
Aalborg Universitet

Integration af XML Data i TARGIT OLAP Systemet

Pedersen, Dennis; Pedersen, Jesper; Pedersen, Torben Bach

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Pedersen, D., Pedersen, J., & Pedersen, T. B. (2004). Integration af XML Data i TARGIT OLAP Systemet.
Electrical Engineering/Electronics, Computer, Communications and Information Technology Association. Data
Engineering No. 8

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 08, 2025

https://vbn.aau.dk/en/publications/b690f910-0032-11da-b4d5-000ea68e967b

Integrating XML Data In The TARGIT OLAP
System

Dennis Pedersen, Jesper Pedersen, and Torben Bach Pedersen

May 5, 2004

TR-8

A DB Technical Report

Title Integrating XML Data In The TARGIT OLAP System

Copyright c© 2004 Dennis Pedersen, Jesper Pedersen, and Torben Bach
Pedersen. All rights reserved.

Author(s) Dennis Pedersen, Jesper Pedersen, and Torben Bach Pedersen

Publication History March 2004, Proceedings of the Nineteenth International Conference on
Data Engineering, pp. 778–781
May 2004, a DB Technical Report

For additional information, see the DB TECH REPORTS homepage: 〈www.cs.auc.dk/DBTR〉.

Any software made available via DB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

This paper presents the results of industrial work on the logical integration of OLAP and XML data
sources, carried out in cooperation between TARGIT, a Danish OLAP client vendor, and Aalborg Univer-
sity. A prototype has been developed that allows XML data stored outside the OLAP system to be used
as dimensions and measures in the OLAP system in the same way as ordinary dimensions and measures.
This provides a powerful and flexible way to handle unexpected or short-term data requirements as well
as rapidly changing data. Compared to earlier work, this paper presents several major extensions that
resulted from TARGIT’s requirements. These include the ability to use XML data as measures, as well
as a novel multigranular data model and query language that formalizes and extends the TARGIT data
model and query language.

1 Introduction

This paper presents the results of industrial work on the logical integration of OLAP and XML data sources,
carried out in cooperation between TARGIT [12], a Danish OLAP client vendor, and Aalborg University.
TARGIT’s practical experience with the OLAP industry and their expectations for its future development [7]
has provided a valuable input to earlier work [8] resulting in several important theoretical extensions and
refinements as well as the development of a prototype closely integrated with TARGIT’s current product.

The most significant theoretical extension is the ability to define logical measures from external XML
data, e.g., a new measure could be added containing sales forecasts, with the underlying data stored in an
XML document on the company intranet. This would allow queries such as “Show sales and sales forecasts
by month and city” even though the forecasts are not physically stored in the cube. Additionally, the
ability to use external XML data as dimensions [8] have been adapted to the TARGIT framework. Another
major contribution is the formalization and extension of the TARGIT system’s internal data model and query
language. Unlike other multidimensional data models and query languages, the ones presented here are
multigranular, i.e., they allow fact data to have varying granularity over a dimension. This paper also
documents the prototype development effort, which includes adapting and refining the previously developed
techniques for query processing and optimization to fit TARGIT’s recommendations and platform. Although
we briefly consider user interface aspects, the focus is on the logical level and on implementation issues.
Experiments with the prototype indicate an acceptable overhead by using external dimensions and measures
for a large range of useful queries. We believe these contributions to be novel and interesting to both the
database research and industry communities.

There has been much previous work on data integration, e.g. on integrating relational data [4], object-
oriented data [10], semi-structured data [1], and a combination of relational and semi-structured data [6].
However, none of this handles the advanced issues related to OLAP systems, e.g., dimensions with hierar-
chies, automatic aggregation, and the problems related to correct aggregation. This is also true for the XML
query language XQuery [15], and for nD-SQL [2], which considers the federation of relational sources
providing basic OLAP functionality. As mentioned, the most related work is [8], which is mostly theoret-
ical, considers only external dimensions, and describes a loosely coupled federation [11]. In contrast, this
paper focuses on implementation issues, allows external measures, uses the TARGIT data model and query
language, and describes a tightly coupled federation where the user is not required to know implementation
details.

The rest of the paper is organized as follows. Section 2 gives an overview of the TARGIT system.
Section 3 defines the data models and query languages for OLAP and XML data sources. The OLAP data
model is extended with external dimensions and measures in Section 4. The architecture of the extensions
to the TARGIT system is described in Section 5. Section 6 describes query processing and optimization.
Section 7 concludes and points to future work.

1

2 The TARGIT System

The main part of the TARGIT system is an OLAP client, which is known primarily for its ease of use. As
can be seen in Figure 1, it allows the browsing of multidimensional data using a wide variety of charts,
maps, and tables. These objects are interconnected such that an action in one object is reflected in the other
objects. For example, by clicking a country on a map, the other objects are automatically drilled down such
that they display values for that country. Although the client is aimed at non-technical users, it also covers
more advanced functionality such as data mining, user defined measures, and report building. In addition
to the client tool, the TARGIT system includes a server that ensures uniform access to different kinds of
data sources, and an administrator tool for configuring the server. The general architecture of the TARGIT

system is shown in Figure 2(a). Whenever the user performs an operation in the client, such as drilling
down in a dimension, the client issues a query to the server. This query is expressed in TARGIT’s own
multidimensional query language TSQL, which is described in detail later. The query evaluation depends
on the type of data source. Two different types of sources can be accessed through the server: Relational
tables and Microsoft Analysis Services cubes. When using relational tables, a star or snowflake schema is
built from a set of tables in the administrator tool; otherwise the cube is typically constructed in Microsoft’s
Cube Editor. All details must be handled explicitly by the server when using a set of relational tables,
whereas query processing is much simpler for cubes, where the TSQL query is simply translated to a single
MDX query [3]. Thus, the server consists of two almost independent parts corresponding to the two types
of sources.

