)
[error2∧]

The [errorX∧] rules are needed to capture exactly those data states where one com-
ponent prevents the other from taking a given transition. This will give a must transition
leading to a location with an empty data state.

The following theorem characterizes the relationship between the syntactic and
semantic conjunction, under the assumption of determinism:

Theorem 6. Let A1, A2 be two deterministic specifications with the same signature.
Then 〈A1 ∧A2〉sem = 〈A1〉sem ∧sem 〈A2〉sem.

The proof for Thm. 6 can be found in Appendix A. Conjunction has the expected
and desired properties of being both commutative and associative.

Refinement is a precongruence with respect to conjunction for deterministic specifi-
cations. Moreover, under the assumption of determinism, the conjunction construction
yields the greatest lower bound with respect to modal refinement:

Theorem 7. Let A, B, C be specifications with the same signature and let A and B
be deterministic. If A ∧B is consistent then

1. ρ(A ∧B) ≤ A and ρ(A ∧B) ≤ B,

2. C ≤ A and C ≤ B implies C ≤ ρ(A ∧B),

3. Impl(ρ(A ∧B)) = Impl(A) ∩ Impl(B).

Proof of Thm. 7. By Thm. 5 and Thm. 6 it suffices to consider the semantics of speci-
fications, so let S = 〈A〉sem, T = 〈B〉sem and U = 〈C〉sem.
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1. We show ρsem(S ∧sem T) ≤sem S, the other assertion is symmetric. We define
a refinement relation R ⊆ (LocS × LocT)× LocS × JV LK as follows:

R = {((`S, `T), ˙̀
S, s) | `S = ˙̀

S}

Obviously, it holds that S0
ρsem(S∧semT) ⊆ S

0
S, as S0

ρsem(S∧semT) ⊆ S
0
S ∩ S0

T.

Now, let ((`S, `T), `S, s) ∈ R. If, on the one hand,

((`S, `T), s)
g a−−→♦,ρsem(S ∧sem T) ((`′S, `

′
T), {s′})

then this must come from the rule [may∧], thus (`S, s)
g a−−→♦,S (`′S, {s′}), and

clearly ((`′S, `
′
T), `′S, s

′) ∈ R. If, on the other hand, (`S, s)
g a−−→�,S (`′S, S

′),
then we can apply the rule [must1∧]; if the rule [error1∧] would be applicable
then this would lead to contradiction with the assumption that ρsem(S ∧sem T)
is syntactically consistent. Thus, by rule [must1∧], we get

((`S, `T), s)
g a−−→�, ((`′S, `

′
T), S′′)

and by the definition of S′′ it clearly holds that S′′ ⊆ S′, and ((`′S, `
′
T), `′S, s

′) ∈
R for all s′ ∈ S′′.

2. We can assume U ≤sem S and U ≤sem T, and we show U ≤sem ρsem(S ∧sem

T). We can assume refinement relations R1 for U ≤sem S and R2 for U ≤sem

T, then we define a relation R ⊆ LocC × (LocS × LocT)× JV LK by

R = {(`U, (`S, `T), s) | (`U, `S, s) ∈ R1 and (`U, `T, s) ∈ R2}.

We show that R witnesses U ≤sem ρsem(S ∧T). Clearly, (`U, (`S, `T), s) ∈ R
for any s ∈ S0

S ∩ S0
T. Now, let (`U, (`S, `T), s) ∈ R. It can be easily proven

that every may-transition in U is simulated in S ∧sem T. The more interesting
case is the other case: assume ((`S, `T), s)

g a−−→�,ρsem(S ∧sem T) ((`′S , `
′
T), S′).

Then this transition must come from (w.l.o.g.) [must1∧], hence (`S, s)
g a−−→�,S

(`′S, S
′′) and S′ = {s′ ∈ S′′ | (`T, s)

g a−−→♦,T (`′T, {s′})}. This transition
must be simulated in U, so it follows that (`U, s)

g a−−→�,U (`′C , C
′) such that

C ′ ⊆ S′′ and (`′U, `
′
S, s
′) ∈ R1 for every s′ ∈ C ′. It remains to show that

C ′ ⊆ S′: Assume that there exists ṡ ∈ C ′ \ S′, then there must be a may-
transition (`U, s)

g a−−→♦,U (`′U, {ṡ}) which must be simulated in T implying that
there exists (`T, s)

g a−−→♦,T (`′′T, {ṡ}). But T is deterministic, hence `′′T = `′T.
We know s′ ∈ C ′ ⊆ S′′, then it follows that s′ ∈ S′, contradiction. Finally, it is
easy to see that (`′U, (`

′
S, `
′
T), s′) ∈ R for every s′ ∈ C ′.

3. Impl(ρsem(S∧sem T)) = Impl(S)∩ Impl(T) follows from the first and second
assertion of this theorem.
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Quotient as the dual operator to structural composition. The quotient operator allows
factoring out behaviors from larger specifications. Given two specifications A and B
the quotient of B by A, in the following denoted BA, is the most general specifica-
tion that can be composed with A such that the composition refines B.

In the following, we assume for the signatures SigA = (Σ, V LA , V
G
A ) and SigB =

(Σ, V LB , V
G
B ) that V LA ⊆ V LB . The signature of the quotient B A is then SigBA =

(Σ, V LBA, V
G
BA) with V LBA = V LB \ V LA and V GBA = V GB ] V LA . Note that, as said

before, we restrict ourselves to the case where V LA ] V GA = V LB ] V GB .
In our general model of specifications it is unknown whether a finite quotient exists.

For specifications involving variables with finite domains only we define a semantic
quotient operation which works on the (finite) semantics of A and B. As already no-
ticed in previous works, e.g. [21], non-determinism is problematic for quotienting, and
thus specifications are assumed to be deterministic. In our case, even when assuming
deterministic specifications, the non-determinism with respect to the next local data
state is still there: thus the quotient B  A, when performing a transition, does not
know the next data state of A. However, due to our semantics, in which transitions
are guarded by uncontrolled states, the quotient can always observe the current data
state of A. This extension of the usual quotient can be shown to satisfy the follow-
ing soundness and maximality property: Given MSDs S and T such that S is deter-
ministic and T sem S is consistent, and the semantic pruning operator ρsem. Then
X ≤sem ρsem(T sem S) if and only if S ‖sem X ≤sem T for any MSD X.

