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Abstract
Exponential decay laws for the metastable states resulting from

perturbation of unstable eigenvalues are discussed. Eigenvalues em-
bedded in the continuum as well as threshold eigenvalues are consid-
ered. Stationary methods are used, i.e. the evolution group is written
in terms of resolvent via Stone’s formula and a partition technique
(Schur-Livsic-Feschbach-Grushin formula) is used to localize the es-
sential terms. No analytic continuation of the resolvent is required.
The main result is about the threshold case: for Schrödinger operators
in odd dimensions the leading term of the life-time in the perturba-
tion strength, ε, is of order ε2+ν/2, where ν is an odd integer, ν ≥ −1.
Examples covering all values of ν are given. For eigenvalues properly
embedded in the continuum the results sharpen the previous ones.

1 Introduction

Let H be a self-adjoint operator in a Hilbert space H and E0 a finitely
degenerate eigenvalue of H: HP0 = E0P0, dimP0 < ∞. On P0H the

∗submitted to Proceedings of International Comference on Mathematical Physics, Rio
de Janeiro, 2006
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evolution is stationary:

P0e
−itHP0 = e−itE0P0. (1.1)

The problem we consider is what happens with the evolution compressed
to P0H, when a perturbation is added, i.e. H is replaced by

Hε = H + εW. (1.2)

On heuristic grounds one expects that

P0e
−itHεP0 = e−ithεP0 + δ(ε, t), (1.3)

where hε is a (dissipative) “effective hamiltonian” in P0H and δ(ε, t) is an
error term vanishing in the limit ε→ 0.

Among the questions to be answered are:
i. Find sufficient conditions for (1.3) to hold true. In particular one can

ask whether there are interesting cases, in which such a simple description of
the compressed dynamics does not exist (e.g. non exponential decay laws).

ii. Compute the effective hamiltonian hε.
iii. Estimate

sup
t>0

‖δ(ε, t)‖ = δ(ε). (1.4)

The above questions can be completely answered in the elementary case of
a regular perturbation of discrete eigenvalues. Here the Kato-Rellich analytic
perturbation theory gives

hε = h∗ε = U∗εPεHεPεUε, (1.5)

δ(ε) ≤ const.ε2, (1.6)

where Pε is the perturbed projection, and Uε is the Sz.-Nagy transformation
matrix of the pair Pε, P0 (see e.g. [18]). Moreover, one can show that (1.6) is
optimal, i.e. the power of ε in the error term cannot exceed 2. One remark is
in order here. One can ask whether hε as given by (1.3) and (1.4) is unique.
The answer is no, and one can easily see that if one takes h̃ε = W ∗

ε hεWε with
Wε unitary, [Wε, P0] = 0, and ‖Wε−1‖ ≤ const.ε2, then h̃ε still satisfies (1.3)
and (1.6). However, there is a uniqueness statement: the spectrum, σ(hε),
must coincide with the spectrum of Hε emerging from E0, i.e. hε is unique
up to a unitary rotation.

Consider now the really interesting case, when E0 is embedded (properly
or at a threshold) in the continuous spectrum of H or/and W is singular with
respect to H, as e.g. in the Stark effect. A fairly complete answer is known
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in the case of dilation analytic hamiltonians, if in addition one supposes
that E0 is not situated at a threshold. More precisely, using the analytic
perturbation theory in the framework of Aguilar-Balslev-Combes dilation
analytic hamiltonians, as developed by Simon [25], Hunziker [9] proved that
(1.3) with the estimate (1.6) holds true. The important point here is that
hε is no more self-adjoint, but only dissipative, which reflects the fact that
generically under the effect of the perturbation the stationary state becomes
metastable with (up to a uniform error of order ε2) an exponential decay
law. In the non-degenerate case (1.3) gives the rigorous foundation (control
on error term included!) for the famous survival probability formula (here
hε = λεP0)

|〈Ψ0, e
−itHεΨ0〉|2 ∼ e−2| Im λε|t, (1.7)

as given by the Dirac second order time dependent perturbation theory
(Fermi Golden Rule).