Figure 1: TARGIT Screenshot

2

Client
Administrator

tool

Cubes
(MS Analysis

Services)

Server

Relational
Sources

TSQL TSQL Server
Commands

Cube
TSQL Evaluator

SQL MDX

Relational
TSQL Evaluator

(a)

Client tool

TSQL

SQL

SQL XPathMDX

Meta data

Temp. DataOLAP Data XML Data

SQL Server

SQL Server

Analysis Services IBM LotusXSL

Cube
TSQL Evaluator

(b)

Figure 2: Current/future TARGIT architecture

The federation system presented in this paper extends the server with the ability to handle external
dimensions and measures without having to integrate the data physically. The current prototype imple-
mentation presented in this paper is limited to Analysis Services cubes (the shaded area in Figure 2(a))
but extending this to cover relational sources is straightforward. Extending the server comprises two main
tasks, namely extending the current handling of cube sources with the ability to use external dimensions
and measures defined from XML sources, and extending the TSQL language with constructs to define these
external cube parts. The client GUI should also be extended to support this.

3 Data Models and Query Languages

We now present a formalization of the TARGIT OLAP data model and query language, as well as the data
model and query language used for accessing XML sources. The models are used to explain how external
XML data is integrated into OLAP cubes and to discuss the theoretical implications of the integration. The
OLAP model builds on the one in [9], capturing common multidimensional terms such as facts, dimensions,
and hierarchies. However, the TARGIT OLAP model and query language has one feature that distinguishes it
from almost all other multidimensional data models: the fact data resulting from a query may be of varying
granularity, i.e., both lower and higher level aggregate values may be present in the same result set, and
the occurence of lower/higher level aggregate values may even vary over a dimension. The latter feature
distinguishes the TARGIT model and language from the well-known SQL CUBE operator. An algebra is
defined over the OLAP model to describe how multidimensional cubes are queried, and this algebra is then
used to define the exact semantics of the TSQL query language.

The examples are based on a case study concerning B2B portals, where a cube tracks the cost and
number of units for purchases made by customer companies. The cube has three dimensions: Electronic
Component (EC), Time, and Supplier. External data is found in an XML document that tracks compo-
nent, unit, and manufacturer information. The XML document has the following nesting of elements and
attributes: Components(Supplier(Class(Component(Manufacturer <@MCode> UnitPrice Description)))).
The details of the case study are described in [8].

3

3.1 The OLAP Data Model

The model is defined in terms of a multidimensional cube consisting of a cube name, dimensions, and a fact
table. Each dimension comprises two partially ordered sets (posets) representing hierarchies of levels and
the ordering of dimension values. Each level is associated with a set of dimension values.

Definition 1 (Dimension) A dimension Di is a two-tuple (LDi
, EDi

), where LDi
is a poset of levels and

EDi
is a poset of dimension values.

LDi
is the four-tuple (LS i,vi,>i,⊥i), where LS i = {Li1, . . . , Liki

} is a set of levels, vi is a partial
order on these levels, and >i and ⊥i are the unique top and bottom elements of the ordering. We shall use
Lij ∈ Di as a shorthand meaning that the level Lij belongs to the poset of levels in dimension Di.

A level Lij is a name identifying a set of dimension values. Let E be the set of all possible dimension
values and Levels be the set of all levels. Then a function Values : Levels 7→ P(E), returns the subset of
E associated with a level in Levels. Thus, Values(Lij) = {eij1, . . . , eijlij}. We shall use Lij as a shorthand
for Values(Lij).

EDi
is a poset

(
⋃

j Lij,vDi

)

, consisting of the set of all dimension values in the dimension and a
partial ordering defined on these. We shall use Di as a shorthand for

⋃

j Lij .
For each level L we assume a function AncestorsL : Values(L)×LS i 7→ P(Di), which given a dimension

value in L and a level in LS i returns the value’s ancestors in the level. That is, AncestorsL(e, L′) = {e′ ∈
L′|e vDi

e′}. Similarly, a function ChildrenL : Values(L) 7→ P(Di) returns the dimension values that are
children of a given dimension value, i.e. ChildrenL(e) = {e′|e vDi

e′ ∧ @e′′(e vDi
e′′ ∧ e′′ vDi

e′)}. �

The intuition behind the partial order vi of levels is that given two levels Li1, Li2 ∈ Di we say that
Li1 vi Li2 if elements in Li2 can be said to contain the elements in Li1. For example, Day v Y ear
because years contain days. Similarly, we say that e1 v e2 if e1 is logically contained in e2 and Lij vi Lik

for e1 ∈ Lij and e2 ∈ Lik and e1 6= e2. For example, the day 01.21.2000 is contained in the year 2000.
Note that a lower-level value may roll up to more than one higher-level value, i.e., dimensions may be non-
strict [8]. Non-strict hierarchies may cause incorrect aggregation as data values may be double-counted.
To prevent this, we distinguish between three different aggregation types of data: c, data that may not be
aggregated, φ, data that may be averaged but not added, and Σ, data that may also be added. Thus, we
have the following ordering of these types: c ⊂ φ ⊂ Σ. Considering only the standard SQL functions, we
have that Σ = {SUM, AVG, MAX, MIN, COUNT}, φ = {AVG, MAX, MIN, COUNT}, and c = ∅. A function
AggType : {M1, . . . ,Mm}×D 7→ {Σ, φ, c} returns the aggregation type of a measure Mj when aggregated
in a dimension Di ∈ D. Aggregation types are used both to prohibit semantically incorrect aggregation,
and to prevent aggregation when irregular hierarchies may lead to incorrect results.