The semantic quotienting operator is defined as follows:
Let V1, V2 be two sets of variables such that V1 ⊆ V2. For sets S1 ⊆ JV1K, S2 ⊆

JV2K we use the notation S2S1 for the set {s ∈ JV2 \V1K | ∀s1 ∈ S1 : (s1 · s) ∈ S2}.
It is easy to see that for any S ⊆ JV2 \ V1K, it is satisfied that (S1 · S) ⊆ S2 if and only
if S ⊆ S2  S1.

Let T and S be two MSDs such that V LS ⊆ V LT . The quotient of T by S is
defined as the possibly syntactically inconsistent MSD T sem S = (Sig , (LocT
× LocS ×P≥1(JV LS K)) ∪ {univ,⊥}, (`0T, `0S, S0

S), S0
T  S0

S,−−→♦,−−→�) where Sig
is like in Def. 7, univ is a new universal state, ⊥ is a new error state, and the transition
relations are the smallest relations satisfying, for all (`T, `S, S) ∈ (LocT × LocS ×
P≥1(JV LS K)) and all q ∈ JV LTsemSK:

(`T, s · q)
g a−−→♦,T (`′T, T

′) (`S, s)
(q·g) a−−−−−→♦,S (`′S, S

′) s ∈ S ⊆ JV L
S K, T ′  S′ 6= ∅

((`T, `S, S), q) (g·s) a−−−−−→♦ ((`′T, `
′
S, S

′), T ′  S′)
[may]

(`T, s · q)
g a−−→�,T (`′T, T

′) (`S, s)
(q·g) a−−−−−→�,S (`′S, S

′) s ∈ S ⊆ JV L
S K, T ′  S′ 6= ∅

((`T, `S, S), q) (g·s) a−−−−−→� ((`′T, `
′
S, S

′), T ′  S′)
[must]

(`T, s · q)
g a−−→�,T (`′T, T

′) (`S, s)
(q·g) a−−−−−→�,S (`′S, S

′) s ∈ S ⊆ JV L
S K, T ′  S′ = ∅

((`T, `S, S), q) (g·s) a−−−−−→� (⊥, {q})
[error1]

(`T, s · q)
g a−−→�,T (`S, s) 6

(q·g) a−−−−−→�,S s ∈ S ⊆ JV L
S K

((`T, `S, S), q) (g·s) a−−−−−→� (⊥, {q})
[error2]

s /∈ S ⊆ JV L
S K q′ ∈ JV L

TsemSK

((`T, `S, S), q)
(g·s) a−−−−→♦ (univ, {q′})

[data-unreachable]
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(`S, s) 6
(q·g) a−−−−−→♦,S s ∈ S ⊆ JV L

S K, q′ ∈ JV L
TsemSK

((`T, `S, S), q)
(g·s) a−−−−→♦ (univ, {q′})

[unreachable]

g ∈ JV GK, q′ ∈ JV LTsemSK
(univ, q)

g a−−→♦ (univ, {q′})
[universal]

g ∈ JV GK
(⊥, q) g a−−→� (⊥, JV LTsemSK)

[errorstate]

Theorem 8. Let X,S,T be MSDs such that S is deterministic and T sem S is con-
sistent. Then X ≤sem ρ(T sem S) if and only if S ‖sem X ≤sem T.

In the following theorem we use the quotient of two specifications as given in Def-
inition 7.

Theorem 9. Let A and B be specifications such that V LA ⊆ V LB and such that all
transition predicates in A and B are separable. Then the reachable part of 〈BA〉sem

equals 〈B〉sem sem 〈A〉sem up to isomorphism.

The proofs for Theorems 8 and 9 can be found in Appendix A.
Now our goal is to compute the quotient at the symbolic level of specifications.

We do this for a restricted subclass of specifications in which each occurring transition
predicate ψ is separable, meaning that ψ is equivalent to ◦ψ∧ψ◦. Although this might
seem as a serious restriction, we can often transform transition systems with transition
predicates of the form (x)′ = x + 1 to transition systems with separable transition
predicates while keeping the same set of implementations. For instance, if we know
that there are only finitely many possible values v1, . . . , vn for x in the current state,
we can “unfold” the specification and replace the transition predicate (x)′ = x+ 1 by
(x)′ = vi + 1, for 1 ≤ i ≤ n.Thus we would get n transitions, but all of them with
separable transition predicates.

The symbolic quotient introduces two new locations, the universal state (univ) and
an error state (⊥). In the universal state the quotient can show arbitrary behavior and
is needed to obtain maximality, and the error state is a syntactically inconsistent state
used to encode conflicting requirements. The state space of the quotient is given by
LocB × LocA × Pred(V LA ), so every state stores not only the current location of B
and A (like in [21]) but includes a predicate about the current possible data states of
A. For notational convenience, for ϕ ∈ Pred(V1 ] V2) and ϕ1 ∈ Pred(V1), we write
ϕ  ϕ1 for (∀V1.ϕ1 ⇒ ϕ) ∈ Pred(V2).