The question we address is to what extent Hunziker’s results can be gen-
eralized to:

i. A non-analytic (smooth) context.
ii. Threshold eigenvalues.
Our main interest is in the threshold eigenvalues case (however we shall

give also results for properly embedded eigenvalues, extending and sharpen-
ing the existing ones). While for properly embedded eigenvalues one has
a (generically) universal behavior as ε → 0 of the decay rate constant,
Γε ≡ 2| Imλε| ∼ ε2, given by the “universal” Fermi Golden Rule, for thresh-
old eigenvalues the situation is by far more complicated. As remarked by
Baumgartner [2], even at the heuristic level the usual Fermi Golden Rule
prescription to compute the decay rate constant does not work. The deep
reason is that in the neighborhood of a threshold the resolvent (Greens func-
tion) has a complicated non universal structure. After all it is well known
that quantum mechanics at threshold is a tricky business! It turns out that
contrary to the properly embedded eigenvalue case, for threshold eigenvalues
the behavior as ε→ 0 of Γε is (generically) not universal; in the Schrödinger
operators case it depends upon the dimension of the space, angular momen-
tum, as well as upon the existence of threshold resonances.

Our main result [14] is that for threshold eigenvalues of Schrödinger op-
erators in odd dimensions, the leading term of the decay rate constant in
the perturbation strength, ε, is of order ε2+ν/2, where ν is an odd integer,
ν ≥ −1. We give examples for all values of ν, for which we compute the
leading term in Γε, and give estimates for the error term.

There are basically two general approaches to derive (1.3). The first
one, initiated by Soffer and Weinstein [26], consists in a direct study of the
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Schrödinger evolution governed by Hε:

i∂tψ(t) = Hεψ(t) (1.8)

for initial conditions localized in energy around E0. The second one, initiated
by Orth [24], is the stationary approach, which by use of the Stone formula
reduces the computation of the l.h.s. of (1.3) to the computation of an
integral over energies involving the compressed resolvent. In both methods,
in order to isolate the significant contributions, one uses variants of projection
techniques (appearing in the literature under various names as: Liapunov-
Schmidt projection method, Schur complements, Livsic-Feschbach matrix,
Grushin method, etc; for more comments and references see [14]).

We use the stationary approach. We refine it as to cover the thresh-
old eigenvalues case (and also to sharpen the existing results for properly
embedded eigenvalues) by adding two things:

i. Detailed asymptotic expansions near a threshold of the resolvent of
Schrödinger operators in odd dimensions obtained in [10],[11],[22],[14],[12].

ii. A careful study of the integral appearing in the Stone formula, espe-
cially regarding the interval of energies giving the significant contributions.

Finally we would like to stress that we do not touch here the huge field
related to resonances, from the spectral-scattering theory point of view. For
further references we send the reader to [8],[23], as well as to the recent review
[7].

2 The basic formula

The first step is to localize in energy. Thus we consider P0e
−itHεgε(Hε)P0,

where 0 ≤ gε(x) ≤ 1 is the (possibly smoothed) characteristic function of
an interval in a neighborhood of E0. The crucial point here is the following
beautiful, elementary remark due to Hunziker [9]:

Proposition 1. Suppose that for some hε : P0H → P0H,

‖P0e
−itHεgε(Hε)P0 − e−ithεP0‖ ≤ δ(ε). (2.1)

Then
‖P0e

−itHεP0 − e−ithεP0‖ ≤ 2δ(ε). (2.2)

Then one can use the freedom of choice of gε(x) to be able to compute
hε, and to optimize the error estimate. We note that usually gε(x) is cho-
sen independent of ε. One of the key points of our approach is to make
an appropriate ε-dependent choice of gε(x). For example, in the case of
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perturbing threshold eigenvalues, it is crucial that gε(x) is the characteris-
tic function of an interval, which is “far” from the threshold, i.e. does not
contain the unperturbed eigenvalue. In what follows we choose an interval
Iε = (e0(ε)− d(ε), e0(ε) + d(ε)), and take gε(x) = χIε(x) as the cut-off func-
tion. As already said the central point in our approach is to find the “right”
location e0(ε), and the “right” size function d(ε), such that energies in Iε
give the resonance behavior, and energies outside Iε only contribute to the
error term δ(ε, t).