Example 3.1 The case cube has a Time dimension, an ECs dimension and a Suppliers dimension. Letting
Sup denote Suppliers the Suppliers dimension consists of the levels LS Sup = {>Sup ,Country ,Supplier},
which are ordered as follows: vSup= {(Supplier ,>Sup), (Country ,>Sup), (Supplier ,Country)}. Thus,
the poset of levels is LDSup

= (LS Sup ,vSup ,>Sup ,Supplier).
The poset of dimension values is EDSup

= ({>DSup
,US ,UK ,A.A.,B .B .,C .C .},vDSup

), where vDSup
=

{(US ,>DSup
), (UK ,>DSup

), (A.A.,>DSup
), (B .B .,>DSup

), (C .C .,>DSup
), (A.A.,US), (B .B .,US),

(C .C .,UK)}. Hence, the Suppliers dimension is given by: DSup = (LDSup
, EDSup

). �

Definition 2 (Cube and Fact Table) An n-dimensional cube is a three-tuple C = (N,D,F) con-
sisting of a cube name N , a non-empty set of dimensions D = {D1, . . . , Dn} and a fact ta-
ble F (D1, . . . , Dn,M1, . . . ,Mm) which is a relation containing one attribute for each dimension
Di and one attribute for each type of numerical value Mj , called a measure. Thus, F =
{(e1, . . . , en, v1, . . . , vm)|(e1, . . . , en) ∈ L1 × · · · ×Ln(Li ∈ Di)∧ (v1, . . . , vm) ∈ M ⊆ T1 × · · · × Tm},

4

T

Suppliers

US UK

A.A. B.B. C.C.

T

Flip-flop Latch Gate

ECs

EC1 EC2EC3 EC4

Time

2000

01-21-00 02-22-00

Jan Feb

T

2001

03-23-01

Mar

T

ECs

Class

EC

T

Suppliers

Country

Supplier

T

Time

Year

Month

Day

Figure 3: Purchases cube schema+instance

where n ≥ 1, m ≥ 1, and Tj is the domain value for the j’th measure. A function Level : Di 7→ LS i

identifies the level to which a dimension value in the fact table belongs.
The measure domains Tj all contain the special NULL value, which denotes that no value exists for a

particular combination of dimension values. A tuple in F , where at least one measure value exists, is called
a fact. Each measure Mj is associated with a default aggregate function fj : P(Tj) 7→ Tj , where the input
is a multi-set. Aggregate functions ignore NULL values as in SQL. �

Intuitively, a tuple in F captures the measured values associated with one combination of dimension
values. That is, there is one tuple in F for each possible combination of the dimension values. This is, of
course, just logically, in a physical implementation only the non-empty tuples would be stored. Since the
combination of dimension values are not required to be from the bottom levels, there can also be higher-level
aggregates in a fact table.

Example 3.2 From the Purchases cube in the case study we can construct a three-dimensional cube with
the cube name Purchases , the dimensions, levels, and ordering of dimension values as depicted in Figure 3.
An example fact table, with higher-level aggregate values, is seen in Table 1. �

3.2 The Cube Algebra

In this section we present an algebra for the OLAP data model presented in Section 3.1. Two operators are
defined that will be used to give the semantics of a TSQL query: generalized projection and selection. Each
of these operators takes a cube as input and produces a cube as output. The expressive power of the algebra
is limited to what is needed for defining the semantics of the TSQL language.

The generalized projection (GP) operator Π aggregates measure values in a cube such that the resulting
fact table contains a specified set of dimension value combinations. Any measures or dimensions that are
not specified, are not part of the resulting cube. The operator’s parameters are a set of dimension values for
each dimension in the result and a set of measures.

Example 3.3 Calculate the cost and number of units for combinations of the Supplier level and the Class
level as well as all higher-level aggregates:

Π[{>,US,UK,A.A.,B.B.,C.C.},{>,FF,G,L}]<SUM(Cost),SUM(Units)>(Purchases) = Purchases′

The fact table of the new Purchases′ cube is shown in Table 1. In addition, the Time dimension and the
EC level has been removed from the Purchases cube. �

The bottom-most dimension values specified for each dimension defines the bottom levels of the result-
ing cube. Levels below these are not part of the result and neither are the measures not specified in the
argument list. If no dimension values are listed for a dimension, this dimension is aggregated to the top

5

Cost Units Suppliers ECs

9800 3000 A.A. Supplier FF Class

9400 3000 B.B. Supplier FF Class

14400 4000 C.C. Supplier FF Class

16700 5000 C.C. Supplier G Class

17600 6000 C.C. Supplier L Class

19200 6000 US Country FF Class

14400 4000 UK Country FF Class

16700 5000 UK Country G Class

17600 6000 UK Country L Class

33600 10000 > >Sup FF Class

16700 5000 > >Sup G Class

17600 6000 > >Sup L Class

9800 3000 A.A. Supplier >>EC

9400 3000 B.B. Supplier >>EC

48700 15000 C.C. Supplier >>EC

19200 6000 US Country >>EC

48700 15000 UK Country >>EC

67900 21000 > >Sup >>EC

Table 1: Result fact table for Example 3.3

level and removed from the cube. Each new measure value is calculated by applying the given aggregate
function to the corresponding measure value for all tuples in the old fact table that contain bottom values
that roll up to the dimension values of the new fact table.