Definition 7. Let A and B be two specifications such that V LA ⊆ V LB . The quotient
of B by A is defined as the possibly syntactically inconsistent specification BA =
(SigBA, (LocB×LocA×Pred(V LA ))∪ {univ,⊥}, (`0B, `0A, ϕ0

A), ϕ0
B ϕ0

A, E♦, E�)

where the transition relations are given by, for all a ∈ Σ and all ξA ∈ Pred(V LA ),

1. if (`B, a, ψB, `
′
B)∈E♦,B and (`A, a, ψA, `

′
A)∈E♦,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦B  ψ◦A), (`′B, `
′
A, ψ

◦
A↓))∈E♦,

2. if (`B, a, ψB, `
′
B)∈E�,B and (`A, a, ψA, `

′
A)∈E�,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦B  ψ◦A), (`′B, `
′
A, ψ

◦
A↓))∈E�,
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3. if (`B, a, ψB, `
′
B)∈E�,B and (`A, a, ψA, `

′
A)∈E�,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ ¬(ψ◦B  ψ◦A),⊥)∈E�,

4. if (`B, a, ψB, `
′
B)∈E�,B, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧
∧
ψA∈M ¬

◦ψA,⊥)∈E�

where M =
⋃
`′A∈LocA

MustaA(`A, `
′
A),

5. ((`B, `A, ξA), a,¬ξA, univ)∈E♦,

6. ((`B, `A, ξA), a, ξA ∧
∧
ψA∈M ¬

◦ψA, univ)∈E♦

where M =
⋃
`′A∈LocA

MayaA(`A, `
′
A),

7. (univ, a, true, univ)∈E♦,

8. (⊥, a, true,⊥)∈E�.

Rules (1) and (2) capture the cases when both A and B can perform a may- and must-
transition, respectively. Rules (3) and (4) capture any inconsistencies which can arise
if for a must-transition in B there is no way to obtain a must-transition by composition
of the quotient with A. In order to obtain maximality, we add a universal state univ in
which the behavior of the quotient is not restricted (rules (5)–(7)). Finally, the rule (8)
makes the error state syntactically inconsistent.

Since we only have finitely many transition predicates ψA in A, and they are all
separable, the set of locations (LocB×LocA×({ψ◦A↓ | ψA occurring in A}∪{ϕ0

A}))∪
{univ,⊥} of BA is also finite. Thus we can construct the symbolic quotient in a finite
number of steps, starting in the initial state (`0B, `

0
A, ϕ

0
A), and iteratively constructing

the transitions. Soundness and maximality of the quotient follows from the following
theorem.

Theorem 10. Let A and B be specifications such that V LA ⊆ V LB , all transition pred-
icates of A and B are separable, A is deterministic and B  A is consistent. Then
for any specification C such that SigC = SigBA, C ≤ ρ(B  A) if and only if
A ‖ C ≤ B.

Proof of Thm. 10. This follows from Theorems 2, 5, 8 and 9:
C ≤ ρ(B A)
iff 〈C〉sem ≤sem 〈ρ(B A)〉sem

iff 〈C〉sem ≤sem ρsem(〈B〉sem sem 〈A〉sem)
iff 〈A〉sem ‖sem 〈C〉sem ≤sem 〈B〉sem

iff A ‖ C ≤ B.

4. Predicate Abstraction for Verification of Refinement

We now switch our focus to the problem of deciding whether a specification A
refines another specification B (which reduces to checking 〈A〉sem ≤sem 〈B〉sem).
As soon as domains of variables are infinite, 〈A〉sem and 〈B〉sem may be MSDs with
infinitely many states and transitions. In this case, this problem is known to be unde-
cidable in general. Thus we propose to resort to predicate abstraction techniques [22].

22



[l + h = 0]
`′0 `′1

newPrintJob
[(l)′ = l + 1 ∧ (h)′ = h]

incPriority
[l > 0

∧ (l)′ = l − 1
∧ (h)′ = h+ 1]

ack [(l)′ = l ∧ (h)′ = h]

send
[l + h > 0
∧ (priorityMode ∧ h > 0 =⇒ (h)′ = h− 1 ∧ (l)′ = l)
∧ (¬(priorityMode ∧ h > 0) =⇒ ((h)′ = h− 1 ∧ (l)′ = l)

∨ ((l)′ = l − 1 ∧ (h)′ = h))]

Figure 7: Refined print server specification Q.

Given two specifications A and B we derive over- and under-approximations Ao and
Bu which are guaranteed to be finite MSDs. Then, we show that Ao ≤sem Bu implies
A ≤ B.

Example 5. Fig. 7 shows a print server specification Q which we will show is a re-
finement of the abstract specification P in Fig. 3. The behavior of the print server is
now fixed for any number of print jobs. Moreover, the send transition has been refined
such that depending on the priority mode (provided by the environment of the print
server) a job with high priority (in case priorityMode is true) or a job with low priority
(otherwise) is chosen next.

Given a specification A = (Sig ,Loc, `0, ϕ0,−−→♦,−−→�) with Sig = (Σ, V L,
V G), we partition the local state space and the uncontrolled state space using finitely
many predicates φ1, φ2, . . . , φN ∈ Pred(V L) and χ1, χ2, . . . , χM ∈ Pred(V G). We
fix these predicates in the following to simplify the presentation. The signature of the
abstraction is then given by Sigabstr = (Σ, V Labstr , V

G
abstr ), where V Labstr = {x1, x2,

. . . , xN} and V Gabstr = {y1, y2, . . . , yM}. All variables xi, yj have Boolean domain.
A variable xi (yj) encodes whether the predicate φi (χj) holds or not.

Any abstract state ν ∈ JV Labstr K is a conjunction of predicates
∧N
i=1 φ

ν(xi)
i , where

φ
ν(xi)
i =φi if ν(xi)=1, else φν(xi)

i =¬φi. Further, a set of abstract statesN⊆JV Labstr K
corresponds to

∨
ν∈N ν. Similarly for any ω∈JV Gabstr K and for M⊆JV Gabstr K.

The transition relation of the over-approximation expands the allowed behaviors
and limits the required behaviors. Dually, the under-approximation will further re-
strict the allowed behavior and add more required transitions. In other words, over-
approximation is an existential abstraction on may-transitions and universal abstrac-
tion on must-transitions; dually for the under-approximation. Table 1 illustrates both
abstractions.