A remark is in order here. By taking a smoothed out characteristic func-
tion one can obtain a refinement of (2.2) in the form

P0e
−itHεP0 = (I + A(ε))e−ithε(I + A(ε)) + δ(ε, t),

where A(ε) = O(εp) for some p > 0, and δ(ε, t) now exhibits decay in t for t
large. However, our concern here is with error estimates uniform in time, so
we take just the characteristic function as our cut-off function.

The next step is to write down a workable formula for the compressed
evolution in (2.1). For this purpose we use the Stone formula to express
the compressed evolution in terms of compressed resolvent, and then we use
the Schur-Livsic-Feschbach-Grushin (SLFG) partition formula to express the
compressed resolvent as an inverse. We briefly recall the SLFG formula (for
details, further references, and historical remarks, we send the reader to [14]).
Let Rε(z) = (H(ε)− z)−1, and let R0,ε(z) be the resolvent of Q0H(ε)Q0, as
an operator in Q0H. where

Q0 = 1− P0. (2.3)

Then we have in the decomposed space H = P0H⊕Q0H

Rε(z) =

[
Reff(z) −εReff(z)P0WQ0R0,ε(z)

−εR0,ε(z)Q0WP0Reff(z) R22

]
, (2.4)

with

Reff(z) =
(
P0H(ε)P0 − ε2P0WQ0R0,ε(z)Q0WP0 − zP0

)−1
.

We do not give the formula for R22, since it is not needed here, see [14] for
this formula.

More precisely, by using the Stone formula, the SLFG formula, and by
rearranging the Neumann series for the perturbed resolvent, one arrives at
the following basic formula for the compressed evolution [14]:
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Proposition 2.

P0e
−itHε)gε(Hε)P0 = lim

η→0

1

π

∫
dx e−itxgε(x) ImP0(Hε − x− iη)−1P0

= lim
η→0

1

π

∫
dx e−itxgε(x) ImF (x+ iη, ε)−1 (2.5)

where using the notation

W = A∗DA, D = D∗ = D−1, (2.6)

G(z) = AQ0(H − z)−1Q0A
∗, (2.7)

as an operator in P0H, the function F (z, ε) is given by

F (z, ε) = (E0 − z)P0 + εP0WP0 − ε2P0A
∗DG(z)DAP0

+ ε3P0A
∗DG(z)[D + εG(z)]−1G(z)DAP0. (2.8)

The formulas (2.5) and (2.8) are the starting formulas of our approach,
and at this point the hard work starts. What is needed is to show that
on the interval Iε, up to a controllable error, F (x + iη, ε) = hε − x − iη,
so that one can isolate the resonant term and estimate the remainder. All
that depends crucially on the smoothness properties of F (z, ε). The main
point of the formula (2.8) is that F (z, ε) inherits the smoothness properties of
G(z). This allows, assuming appropriate conditions on G(z), to prove “semi-
abstract” results, and then apply them to various concrete cases, by checking
these assumptions. In what follows the assumptions for the threshold case
are modeled on Schrödinger operators in odd dimensions.