Notice that rolling up to a higher level may result in duplicated facts if the hierarchy is non-strict, i.e.
if a dimension value has more than one parent. To ensure safe aggregation in case of non-strict hierarchies
we explicitly check for this in each dimension [8, 9]. If a roll-up along some dimension duplicates facts at
the bottom level, we disallow further aggregation along that dimension by setting the aggregation type to c.
Since the higher-level aggregates are always calculated from the bottom level values, all aggregate values
will be correct as long as the bottom level contains no duplicated values. If it does, further aggregation
would have been disallowed when the duplicates were produced.

Formally, we define:

Definition 3 (Generalized projection) Let C = (N,D,F) be a cube. Then the generalized projection
operator is defined as: Π[{ei11,...,ei1n1

},...,{eik1,...,eiknk
}]<fj1

(Mj1
),...,fjl

(Mjl
)>(C) = (N ′, D′, F ′), where each

{eih1, . . . , eihnh
} is a set of dimension values specifying the aggregations for dimension ih ∈ {1, . . . , n}.

The measures {Mj1 , . . . ,Mjl
} ⊆ {M1, . . . ,Mm} are kept in the cube. fj1 , . . . , fjl

are the given aggregate
functions for the specified measures, such that each of them are valid in all dimensions in which aggre-
gation occurs, i.e. ∀Dih ∈ {D′

ih
∈ D|∃e ∈ {eih1, . . . , eihnh

}(e /∈ ⊥ih)}(∀fjg ∈ {fj1 , . . . , fjl
}(fjg ∈

AggType(Mjg , Dih))).
The resulting cube is given by: N ′ = N and D′ = {D′

i1
, . . . , D′

ik
}, where D′

ih
= (L′

Dih
, E′

Dih
) for

h = 1, . . . , k.
Let {Li1 , . . . ,Lik} be the set of levels that contain the bottommost dimension values mentioned for each

of the dimensions, i.e. the set {Lih ∈ Dih |∀e ∈ (Lih ∩ {eih1, . . . , eihnh
})(@e′ ∈ {eih1, . . . , eihnh

}(e′ @Dih

e)}. Then the new poset of levels in the remaining dimensions is L′
Dih

= (LS ′
ih

,v′
ih

,>ih ,Lih), where
LS ′

ih
= {Lihp ∈ LS ih |Lih vih Lihp}, and v′

ih
=vih|LS′

ih

. Moreover, E ′
Dih

= (
⋃

p Lihp,vDih
|⋃

p Lihp
).

The new fact table is given by: F ′ = {(e′i1 , . . . , e
′
ik

, v′j1 , . . . , v
′
jl
)|e′ih ∈ {eih1, . . . , eihnh

} ∧
vjh

= fMjh
({v|(e⊥1

, . . . , e⊥n
, v) ∈ Mjh

∧ (e′⊥i1
, . . . , e′⊥ik

) ∈ Ancestors⊥i1
(e⊥i1

,Li1) × · · · ×

Ancestors⊥ik
(e⊥ik

,Lik)})}.

6

Furthermore, if ∃(e⊥1
, . . . , e⊥n

, vj) ∈ Mjh
(∃e ∈ {e⊥1

, . . . , e⊥n
}(‖Ancestors⊥ig

(e,Lig)‖ > 1 ∧ vj 6=
NULL)) then AggType(Mjh

, D′
ig

) = c. �

As a short-hand, we will use Π[{L1,...,Lk}]<M1,...,Ml>
to mean Π[{Values(L1),...,Values(Lk)}]<M1,...,Ml>

.

The selection operator σ is used to slice the cube so that it contains only facts that satisfy a given
predicate. The predicates we consider here are restricted to the subset of the usual SQL operators that are
allowed in the TSQL language, namely =,<,>,<>, and IN which can be combined with AND. (OR is not
used in TSQL predicates.) These operators can be used to compare constants and levels. A selection only
affects the tuples in the fact table. Hence, selection returns a cube with the same fact type and the same
set of dimensions. All tuples for which the predicate does not hold are removed, i.e. their measures are set
to NULL. For any tuples that are computed from other tuples the measures are recalculated to reflect the
lower-level changes. Formally, we define the selection operator as follows:

Definition 4 (Selection operator) Let p be a predicate over the set of levels {L1, . . . , Lk} and measures
M1, . . . ,Mm. Selection on a cube C = (N,D,F) is σ[p](C) = (N ′, D′, F ′), where N ′ = N , D′ = D and
F ′ = {t′1, . . . , t

′
l}. If ti = (e1, . . . , en, v1, . . . , vm) ∈ F then

t′i =

(e1, . . . , en, NULL, . . . , NULL) if p(ti) = false

(e1, . . . , en, v′1, . . . , v
′
m)

if ∃ei ∈ {e1, . . . , en}

(∃(e′′1 , . . . , e
′′
n, v′′1 , . . . , v′′m)

∈ F (e′′i @ ei))

ti otherwise.

where each v′j = fMj
({v|(e⊥1

, . . . , e⊥n
, v) ∈ Mj ∧ (e1, . . . , en) ∈ Ancestors⊥1

(e⊥1
, Level(e1))×· · ·×

Ancestors⊥n
(e⊥n

, Level(en))}) �

3.3 The TSQL Query Language

In this section we define the semantics of TARGIT’s TSQL language in terms of the data model and algebra
defined above1.