Formally, the over-approximation Ao of A is defined by the finite MSD (Sigabstr ,
Loc, `0, S0

abstr ,−−→♦,abstr ,−−→�,abstr ), where the initial abstract state S0
abstr contains

all partitions containing some concrete initial state, i.e. the initial abstract state is de-
fined by S0

abstr = {ν ∈ JV Labstr K | ∃V L.ν ∧ ϕ0}, and the abstract transition relations
are derived as follows. For all `, `′ ∈ Loc, a ∈ Act, ν, ν̇ ∈ JV Labstr K, ω ∈ JV Gabstr K,

i. If ∃V.∃(V L)′.ν ∧ ω ∧ (
∨
ψ∈Maya(`,`′) ψ) ∧ (ν̇)′, then (`, ν)

ω a−−→♦,abstr (`′, {ν̇}),
so there is a may-transition between partitions in the abstraction if there was a
may-transition between any states in these partitions in the concrete system.
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may-transitions −−→♦ must-transitions −−→�

Over-approximation

Under-approximation

Table 1: Over- and under-approximation schematically, represents concrete states,
represents abstract states. Upper left: If a single may-transition from a concrete state

in one abstract state can reach a concrete state in another abstract state then the two
abstract states are connected with a may transition in the over approximation. Lower
left: Every concrete state in an abstract state must individually be able to reach every
state in another abstract state before the two are related with a may-transition in the
under-approximation. Upper right: Every concrete state in an abstract state must have
a must-transition going to some state in another abstract state for them to be connected
by a must-transition in the over-approximation. Lower right: At least one concrete state
in an abstract state must have a must-transition that covers the entire target abstract state
for them to be linked by must-transition in the under-approximation.
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ii. Whenever, for some N ⊆ JV Labstr K, the predicate

∀V.ν ∧ ω ⇒
∨
ψ∈Musta(`,`′)

◦ψ ∧ (∀(V L)′.ψ ⇒ (N)′)

is true and N is minimal with respect to this property, then (`, ν)
ω a−−→�,abstr

(`′, N).

For the under-approximation Bu of B, we assume that every transition predicate ψ on a
must-transition must be separable (see page 21). Moreover, in order to soundly capture
must-transitions, we must be able to exactly describe the target set of (concrete) local
states by a union of abstract states; so for any (`, a, ψ, `′) ∈ E�,B, there exists a set
N ⊆ JV Labstr K such that ∀(V L)′. ψ◦⇔ (N)′. The under-approximation Bu is the finite
MSD (Sigabstr ,Loc, `

0, S0
abstr ,−−→♦,abstr, −−→�,abstr ), where S0

abstr ={ν∈ JV Labstr K |
∀V L.ν ⇒ ϕ0}, and for all `, `′∈Loc, a∈Act, ν, ν̇∈JV Labstr K, ω ∈ JV Gabstr K,

i. If ∀V.∀(V L)′.ν ∧ ω ∧ (ν̇)′ ⇒
∨
ψ∈Maya(`,`′) ψ then (`, ν)

ω a−−→♦,abstr (`′, {ν̇}),

ii. For every (`, a, ψ, `′) ∈ E�,, if ∃V.ν ∧ ω ∧ ◦ψ, then (`, ν)
ω a−−→�,abstr (`′, N)

where N ⊆ JV Labstr K such that ∀(V L)′.ψ◦ ⇔ (N)′.

Correctness of the abstraction follows from the following theorem.

Theorem 11. Ao ≤sem Bu implies A ≤ B.

Proof of Thm. 11. Technically, under-approximation may yield a syntactically incon-
sistent MSD in which targets reachable by must-transitions are not reachable by may-
transitions. However, this does not affect the following proof.

We can assume a relation R′ witnessing Ao ≤ Bu. We define a relation R ⊆
LocA × LocB × JV LK by

R = {(`A, `B, s) | (`A, `B, ν) ∈ R′ such that ν(s)}

and we show that R witnesses A ≤ B, more precisely, 〈A〉sem ≤ 〈B〉sem.
First, S0

A ⊆ S0
B: assume s ∈ S0

A then there exists ν ∈ JV Labstr K such that s satisfies
ν. Then, by R′ we know that ν ∈ S0

Ao ⊆ S0
Bu , so ν ∈ S0

Bu . This implies that s ∈ S0
B.

Moreover, (`A, `B, s) ∈ R for any s ∈ S0
A.

Now, let (`A, `B, s) ∈ R. We can assume that (`A, `B, ν) ∈ R′ for some ν for
which ν(s).

1. This direction is straightforward and omitted here.

2. Assume
(`B, s)

g a−−→�,〈B〉sem (`′B, S
′).

Then there exists (`B, a, ψB, `
′
B)∈E�,B such that ◦ψB(s · g) and S′ = Jψ◦BK 6=

∅. Then there exists (`B, ν)
ω a−−→�,Bu (`′B, N) such that ω(g) and ∀(V L)′.ψ◦B ⇔

(N)′. From (`A, `B, ν) ∈ R′ we can conclude that there exists

(`A, ν)
ω a−−→�,Ao (`′A, Ṅ)
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(`′0, φ0,0)

(`′0, φ0,1)

(`′0, φ1,0)

(`′1, φ0,0)
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Figure 8: Over-approximation Qo.

such that Ṅ ⊆ N and (`′A, `
′
B, ν̇) ∈ R′ for any ν̇ ∈ Ṅ . By definition of the

over-approximation, we get that Ṅ is a minimal set of abstract states, satisfying

∀V.ν ∧ ω ⇒
∨
ψA∈MustaA(`,`′)

(
(∃(V L)′.ψA) ∧ (∀(V L)′.ψA ⇒ (Ṅ)′)

)
.

Since (ν ∧ ω)(s · g), there exists a must-transition (`A, a, ψA, `
′
A)∈E�,A such

that ◦ψA(s · g) and for any s′ ∈ JV LK, ψA(s · g, s′) implies Ṅ(s′). Since
ψA ≡ ◦ψA ∧ ψ◦A, it follows that ∀(V L)′.ψ◦A ⇒ Ṅ . Then we get

(`A, s)
g a−−→�,〈A〉sem (`′A, Jψ

◦
AK)

and Jψ◦AK ⊆ JṄK ⊆ JNK = Jψ◦BK = S′, and finally (`′A, `
′
B, s

′) ∈ R for all
s′ ∈ Jψ◦AK.