3 The results

3.1 Properly embedded eigenvalues

Let for a > 0

Da(E0) = {z ∈ C | |z − E0| < a, Im z > 0}. (3.1)

We denote by Cn,θ(Da(E0)) the functions in Da(E0) that are n times con-
tinuously norm-differentiable, with the nth derivative satisfying a uniform
Hölder condition in Da(E0), of order θ, 0 ≤ θ ≤ 1. The main assumption in
this subsection is that

G(z) ∈ Cn,θ(Da(E0)). (3.2)
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Such conditions can be verified in an abstract setting, using the Mourre
estimate and the multiple commutator technique, see e.g. [1], [3], [6], and
references therein. Note this assumption implies that G(z) has boundary
valuesG(x+i0), which are in Cn,θ((E0−a,E0+a)). For Schrödinger operators
the smoothness of G(z) also follows, if the potential decays sufficiently fast
at infinity.

We give first the result in the non-degenerate case [14].

Theorem 3. Assume G(z) ∈ Cn,θ(Da(E0)). Assume dimP0 = 1 and n+θ >
0. Write F (x + i0, ε) = (R(x, ε) + iI(x, ε))P0. Then for ε sufficiently small
there exists a (unique for n + θ ≥ 1) solution to R(x, ε) = 0 in the interval
(E0 − a,E0 + a), denoted by x0(ε). Let Γ(ε) = I(x0(ε), ε), write

λε = x0(ε)− iΓ(ε), (3.3)

and let Ψ0 denote a normalized eigenfunction for eigenvalue E0 of H. Then
for ε sufficiently small, and for all t > 0, the following results hold true:

(i) Assume n = 0, 0 < θ < 1, and

Γ(ε) ≥ Cεγ with 2 ≤ γ <
2

1− θ
. (3.4)

Then we have

|〈Ψ0, e
−itH(ε)Ψ0〉 − e−it(x0(ε)−iΓ(ε))| ≤ C

1

1− θ
εδ, (3.5)

where
δ = 2− γ(1− θ) > 0. (3.6)

(ii) For n+ θ ≥ 1 we have

|〈Ψ0, e
−itH(ε)Ψ0〉 − e−it(x0(ε)−iΓ(ε))| ≤ C

{
ε2|ln ε| for n = 0, θ = 1,

ε2 for n+ θ > 1.

(3.7)

The results in the theorem above sharpen and amplify similar results in
[5, 4, 19, 20, 21, 26, 27]. Let us stress that in the high regularity case, i.e.
n + θ ≥ 1, there is no lower bound condition for Γ(ε). In particular, λε can
be an eigenvalue.

We turn now to the degenerate case. In the degenerate case the results
are by far less complete. In particular, in order to prove (1.3) and (1.4), one
has to impose a condition on the size of the imaginary part of ImF (E0 + i0),
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namely the so-called Fermi Golden Rule condition (see (3.8) below). One can
relax (3.8), if one imposes conditions on the spectrum of P0WP0, such that
one can apply the methods and results from the non-degenerate case [24, 16].
Our main result [16] here sharpening the ones in [21, 28] is contained in

Theorem 4. Assume N ≥ 2 and G(z) ∈ Cn,θ(Da(E0)) with n + θ ≥ 2.
Assume there exists γ > 0 such that

ImP0A
∗DG(E0 + i0)DAP0 ≥ γP0. (3.8)

Then there exists a function δ(ε, t) satisfying (1.4) with p = 2, such that

P0e
−itHεP0 = e−ithεP0 + δ(ε, t). (3.9)

Here hε on P0H is given by

hε = E0P0 + εP0WP0 − ε2P0WQ0(H − E0 − i0)−1Q0WP0

− ε3

{
P0WQ0(H − E0 − i0)−1Q0WQ0(H − E0 − i0)−1Q0WP0

+ 1
2

[
P0WP0W

d

dE
Q0(H − E − i0)−1Q0

∣∣∣
E=E0

WP0

+ P0W
d

dE
Q0(H − E − i0)−1Q0

∣∣∣
E=E0

WP0WP0

]}
. (3.10)