A TSQL query consists of a SELECT-FROM-WHERE-DRILL DOWN construct. The SELECT clause lists
the dimensions and measures that should be part of the result, while the FROM clause specifies the cube.
The optional WHERE clause is used to slice the cube by specifying a predicate over the dimension values
as described in Section 3.2. DRILL DOWN lists the set of dimension values that should be present in the
result using the DimensionValue. CHILDREN notation, which means the set of all dimension values that are
children of DimensionValue.

Example 3.4 An example TSQL query is given below.

SELECT [Suppliers], [ECs], [Units], [Cost]
FROM [Purchases]
WHERE [ECs].[EC] IN (’EC1’, ’EC3’, ’EC4’)
DRILL DOWN ([Suppliers].[US].CHILDREN ,

[Suppliers].[UK].CHILDREN) �

1The syntax presented in this paper has been modified slightly for improved readability. Also, we focus on the primary querying
abilities of the language, although it has other more specific purposes, such as retrieving cube metadata.

7

As mentioned, sub-predicates in the WHERE clause can only be connected by AND. This is because in
the client tool predicates are constructed by adding primitive, i.e. non-conjunctive and non-disjunctive,
selection predicates to a criteria list which must all be satisfied. The DRILL DOWN clause implicitly
contains the top level and its immediate children for all dimensions. Thus, if the Suppliers dimension
is mentioned in the SELECT clause, [Suppliers].[All] and [Suppliers].[All].CHILDREN are always part of
the DRILL DOWN clause. Dimensions are treated as in MS Analysis Services, i.e. they cannot contain
multiple hierarchies. Instead these are defined as distinct dimensions. Furthermore, a value’s children
can only be added to the DRILL DOWN set if the value is itself part of the DRILL DOWN set. That is,
[Time].[2000].[January].CHILDREN is only allowed if [Time].[2000].CHILDREN is also listed. This makes
sense from a user interface perspective because an element is added to the DRILL DOWN set by graphically
“unfolding” a dimension value, and this is, of course, only possible if the value is already visible. As a
shorthand, all dimension values in dimension D from the root and down to a level L can be specified as
[D].[L]. Thus, the DRILL DOWN set in Example 3.4 could also be specified as [Suppliers].[Supplier].

A TSQL query can be expressed using a single selection and a single GP. The WHERE clause is evaluated
first using the selection operator and then the aggregation is performed using the GP as prescribed by the
DRILL DOWN clause including its implicit parts. The general form of a TSQL query is:

SELECT D1, . . . , Dn,M1, . . . ,Mm

FROM C
WHERE p(D1, . . . , Dn)
DRILL DOWN (D1,1 .e1,1,1e1,1,k11

.
CHILDREN, . . . , D1,l1 .e1,l1,1. . . .
.e1,l1,k1l1

.CHILDREN
...

Dn,1 .en,1,1en,1,kn1
.

CHILDREN, . . . , Dn,ln .en,ln,1. . . .
.en,ln,knln

.CHILDREN)

where li ≥ 0 and kili ≥ 0.
Each query on this form is equivalent to an algebra expression with the following general structure:

Π[{>,C(>),C(e1,1,k11
),...,C(e1,l1,k

1l1
)},...,{>,C(>),C(en,1,kn1

),...,

C(en,ln,knln
)}]<M1,...,Mm>(σp(D1,...,Dn)(C)), where C represents the Children function stated in Definition 1.

3.4 XML Data Model and Query Language

The XPath language is used to refer to parts of XML documents. Although not a full blown query language,
this language is sufficiently powerful for our purpose. XPath is also chosen because it has a compact
syntax making it suitable for integration into another language. The XML data model underlying the XPath
language views an XML document as a tree. Each node in the tree has one of the types: root, element,
namespace, text, processing instruction, attribute, or comment. For more details about the XML data model
and its use in our approach we refer to [13] and [8], respectively.

The basic syntax of an XPath expression resembles a Unix file path where a full path expression is given
as a number of locations separated by a “/”, e.g. location-step1/. . . /location-stepn. The returned set of nodes
can also be restricted by applying one or more predicates which supports the usual boolean, mathematical,
and string operators.

Example 3.5 Select all ECs which are of the flip-flop class and are manufactured by either Johnson Com-
ponents or by the manufacturer with code M33: /Components/Supplier/Class/Component[Manufacturer/

8

MName = ‘Johnson Components’ OR Manufacturer/@MCode = ‘M33’][../ClassName=’Flip-flop’]. The
“../ClassName” notation finds an element named “ClassName” at any level in the document. �

For our purpose, we can abstract an XPath expression to be a function over a set of nodes:

Definition 5 (XPath Expression) Let S be a set of nodes in an XML document. An XPath expression is a
function XP : S 7→ P(S) The set of all valid XPath expressions over an XML document x is called XP x,
while the subset of XPx that are absolute XPath expressions is called AbsXP x. That is, AbsXPx = {xp ∈
XPx|Dom(xp) = Root(x)}. RelXPx is the set of expressions in XPx that are not in AbsXPx. �

4 Integration with External XML Data

External data may be used as either dimension values or measure values in a cube. Using external data as
dimension values allows the existing cube data to be grouped in new ways; For example, purchases may
be grouped by the city in which the supplier is located, even if this information is not available in the cube
but only in an external XML document. There are two general ways external data can be used as measure
values: Vertically, by adding new measures to the cube, and horizontally, by adding additional facts of the
same type to the cube. The former adds new columns to the fact table, while the latter adds new rows to it.
As an example of the vertical case, a new measure based on transportation costs may be added, and for the
horizontal case, additional purchase data may be specified for a new division that has not been represented
in the cube before. As the focus here is on adding new types of information to existing cubes, horizontal
extension is outside the scope of this paper.