Example 6. Fig. 8 and Fig. 9 are over- and under-approximations of Q and P, respec-
tively. The MSDs represent abstractions w.r.t. the predicates φ0,0 =def h = l = 0,
φ0,1 =def l = 0 ∧ h = 1, φ1,0 =def l = 1 ∧ h = 0, and φ>1 =def h + l > 1 for
the controlled variables l and h, and ω1 =def priorityMode, ω2 =def ¬priorityMode
for the uncontrolled variable priorityMode. Note that all transition predicates in P are
separable, and all possible (concrete) poststates can be precisely captured by the pred-
icates φ0,0, φ0,1, φ1,0, φ>1. For better readability we have omitted most of the guards
ω1, ω2, i.e. every transition without guard stands for two transitions with the same ac-
tion, source and target state(s), and with ω1 and ω2 as guard, respectively. Moreover,
the state (`3, φ0,0 ∨ φ0,1 ∨ φ1,0 ∨ φ>1) is a simplified notation which represents all the
states (`3, φ) with φ ∈ {φ0,0, φ0,1, φ1,0, φ>1} and all may-transitions leading to it lead
to each of the states, and the may-loop stands for all the transitions between each of the
states. Obviously, Qo ≤sem Pu, and from Thm. 11 it follows that Q ≤ P.

Even though this abstraction technique requires separability of predicates, it is ap-
plicable to a larger set of specifications. Sometimes, as already described in the previ-
ous section, transitions with non-separable predicates can be replaced by finite sets of
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transitions to achieve separability, without changing the semantics of the specification.
Automatic procedures for generation of predicates are subject of future work. Finally,
our abstraction also supports compositional reasoning about parallel composition in the
following sense:

Theorem 12. Let A and B be two composable specifications, and V GA‖B = (V GA ∪
V GB )r(V LA ] V LB ). Let EA ⊆ Pred(V LA ), EA ⊆ Pred(V LB ), and F ⊆ Pred(V GA‖B)
be sets of predicates partitioning the respective data states.

A is approximated w.r.t. EA for V LA , and EB ∪ F for V GA = V GA‖B ] V
L
B and

similarly, B is approximated w.r.t. EB and EA ∪ F . Finally, A ‖ B is approximated
w.r.t.EA∪EB for V LA‖B = V LA ]V LB , and F for V GA‖B. We assume that each predicate,
in any abstraction of A, B, or A ‖ B, is encoded with the same variable.

Then (A ‖B)o ≤sem Ao ‖sem Bo, and Au ‖sem Bu ≤sem (A ‖B)u.

This result allows reusing abstractions of individual components in a continued
development and verification process. For instance, if we want to verify A ‖ B ≤ C
then we can compute (or reuse) the less complex abstractions Ao and Bo. Thm. 12
implies then that from Ao ‖sem Bo ≤sem Cu we can infer A ‖ B ≤ C.

Proof of Thm. 12. We prove (A ‖ B)o ≤ Ao ‖sem Bo: Let V Labstr(A) the set of
variables abstracting V LA , V Labstr(B) the set of variables for V LB , and V Gabstr the set of
variables for V GA \ V LB . The witnessing relation R ⊆ (LocA × LocB) × (LocA ×
LocB)× (JV Labstr(A)K× JV

L
abstr(B)K), defined by R = {((`A, `B), (`A, `B), νA ·νB)}.

First, S0
(A‖B)o ⊆ S

0
Ao‖semBo : Let ν ∈ S0

(A‖B)o , then ∃V Labstr(A).∃V
L
abstr(B).ν ∧ϕ

0
A‖B

implying ∃V Labstr(A).νA∧ϕ
0
A and ∃V Labstr(B).νB∧ϕ

0
B for ν = νA ·νB. It follows that

ν ∈ ϕ0
Ao · ϕ0

Bo .
Second, let ((`A, `B), (`A, `B), νA · νB) ∈ R.

1. The proof for the may-transition is straightforward and omitted.

2. Assume
((`A, `B), νA · νB)

ω a−−→�,Ao ‖sem Bo ((`′A, `
′
B), N).
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Then there exist

(`A, νA)
(νB·ω) a−−−−−→�,Ao (`′A, NA) and (`B, νB)

(νA·ω) a−−−−−→�,Bo (`′B, NB)

such that N = NA ·NB. Then for every sA · sB · g satisfying νA ∧ νB ∧ω there
exists (`A, (a, ψA), `′A)∈E�,A such that ◦ψ(sA ·sB ·g), and for all s′A ∈ JV LA K,
ψ(sA · sB · g, s′A) implies NA(s′A). And similar we can conclude this for B.

Then, by the definition of parallel composition, for every sA · sB · g satisfying
νA ∧ νB ∧ ω there exists

((`A, `B), (a, ψA ∧ ψB), (`′A, `
′
B)∈E�,A‖B

such that ◦ψA(sA·sB·g) and for all sA·sB, (ψA∧ψB)(sA·sB·g, s′A·s′B) implies
(NA · NB)(s′A · s′B). Then, there exists also a minimal N ′ ⊆ NA · NB = N
with this property, and then

((`A, `B), νA · νB)
ω a−−→�,(A ‖ B)o ((`′A, `

′
B), N ′),

and ((`′A, `
′
B), (`′A, `

′
B), ν′A · ν′B) ∈ R for all ν′A · ν′B ∈ N ′.

We prove now Au ‖sem Bu ≤ (A ‖ B)u: The proof is in the same line as the
previous proof, and for the refinement relation witnessing the claim, the same relation
as before can be taken. We just check it for the must-transitions. Assume

((`A, `B), νA · νB)
ω a−−→�,(A ‖ B)u ((`′A, `

′
B), N).