3.2 Threshold eigenvalues

As already said in the Introduction, the usual methods to prove the smooth-
ness of G(z) do not work at thresholds, and actually it may not be smooth,
or even blows up, in the neighborhood of the origin. The way out from this
difficulty is to use the asymptotic expansion of G(z) around the threshold
(see [10, 11, 12, 22] and references therein). Let us stress that the asymptotic
expansions of the resolvent around thresholds are not universal; e.g. in the
Schrödinger case the type of expansions depend on dimension, and on the
threshold spectral properties of the hamiltonian. The asymptotic expansion
in the assumption below (see [14, Section 3]) is modeled after Schrödinger
and Dirac operators in odd dimensions.

Assumption 5. (A1) There exists a > 0, such that (−a, 0) ⊂ ρ(H) (the
resolvent set) and [0, a] ⊂ σess(H).

(A2) Assume that zero is a non-degenerate eigenvalue of H: HΨ0 = 0,
with ‖Ψ0‖ = 1, and there are no other eigenvalues in [0, a]. Let
P0 = |Ψ0〉〈Ψ0| be the orthogonal projection onto the one-dimensional
eigenspace.
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(A3) Assume
〈Ψ0,WΨ0〉 = b > 0. (3.11)

(A4) For Reκ ≥ 0 and z ∈ C \ [0,∞) we let

κ = −i
√
z, z = −κ2. (3.12)

There exist N ∈ N and δ0 > 0, such that for κ ∈ {κ ∈ C | 0 < |κ| <
δ0,Reκ ≥ 0} we have

G(z) =
N∑

j=−1

G̃jκ
j + κN+1G̃N(κ), (3.13)

where

G̃j are bounded and self-adjoint, (3.14)

G̃−1 is of finite rank and self-adjoint, (3.15)

G̃N(κ) is uniformly bounded in κ. (3.16)

From (3.13) we get

〈Ψ0, A
∗DG(z)DAΨ0〉 =

N∑
j=−1

gjκ
j + κN+1gN(κ), (3.17)

where

gj = 〈Ψ0, A
∗DG̃jDAΨ0〉, (3.18)

gN(κ) = 〈Ψ0, A
∗DG̃N(κ)DAΨ0〉. (3.19)

(A5) There exists an odd integer, −1 ≤ ν ≤ N , such that

gν 6= 0, G̃j = 0 for j = −1, 1, . . . , ν − 2. (3.20)

The main (semi)-abstract result dealing with threshold case is as follows
[14]:

Theorem 6. Let x0(ε), Γ(ε) be as in Theorem 3. Suppose (A1)–(A5) in
Assumption 5 hold true. Then for sufficiently small ε > 0 we have

|〈Ψ0, e
−itHεΨ0〉 − e−it(x0(ε)−iΓ(ε))| ≤ Cεp(ν). (3.21)

Here p(ν) = min{2, (2 + ν)/2}, and

Γ(ε) = −iν−1gνb
ν/2ε2+ν/2(1 +O(ε)), (3.22)

x0(ε) = bε(1 +O(ε)). (3.23)
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4 A uniqueness result

The spectrum of the effective hamiltonian, hε, (λε in the nondegenerate case)
gives information about the “location” of resonances resulting from the per-
turbation of stationary states, as can be seen in the cases, when one can
define the resonances as poles of the analytic continuation of the resolvent
or the scattering matrix. Then a natural question is to ask, to what extent
the effective hamiltonian hε as defined by (1.3) and (1.4) is unique. If hε

has an asymptotic expansion as ε→ 0, the question is how many expansion
coefficients are uniquely determined. The following result [3], [17] gives the
answer to this problem.