This section extends the data model from the previous section with the notions of external dimensions
and external measures. It also defines a flexible way to specify these based on external XML data. The
algebra presented in the previous section is then extended with operations that merge external dimensions
and measures with existing cubes, such that the new “virtual” cube can be queried as any other cube. Finally,
these formal definitions are used to extend the TSQL language with facilities to handle external data. In the
next section we look at how these queries can be evaluated in practice.

4.1 External Dimensions

An external dimension is defined to be a relationship between dimension values from a single level in a
cube and nodes in an XML document. This is similar to, but more flexible than, the property concept used
in many commercial OLAP systems, where a descriptive value is attached to each dimension value. The
reason external dimensions are more flexible, is that they allow more than one external value per dimension
value, which is usually not possible with properties. As we will see later, a cube can be “decorated” with
the information represented by an external dimension, creating a new cube in which the external dimension
values appear as a new dimension.

Definition 6 (External Dimension) An external dimension is a relation XD ⊆ {(e, s)|e ∈ L ∧ s ∈ S}
where L is a level in a cube and S is a set of nodes from an XML document. �

Example 4.1 The information needed to group purchases by the suppliers’ cities as found in the Cities
document is represented by the external dimension: SupplierCities = {(“A.A.”, ”Los Angeles”), (“B.B.”,
“New York”), (“C.C.”, “London, Manchester”)} �

A very powerful way of specifying external dimensions is by giving an XPath expression in which the
cube’s level names can be used as variables. For example, the expression /SupplierCities/Supplier [Suppli-
erName = $Supplier]/City identifies the cities in which a supplier is located given the supplier’s name. This

9

situation, where some information in the cube can be used to identify the external values, is very common,
since this information represents the semantical relationship between the two data sources. In the example,
it is only natural that the suppliers’ names are also present in the XML document, since without them the
list of supplier cities would be useless. The level used to identify the external values is referred to as the
defining level. However, the names that are used in the cube and in the XML document may not be of the
same type, e.g. abbreviated names are used in the Purchases cube while the full names are used in the Cities
document. To handle this, an alias function can be specified that maps between the two types of names. A
more low-level way of specifying external dimensions that gives complete control of the identification of
external values is presented in [8].

An important problem with the use of external values is non-strictness, i.e. what to do when there are
more than one external node for each dimension value, as is the case for “C.C. Electronics” in the Cities.xml
document. Several different semantics are appropriate in different situations, but the following have been
found to cover most applications:

1. using all of the nodes as distinct values,
2. concatenating all the nodes into a single value, and
3. picking an arbitrary node.

The most flexible one is the first, since it allows grouping by the individual values, but it also presents
some problems as discussed later. These problems do not exist when only a single external value is used for
each dimension value. The general solution chosen here is to apply a user-defined multi-valued function to
the set of nodes. This function may e.g. be one of those listed above.

Definition 7 (External Dimension Specification) Let Levels be the set of all levels, XMLDocuments be
the set of all XML documents, Aliases be the set of all alias functions, XPathExpressions be the set
of all XPath expressions, NodeFunctions be the set of all multi-valued functions over nodes in an XML
document, and ExternalDimensions be the set of all external dimensions.

An external dimension specification is a function: XDSpec : Levels × XMLDocuments × Aliases ×
XPathExpressions × NodeFunctions → ExternalDimensions

The resulting external dimension Dx is given by: XDSpec(L,X, a, xp , fxp) = {(e, v)|e ∈ L ∧ v ∈
fxp(xp(X, a(e)))} where L is the defining level, X is an XML document, a : L → Alias is an alias
function, which may be the identity function Id : a(e) = e, xp is an XPath expression over X using
variable a, and fxp : P(S) → P(S) is a node function. �

Although any node function can be used, most applications are covered by three functions corresponding
to each of the three semantics discussed above: ALL, CONCAT, and ANY.

Example 4.2 The external dimension from Example 4.1 can be defined using the external dimension spec-
ification:

XDSpec(“SupplierCities”, Supplier, Cities.xml, {(“A.A.”, “A.A. Corp.”), (“B.B.”, “B.B. Components”),
(“C.C.”, “C.C. Electronics”)}, /SupplierCities/Supplier[SupplierName=$Supplier]/City, CONCAT) �

Rather than redefining the existing operators to work also on external dimensions, we add a new operator
δd that merges a cube and an external dimension into a new cube. The operator is called decoration since it
“decorates” a dimension in a cube with additional information.

Example 4.3 The Purchases cube can be decorated with the SupplierCities dimension as follows:
PurchasesCity = δd

[SupplierCities](Purchases)
The result of the decoration is the Purchases cube plus the dimension shown in Figure 4. �

10

T

SupplierCities

City

Supplier

T

SupplierCities

Los Angeles New York London Manchester

A.A. B.B. C.C.

Figure 4: The new Supplier dimension

The formal definition of the decoration operation can be found in [8]. Since there can be more than one
external value for each dimension value, the hierarchy may be non-strict, which means that facts may be
duplicated when performing aggregation. As discussed in Section 3, this is handled by keeping track of the
duplication and disallowing aggregations that may lead to false results.

4.2 External Measures

Extending cubes with new measure values in the vertical direction (in the following referred to as vertical
extension or just extension) is more involved than with dimensions, since a measure depends on all the
existing dimensions and not just one of them.