Then there exists ((`A, `B), a, ψ, (`′A, `
′
B))∈E�,A‖B such that

∃V.νA ∧ νB ∧ ω ∧ ◦ψ, (2)

∀(V LA )′.∀(V LB )′.ψ◦ ⇔ (N)′. (3)

By the definition of parallel composition we get

(`A, a, ψA, `
′
A)∈E�,A and (`B, a, ψB, `

′
B)∈E�,B

such that ψ = ψA ∧ ψB. Then, from (2) and

◦(ψA ∧ ψB) = ∃(V LA )′.∃(V LB )′.ψA ∧ ψB

= (∃(V LA )′.ψA) ∧ (∃(V LB )′.ψB)

= ◦ψA ∧ ◦ψA

it follows that

∃V LA .∃V G.νA ∧ ω ∧ ◦ψA and ∃V LB .∃V G.νB ∧ ω ∧ ◦ψB.

where V G = V GA \ V LB . By our assumption that we can precisely capture the set
of next local states of must-transition by a set of abstract states, we know that there
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exists ṄA ⊆ JV Labstr(A)K such that ∀(V LA )′.(ṄA)′ ⇔ ψ◦A, and similarly, there exists

ṄB ⊆ JV Labstr(B)K such that ∀(V LB )′.(ṄB)′ ⇔ ψ◦B. Then we have

(`A, νA)
(νB·ω) a−−−−−→�,Au (`′A, ṄA) and (`B, νB)

(νA·ω) a−−−−−→�,Bu (`′B, ṄB).

Then
((`A, `B), νA · νB)

ω a−−→�,Au ‖sem Bu ((`′A, `
′
B), ṄA · ṄB).

We still need to show that ṄA · ṄB ⊆ N . Let ν̇A · ν̇B ∈ ṄA · ṄB, then

∀(V LA )′.∀(V LB )′.(ν̇A ∧ ν̇B)′ ⇒ ψ◦A ∧ ψ◦B.

From (2) it follows that there exists (s · g) ∈ JV K which satisfies ◦(ψA ∧ ψB), hence

ψ◦A ∧ ψ◦B = (∃V.ψA) ∧ (∃V.ψB)

= ∃V.ψA ∧ ψB

= (ψA ∧ ψB)◦

= ψ◦.

Finally, it follows from (3) that ν̇A · ν̇B ∈ N , which was to be shown; and clearly
((`′A, `

′
B), (`′A, `

′
B), ν̇A · ν̇B) ∈ R for all ν̇A · ν̇B ∈ ṄA · ṄB.

5. Related work

The main difference to related approaches based on modal process algebra taking
data states into account, e.g. [23, 24], is that they cannot naturally express logical and
structural composition in the same formalism. A comparison between modal specifica-
tions and other theories such as interface automata [25] and process algebra [3] can be
found in [4]. In [9], the authors introduced sociable interfaces, that is a model of I/O
automata [26] equipped with data and a gxame-based semantics. Sociable Interfaces
extended interface automata with a more rich synchronization scheme allowing for
one-to-one, many-to-one, one-to-many and many-to-many communication as well as
communication over shared variables. Sociable Interfaces where the first interface the-
ory to encompass both communication over actions and shared variables. While their
communication primitives are richer, sociable interfaces do not encompass any notion
of modalities and do not have logical composition and quotient, and their refinement is
based on an alternating simulation [27].

In [28] Caillaud and Raclet introduce Marked Modal Specifications in order to
achieve independent implementability of reachability properties. They develop an al-
gebra with both logical and structural composition operators which can ensure reacha-
bility properties by construction.

Transition systems enriched with predicates are used, for instance, in the approach
of [29, 30] where they use symbolic transition systems (STS), but STS do not support
modalities and loose data specifications as they focus more on model checking than on
the (top down) development of concurrent systems by refinement.

Related work on modal interfaces, but without data can be found in [5, 31, 32].
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In [19] modal I/O automata have been extended to take into account data, by adding
pre- and postconditions to transition labels. Pre- and postconditions in [19] are viewed
as contracts, giving rise to semantics in terms of sets of implementations. In fact,
implementations with only input actions correspond to our TSD. The main difference,
however, is modal refinement: [19] defines modal refinement solely on the syntactic
level of modal I/O automata, rendering it incomplete and thus much coarser than modal
refinement as defined here. Neither conjunction nor a quotient operation are defined
in [19]; the ideas for defining a compatibility relation between communicating modal
I/O automata in [19] can be easily transferred to our setting (by distinguishing between
input and output actions).

In a series of works [33], Godefroid used modal specifications as an abstract rep-
resentation for transition systems in a CEGAR loop process. Our abstraction tech-
nique is inspired by the one of Godefroid. The main differences are that we work
with modal transition systems to represent both the specifications and the successive
and refined implementations, while Godefroid works with classical state-machines and
multi-valued logics for specifications. We believe that our model could be embedded
in Godefroid’s procedure and lead to an extension of his work. A similar observation
can be made to the work of Leucker that extends Godefroid’s work to games [34].

Abstraction based model checking and three valued program analysis such as pre-
sented in [7, 35] may also benefit from being revisited with the addition of abstract data
in the form of MSD.

In [36] Tripakis et al. present an interface theory for systems operating in an infinite
number of synchronous steps. Contracts are used to express the relationship between
input and output variables of stateful synchronous components. The components are
abstracted by their interfaces and one or more contracts.

One might also compare our work with approaches such as the BIP framework[37].
The BIP framework is a hierarchical work-flow for rigorous design of embedded sys-
tems, which does not consider formal verification, as we do in the form of refinement.
The BIP framework considers component composition, and notably generates C code
from component descriptions. An ideal combination would be a framework with re-
finement, quotient and conjunction that could also generate executable code from the
specifications.

6. Conclusion

We have proposed a specification theory for reasoning about components with rich
data state. Our formalism, based on modal transition systems, supports: refinement
checking, consistency checking with pruning of inconsistent states, structural and log-
ical composition, and a quotient operator. The specification operators are defined on
the symbolic representation which allows for automatic analysis of specifications. We
have also presented a predicate abstraction technique for the verification of modal re-
finement. We believe that this work is a significant step towards practical use of spec-
ification theories based on modal transition systems. The ability to reason about data
domains permits the modeling of industrial case studies.