Theorem 7. I. Assume RankP0 = 1.
Assume that h1

ε and h2
ε both satisfy (1.3) and (1.4), with the same value

for p. Assume that for some c0 > 0 and q > 0 we have

−c0εqP0 ≤ Imh1
ε ≤ 0 for 0 ≤ ε < ε0. (4.1)

Then for ε0 sufficiently small we have

‖h1
ε − h2

ε‖B(P0H) ≤ Cεp+q, 0 ≤ ε < ε0. (4.2)

II. Assume 1 ≤ RankP0 <∞.
(i) Assume that h1

ε and h2
ε both satisfy (1.3) and (1.4), with the same value

for p. Assume that h1
ε satisfies

h1
ε = E0P0 + εh1

1 + εf 1(ε), 0 ≤ ε < ε0, (4.3)

such that h1
1 = (h1

1)
∗, Im f 1(ε) ≤ 0, and f 1(ε) = o(1) as ε→ 0. Assume that

h2
ε is a bounded family of operators on P0H. Then for ε0 sufficiently small

we have
‖h1

ε − h2
ε‖B(P0H) ≤ Cεp+1, 0 ≤ ε < ε0. (4.4)

(ii) Assume that h1
ε and h2

ε both satisfy (1.3) and (1.4), with p = 2. Assume
that h1

ε satisfies

h1
ε = E0P0 + εh1 + ε2h2 + o(ε2), 0 ≤ ε < ε0, (4.5)

such that h1 = h∗1 and Imh1
ε ≤ 0. Assume that h2

ε is a bounded family of
operators on P0H. Then there exists a family of invertible operators U(ε) on
P0H with U(ε) = P0 +O(ε2), such that for ε0 sufficiently small we have

‖h1
ε − U(ε)−1h2

εU(ε)‖B(P0H) ≤ Cε4, 0 ≤ ε < ε0. (4.6)
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5 Examples

In this section, for all ν = −1, 1, 3, . . ., we give examples for which Assump-
tion 5 holds true, and then Theorem 6 gives (1.3) with | Imλε| ∼ ε2+ ν

2 . In
each case we compute the leading term gν . As examples we consider one
and two channel Schrödinger operators in three dimensions [14]. For more
examples, see [14, 15, 16].

5.1 Example 1: one channel case, ν = −1

In this case
H = −∆ + V (x), (5.1)

(Wf)(x) = W (x)f(x), (5.2)

in L2(R3), with V,W satisfying

〈·〉βV ∈ L∞(Rm), (5.3)

〈·〉γW ∈ L∞(Rm), (5.4)

and β, γ are sufficiently large (see below). Here E0 = 0. About H we suppose
that it has a non-degenerate threshold eigenvalue

(−∆ + V )Ψ0 = 0, ‖Ψ0‖ = 1, (5.5)

as well as a threshold resonance with canonical resonance function Ψc . We
recall that H has a threshold resonance if there exist additional non-zero
solutions to (−∆ +V )Ψ = 0, in the space L2,−s(R3), 1/2 < s ≤ 3/2. Among
these solutions, one can choose a distinguished one, Ψc, called the canonical
zero resonance function, and all the others can be written as Ψ = αΨc + Ψ̃
with α 6= 0 and Ψ̃ ∈ L2(R3) (for definition and further details see [14,
Appendix A]). In the theorem below we take Ψ0 to be real-valued.

Theorem 8. Assume that V and W satisfy (5.3) and (5.4) with β > 9 and
γ > 5, respectively. Assume that (A1-3) holds for H = −∆ + V . Let

Xj =

∫
R3

Ψ0(x)V (x)xjdx, j = 1, 2, 3. (5.6)

Assume either that Xj 6= 0 for at least one j, or that 〈Ψ0,WΨc〉 6= 0. Then
ν = −1, and we have

g−1 =
b2

12π
(X2

1 +X2
2 +X2

3 ) + |〈Ψ0,WΨc〉|2. (5.7)
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If H does not have a resonance at the threshold, but still Xj 6= 0 for at least
one j, then the second term in the right hand side of (5.7) should be omitted,
i.e.

g−1 =
b2

12π
(X2

1 +X2
2 +X2

3 ). (5.8)

The following example shows the significance of the conditions in the
theorem. Take

V (x) =

{
−V0, if |x| ≤ 1,

0, if |x| > 1.