External measures are only allowed to contain values for a single combination of levels. Although it
is possible to allow external measures at different levels, we advice against this, because of the semantical
problems caused if there is inconsistency between the external values. For example, if the external data
specifies non-strict hierarchies, there can be several ways to compute a higher-level aggregate, each resulting
in different but equally (in)valid aggregate values. It is possible to handle this problem, e.g. by checking
the consistency of the external data before using it, but that is outside the scope of this work. However,
we do not require the external measure to be specified for the bottom combination of levels, which means
that external values at different levels can be handled by creating multiple independent external measures.
Since external measures need not be specified for the bottom level, the measure values may be missing for
some combinations of levels. This is similar to the behavior of the drill-across operation for joining multiple
cubes, where some measures may not be defined for all combinations of levels in the result.

We define an external measure to be a relation between dimension values for a combination of levels
and a single external value:

Definition 8 (External Measure) An external measure is a relation XM ⊆ {(e1, . . . , en, v)|ei ∈ Li ∧ v ∈
MV ∧∀(e′1, . . . , e

′
n, v′) ∈ XM \(e1, . . . , en, v)((e′1, . . . , e

′
n) 6= (e1, . . . , en))} where Li is a level in the i’th

dimension and MV is the domain for measure values. An external measure has a default aggregate function
fXM assigned to it. �

Example 4.4 The external measure OverheadExpenses can be created from the OverheadExpenses.xml
document:

OverheadExpenses = {(>, “A.A.”, “EC1”, 200), (>, “A.A.”, “EC4”, 300), (>, “B.B.”, “EC2”, 1100),
(>, “B.B.”, “EC3”, 800), (>, “C.C.”, “EC1”, 400), (>, “C.C.”, “EC2”, 600), (>, “C.C.”, “EC4”, 1000)}

Notice that the last value is aggregated. �

11

External measures are specified similarly to external dimensions. However, it is necessary to define
values for a combination of levels instead of just for one level. If there are more than one value for each
combination of dimension values, they must be transformed to a single value, typically by aggregating them
or by selecting one of the values.

Definition 9 (External Measure Specification) In addition to the domains used in the definition of exter-
nal dimension specifications, let AggregateFunctions be a set of aggregate functions, LevelLists be the set
of all combinations of levels, AliasLists be the set of all lists of alias functions, and ExternalMeasures be
the set of all external measures.

An external measure specification is a function: XMSpec : LevelLists×XMLDocuments×AliasLists

× XPathExpressions × NodeFunctions × AggregateFunctions → ExternalMeasures .
Let L = (L1, . . . , Ln) be a list of levels such that for dimensions not used to identify the external

values, the top level is specified, A = (a1, . . . , an) be a list of the corresponding alias functions, X be
an XML document, and xp be an XPath expression over X using variable names defined by A. Also,
let fxp and fMx be the node function and the default aggregate function, respectively. Then the result-
ing external measure Mx is given by: XMSpec(L, X,A, xp , fxp , fMx) = {(e1, . . . , en, v)|ei ∈ Li ∧
v ∈ MV ∧ v = SingleValue(X,A, xp , fxp)} where SingleValue(X,A, xp , fxp) = fxp(xp(X, ai1(ei1), . . . ,
aik(eik)))if xp(X, ai1(ei1), . . . , aik(eik)) 6= ∅, k ≤ n and NULL, otherwise. �

Which node functions to use depends on the particular application, but either SUM or ANY makes sense
in most situations. The aggregate functions used here are the standard SQL aggregate functions SUM, MIN,
MAX, COUNT, and AVG. Notice that all levels not part of the identifying XPath expression must be specified
as the top level. This is also similar to the behavior of the drill-across operation.

Example 4.5 The external measure in Example 4.4 can be specified from the OverheadExpenses.xml doc-
ument as follows: OverheadExpenses = XMSpec((>Time , Supplier, EC), Overhead.xml, (Id, Id, Id), /Over-
headExpenses/Supplier [@Name=$Supplier]/EC[@Name=$EC], SUM, SUM) �

The actual extension of a cube with the new measure is performed by the vertical extension operator
δm. When extending a cube with an external measure, only the existing facts are extended. That is, no new
facts are created. This is necessary to avoid creating facts that are incorrect with respect to the real world.
For example, when adding a new measure “transportation cost” to the Purchases cube, the measure may be
taken from an XML document with general information about transportation costs between major cities in
the world. If all the external measure values were treated as new facts, a large number of new purchases that
never actually happened would be created in the cube.

Formally, vertical extension is defined as:

Definition 10 (Vertical Extension) Vertical extension δm of a cube C = (N,D,F) is defined as:
δm
[XM]

(C) = C ′ where C ′ = (N,D,F ′). The new fact table is given by:
F ′ = {(e1, . . . , en, v1, . . . , vm, vx)|(e1, . . . , en, v1, . . . , vm) ∈ F (∃vi ∈ {v1, . . . , vm}(vi 6= NULL))∧vx =

Val(e1, . . . , en)} where Val(e1, . . . , en) =

vext if∃(e1, . . . , en, vext) ∈ XM

fXM ({v}) if@(e1, . . . , en, vext) ∈ XM

∧{v|∃(e′1, . . . , e
′
n, v) ∈ XM (∀e′i ∈

{e′1, . . . , e
′
n}(e

′
i v ei))} 6= ∅

NULL otherwise.
�

Vertical extension only affects the fact table. Intuitively each fact is extended with any external informa-
tion that is available, either directly from the external measure or by calculating it from lower-level values
in the external measure. If this is not possible, the measure value is NULL, denoting that it is missing.