In the future, we intend to develop larger case studies. Furthermore, we would like
to extend the formalism with more complex communication patterns, most importantly
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input/output actions, and to investigate in which cases we can still obtain all the op-
erators on specifications, in particular the quotient operator. We are also planning to
implement the theory in the MIO Workbench [38, 39], a verification tool for modal in-
put/output interfaces. The implementation in the MIO Workbench would be based on
BDD [40] technology. In future work it would also be very interesting to compare the
expressive power of MSD relative to Parametric Modal Transition Systems [41] and
Disjunctive Modal Transition Systems (DMTSs) [12, 42]. It would also be very rele-
vant to find infinite data domains for which the modeling and analysis will work well
in practice. Also further exploring the limitations that separable transition predicates
impose.

Acknowledgment. We would like to thank Rolf Hennicker for valuable comments
on a draft of the conference version [1] of the paper.
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Appendix A. Appendix

Some of the more trivial proofs are included in the appendix for completeness.

Proof of Thm. 6. We only consider one case, the other ones can be proven in a similar
way. Assume

((`1, `2), s)
g a−−→�,〈A1 ∧A2〉sem ((`′1, `

′
2), S′).

Then
((`1, `2), a, ψ, (`′1, `

′
2))∈E�,A1∧A2

such that S′ = {s′ ∈ JV LK | ψ(s · g, s′)} 6= ∅. Then this construction must come from
(w.l.o.g.) the second rule in Def. 6. Thus we have

(`1, a, ψ1, `
′
1)∈E�,A1

and ψ ≡ ψ1 ∧ (
∨
ψ2∈Maya

2 (`2,`′2) ψ2). This means that S′ contains all those s′ such that
ψ1(s · g, s′) and there exists some (`2, a, ψ2, `

′
2)∈E♦,A2

such that ψ2(s · g, s′). Then,
it also follows that

(`2, s)
g a−−→♦,〈A2〉sem (`′2, {s′})

for each s′ ∈ S′ and moreover

(`1, s)
g a−−→�,〈A1〉sem (`′1, S

′
1)

such that S′ ⊆ S′1. By semantic conjunction, we get

((`1, `2), s)
g a−−→�,〈A1〉sem ∧sem 〈A2〉sem ((`′1, `

′
2), S′′)

where S′′ = {s′ ∈ S′1 | (`2, s)
g a−−→♦,〈A2〉sem (`′2, {s′})}. But then S′′ = S′ follows

from maximality of S′. The other direction can be seen similarly.

Proof of Thm. 8. In this proof, we write ‖ for ‖sem,  for sem, etc. for a better read-
ability.

=⇒ :
We assume a relationR witnessing X ≤ ρ(TS). We define a relationR′ ⊆ (LocS×
LocX)× LocT × JV LT K by

R′ = {((`S, `X), `T, sS · sX) | ∃SS ⊆ JV LS K : (`X, (`T, `S, SS), sX) ∈ R
and sS ∈ SS}.

We show that R′ is a refinement relation demonstrating S ‖ X ≤ T. First, it is easy to
see that ((`0S, `

0
X), `0T, sS · sX) ∈ R′ for all (sS · sX) ∈ S0

S‖X. Now let

((`S, `X), `T, sS · sX) ∈ R′.

We can thus assume that there exists SS ⊆ JV LS K such that

(`X, (`T, `S, SS), sX) ∈ R (A.1)

and sS ∈ SS.
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1. Assume ((`S, `X), sS · sX)
gT a−−−→♦,S‖X ((`′S, `

′
X), {s′S · s′X}). Then we have, by

the rules of parallel composition,

(`S, sS)
(gT·sX) a−−−−−−→♦,S (`′S, {s′S}) (A.2)

and
(`X, sX)

(gT·sS) a−−−−−−→♦,X (`′X, {s′X}). (A.3)

From (A.1) and (A.3) it follows that there exists

((`T, `S, SS), sX)
(gT·sS) a−−−−−−→♦,T  S ((`′T, `

′′
S, S

′
S), s′X) (A.4)

such that (`′X, (`
′
T, `
′
S, S

′
S), s′X) ∈ R. Note that this transition cannot lead to a

universal state since neither the rule [data-unreachable] nor the rule [unreachable]
is applicable. The transition (A.4) must come from the rule [may]:

(`T, sS · sX)
gT a−−−→♦,T (`′T, {s′′S · s′X}) (A.5)

and
(`S, sS)

(gT·sX) a−−−−−−→♦,S (`′′S, {s′′S}). (A.6)

By determinism of S and (A.2),(A.6), it follows that `′S = `′′S and s′S = s′′S. Thus
SS = {s′S}. Finally, we can conclude that ((`′S, `

′
X), `′T, s

′
S · s′X) ∈ R′.

2. Assume (`T, sS · sX)
gT a−−−→�,T (`′T, ST). Assume that (`S, sS) 6 (gT·sX) a−−−−−−→�,S.

Then the rule [error2] would be applicable resulting in a must-transition leading
to (⊥, {sX}) which contradicts the fact thatR is a refinement relation witnessing
X ≤ ρ(T  S). Note that any state (⊥, S) is syntactically inconsistent due to
rule [errorstate]. Hence there exists

(`S, sS)
(gT·sX) a−−−−−−→�,S (`′S, SS). (A.7)

A similar argumentation shows that T ′  S′ = ∅ cannot be the case, because
[error1] cannot be the case. So assume that T ′  S′ 6= ∅, and by rule [must]
we have

((`T, `S), SS), sX)
(gT·sS) a−−−−−−→�,T  S ((`′T, `

′
S, SS), ST  SS). (A.8)

By the assumption (A.1) it follows that there exists

(`X, sX)
(gT·sS) a−−−−−−→�,X (`′X, SX) (A.9)

such that SX ⊆ ST  SS and (`′X, (`
′
T, `
′
S, SS), s′X) ∈ R for all s′X ∈ SX.