Here V0 > 0 is a parameter. By adjusting this parameter, one can get a radial
solution to (−∆ + V )ψ = 0 for any angular momentum ` = 0, 1, . . ., which
decays as |x|−`, as |x| → ∞. Thus for ` = 0 we get a zero resonance. For
` = 1 we get zero eigenvalues, such that at least one Xj 6= 0, see (5.6). For
` ≥ 2 all Xj = 0. For ` ≥ 1 the eigenvalue at zero is not simple. Examples
with a simple zero eigenvalue can be obtained using only the radial part.
Note that in order to get 〈Ψ0,WΨc〉 6= 0 one will have to take a non-radial
perturbation W .

5.2 Example 2: two channel case, ν = −1, 1

In the two channel case we consider examples of a non-degenerate bound state
of zero energy in the “closed” channel decaying due to the interaction with a
three dimensional Schrödinger operator in the open channel. Since only the
bound state in the closed channel is relevant in the forthcoming discussion,
we shall take C as the Hilbert space representing the closed channel, i.e.
H = L2(R3)⊕C. As the unperturbed hamiltonian we take

H =

[
−∆ + V 0

0 0

]
, (5.9)

where V satisfies (5.3), and as the perturbation we take

W =

[
W11 |W12〉〈1|

|1〉〈W12| b

]
, (5.10)

which is a shorthand for

W

[
f(x)
ξ

]
=

[
W11(x)f(x) +W12(x)ξ∫

W12(x)f(x) + bξ

]
. (5.11)

Here we assume

〈·〉γW11 ∈ L∞(Rm), 〈·〉γ/2W12 ∈ L∞(Rm), (5.12)
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and furthermore that W11 is real-valued. In order to satisfy (3.11) we assume
b > 0 in (5.10).

Concerning the two channel case we have the following result.

Theorem 9. Assume that V and W satisfy (5.3) and (5.4) with β > 9 and
γ > 5, respectively.

(i) Assume that −∆+V has neither a threshold resonance nor a threshold
eigenvalue. Then ν ≥ 1, and we have

g1 =
−1

4π
|〈W12, (I +G0

0V )−11〉|2. (5.13)

where the integral kernel of G0
0 is 1

4π|x−y| .

(ii) Assume that −∆+V has a threshold resonance, and no threshold eigen-
value. Let Ψc denote the canonical zero resonance function. Assume
that 〈W12,Ψc〉 6= 0. Then ν = −1, and

g−1 = |〈W12,Ψc〉|2. (5.14)

5.3 Example 3: two channel radial case, ν ≥ 3

Here we consider radial part of Schrödinger operator with spherical symmet-
ric potentials for angular momentum ` = 1, 2, . . .

H0,` = − d2

dr2
+
`(`+ 1)

r2
, ` = 1, 2, . . . , (5.15)

on the space H = L2(R+) in the two channel set-up, where we now take the
Hilbert space H = L2(R+)⊕C, and replace (5.9) by

H =

[
H0,` 0
0 0

]
. (5.16)

It will provide us with examples of resolvent expansions, where we can verify
Assumption (A5) with ν ≥ 3 odd and arbitrarily large. Note that the cases
ν = −1 and ν = 1 were covered in the preceding examples.

Theorem 10. Consider the two channel case with H given by (5.16). As-
sume that W given by (5.10) satisfies (5.12) with γ > 2`+ 5. Assume that

〈W12, r
`+1〉 6= 0.

Then we have ν = 2`+ 1 and

gν = (−1)`+1

[ √
π

2`+1Γ(`+ 3
2
)

]2

|〈W12, r
`+1〉|2, (5.17)

where Γ denotes the usual Gamma function.
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