Parallel composition of transitions (A.7) and (A.9) yields

((`S, sX), sS · sX)
(gT) a−−−−→�,S‖X ((`′S, `

′
X), SS · SX). (A.10)

We can conclude ((`′S, `
′
X), `′T, s

′
S · s′X) ∈ R′ for all (s′S · s′X) ∈ (SS ·SX) since

(`′X, (`
′
T, `
′
S, SS), s′X) ∈ R and s′S ∈ SS.
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⇐= :
We assume a relation R′ witnessing S ‖ X ≤ T. We define a relation R by

R = {(`X, (`T, `S, SS), sX) | ∀sS ∈ SS : ((`S, `X), `T, sS · sX) ∈ R′}
∪ {(`X, univ, sX) | `X ∈ LocX, sX ∈ JV LX K}.

We show that R is a refinement relation demonstrating X ≤ ρ(T  S). Obviously, it
holds that (`0X, (`

0
T, `

0
S, S

0
S), sX) ∈ R for all sX ∈ S0

X. Now, let

(`X, (`T, `S, SS), sX) ∈ R. (A.11)

1. Assume (`X, sX)
(gT·sS) a−−−−−−→♦,X (`′X, {s′X}).

Subcase sS /∈ SS: Then, by rule [data-unreachable] we have

((`T, `S, SS), sX)
(gT·sS) a−−−−−−→♦,T  S (univ, {s′X})

and by definition, (`′X, univ, s
′
X) ∈ R.

Subcase sS ∈ SS:

Subsubcase (`S, sS) 6 (gT·sX) a−−−−−−→♦,S : Then the rule [unreachable] applies
and we get

((`T, `S, SS), sX)
(gT·sS) a−−−−−−→♦,T  S (univ, {s′X})

and, as before, (`′X, univ, s
′
X) ∈ R.

Subsubcase (`S, sS)
(gT·sX) a−−−−−−→♦,S : Then there exists

(`S, sS)
(gT·sX) a−−−−−−→♦,S (`′S, {s′S})

and by parallel composition we get

((`S, `X), sS · sX)
gT a−−−→♦,S‖X ((`′S, `

′
X), {s′S · s′X}).

Now, from our assumption (A.11), it follows that there exists

(`T, sS · sX)
gT a−−−→♦,T (`′T, {s′S · s′X})

such that ((`′S, `
′
X), `′T, s

′
S · s′X) ∈ R′. Finally, we have

(`′X, (`
′
T, `
′
S, {s′S}), s′X) ∈ R.

2. Assume ((`T, `S, SS), sX)
(gT·sS) a−−−−−−→�,T  S p. This must come from the rule

[must] (the other cases [error1] and [error2] lead to contradiction) implying

p = ((`′T, `
′
S, S

′
S), SX).

Hence we have
(`T, sS · sX)

gT a−−−→♦,T (`′T, ST)
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and
(`S, sS)

(gT·sX) a−−−−−−→♦,S (`′S, SS)

such that S′S = SS and SX = ST  SS; moreover, sS ∈ SS. From our assump-
tion (A.11), it follows that there exists

((`S, `X), sS · sX)
gT a−−−→�,S‖X (`′′S, `

′
X), S′S · SX)

such that S′S · SX ⊆ ST and ((`′S, `
′
X), `′T, s

′
S · s′X) ∈ R′ for all s′S ∈ S′S,

s′X ∈ SX. Hence
(`S, sS)

(gT·sX) a−−−−−−→♦,S (`′′S, S
′
S)

and
(`X, sX)

(gT·sS) a−−−−−−→♦,X (`′X, SX).

Since S is deterministic, we have `′S = `′′S and SS = S′S. SX ⊆ ST  SS since
we know SS · SX ⊆ ST. Finally, it is easy to see that, for all s′X ∈ SX,

(`′X, (`
′
T, `
′
S, SS), s′X) ∈ R.

Proof of Thm. 9. We will show it for must-transitions only, for may-transitions the
claim can be shown in a similar and straightforward way – note that each rule in Def. 7
corresponds to exactly one rule in the definition of the semantic quotient (see page 20).

We have to prove that there is a (reachable) must-transition

((`B, `A, ξA), q)
(g·s) a−−−−→�,〈B A〉sem ((`′B, `

′
A, ξ

′
A), Q′)

in 〈B A〉sem if and only if there is a (reachable) must-transition

((`B, `A, JξAK), q)
(g·s) a−−−−→�,〈B〉sem sem 〈A〉sem ((`′B, `

′
A, Jξ

′
AK), Q

′)

in 〈B〉sem sem 〈A〉sem.
Assume a reachable state (`B, `A, ξA) in 〈B A〉sem, and assume

((`B, `A, ξA), q)
(g·s) a−−−−→�,〈B A〉sem ((`′B, `

′
A, ξ

′
A), Q′). (A.12)

This transition must come from a symbolic transition

((`B, `A, ξA), a, ψ, (`′B, `
′
A, ξ

′
A))∈E�,BA

and Q′ = {q′ ∈ JV LBAK | ψ(q · g · s, q′)} 6= ∅. This symbolic transition must be
generated by the second rule of Def. 7, thus we have

(`B, a, ψB, `
′
B)∈E�,B and (`A, a, ψA, `

′
A)∈E�,A

such that ψ ≡ ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦B  ψ◦A),and ξ′A ≡ ψ◦A. Then we have

(`B, s · q)
g a−−→�,〈B〉sem (`′B, Jψ

◦
BK) and (`A, s)

(q·g) a−−−−→�,〈A〉sem (`′A, Jψ
◦
AK)
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By the definition of Q′, it follows that

Q′ = {q′ ∈ JV LBAK | ψ(q · g · s, q′)}

= {q′ ∈ JV LBAK | (ψ
◦
B  ψ◦A)(q′)}

= Jψ◦B  ψ◦AK
= Jψ◦BK  Jψ

◦
AK.

By rule [must] (remember that Q′ 6= ∅) and by the fact that ξA(s), we get

((`B, `A, JξAK), q)
(g·s) a−−−−→�,〈B〉sem sem 〈A〉sem ((`′B, `

′
A, Jψ

◦
AK), Q

′).

For the reverse direction, observe that for any given reachable location (`B, `A, SA) in
〈B〉semsem 〈A〉sem we know that SA must be described by either the initial predicate
ϕ0
A or by ψ◦A for some transition predicate ψA occurring in A.
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