12

Example 4.6 The result of extending Purchases′′ with the OverheadExpenses measure (OE) is shown in
Table 2. �

Cost Units OE Suppliers ECs

9800 3000 200 A.A. Supplier FF Class

9400 3000 800 B.B. Supplier FF Class

14400 4000 400 C.C. Supplier FF Class

16700 5000 1000 C.C. Supplier G Class

19200 6000 1000 US Country FF Class

14400 4000 400 UK Country FF Class

16700 5000 1000 UK Country G Class

33600 10000 1400 > >Sup FF Class

16700 5000 1000 > >Sup G Class

9800 3000 200 A.A. Supplier >>EC

9400 3000 800 B.B. Supplier >>EC

31100 9000 1400 C.C. Supplier >>EC

19200 6000 1000 US Country >>EC

31100 9000 1400 UK Country >>EC

50300 15000 2400 > >Sup >>EC

Table 2: Fact table external OE measure

4.3 Extensions to TSQL

Using the decoration and vertical extension operators, the selection and GP operators can be used as on
ordinary cubes. However, a few changes to the TSQL language are needed to allow the definition of external
dimensions and measures. The following changes are made to TSQL’s SELECT construct: 1) external
dimensions and measures can now be referenced in the SELECT clause, and 2) levels in external dimensions
can be used in the WHERE clause. Notice that dimension values in external dimensions cannot be used in
the DRILL DOWN clause. This is because external dimensions only have a single level below the top level
(apart from the bottom level which is always identical to the bottom level of the dimension being decorated)
and both of these levels are implicitly part of the DRILL DOWN clause.

Example 4.7 The following TSQL query includes the external dimension and measure defined above:

SELECT [SupplierCities], [ECs], [Cost],
[OverheadExpenses]

FROM [Purchases]
WHERE [SupplierCities].[City] IN

(’Los Angeles’, ’London’)
DRILL DOWN ([ECs].[FF].CHILDREN,

[ECs].[L].CHILDREN) �

In addition, two CREATE statements, and corresponding DROP statements, are defined below to pro-
vide a practical way to create and drop new dimensions and measures in a cube based on external XML
data. A CREATE EXTERNAL DIMENSION statement specifies an external dimension, while the CREATE

EXTERNAL MEASURE specifies an external measure. Of course, since the data is located externally, the
data is not retrieved and the dimensions or measures are not created until a query is actually evaluated. The
values specified in each of the statements correspond closely to the elements of the dimension and measures
specifications. We will show the syntax by the two examples below.

13

Example 4.8 The TSQL equivalent of the specification in Example 4.2 is:
CREATE EXTERNAL DIMENSION SupplierCities
IN CUBE Purchases
FROM Cities.xml
IDENTIFIED BY /SupplierCities/Supplier[SupplierName

=$Supplier]/City
USING Supplier AS $Supplier
WITH ALIASES SupplierNameMappings
WITH SEMANTICS CONCAT

Here, SupplierNameMappings refers to the name of a table containing supplier-alias pairs. �

Example 4.9 The external measure specification in Example 4.5 is equivalent to the following TSQL query:
CREATE EXTERNAL MEASURE OverheadExpenses
IN CUBE Purchases
FROM OverheadExpenses.xml
IDENTIFIED BY /OverheadExpenses/Supplier[@Name

=$Supplier]/EC[@Name=$EC]
USING (Supplier AS $Supplier, EC AS $EC)
WITH SEMANTICS SUM

WITH AGGREGATE FUNCTION SUM �

Before presenting the prototype system supporting these extensions to the TSQL language, we will
briefly consider how the changes affect the user interface.

4.4 Extending the User Interface

The new facilities in the TSQL language are primarily intended to be used by database administrators and
sophisticated users. For the average user, who will just use the external data, there will simply be more
dimensions and measures to select from when building cube views. However, one of the key selling points
of the TARGIT system is its short installation and configuration time and thus, the user interface is still of
primary concern. Moreover, with the right user guidance (e.g. by the use of “wizards”) it may be possible
for the average user to add external data, at least with a reduced set of configuration options. However, this
UI design challenge is outside the scope of this paper.

The following is a sketch of a usage situation for a database administrator using the administrator tool.
1) the user chooses a cube and selects either “Add external dimension” or “Add external measure” in the
administrator tool; 2) the user is asked to identify an XML document. This can be done by typing in a URL
or by “capturing” the URL from a regular web browser. It can also be selected from a predefined list of the
company’s external data sources or it may be provided by a third-party “data broker”; 3) the structure of the
XML document is displayed graphically as a tree next to the structure of the cube. Any correspondences
between XML and cube data that can be identified automatically (based on their names and possibly the
data) are marked by links between the two graphical representations; 4) the user can now create new links by
dragging XML nodes onto the cube representation. While doing this, the data is analyzed in the background
to determine whether all the corresponding values in the cube and in the XML document can be derived
automatically. If any values cannot be matched, the user is asked to specify aliases for these values; 5)
the user is asked for the name of the external dimension or measure, the semantics, the default aggregate
function, etc. Default values are suggested based on the data.

When an external dimension or measure has been specified, the user of the client tool can select these
external data from a list in the same way ordinary dimensions and measures are used. Thus, only very few
changes are needed in the client tool.

14

5 Architecture of the TARGIT Extension

Overall Architecture In current OLAP systems, including MS Analysis Services, which is used for the
prototype, it is not possible to add new dimensions and measures without processing the cube. MS Analysis
Services [3], allows so-called changing dimensions to be created, which do not require the cube to be fully
processed, but a partial processing is still needed, making it infeasible to do at query time. Also, non-strict
dimensions are not allowed, which is necessary to provide flexible handling of external data. This means
that external dimensions and measures cannot be implemented simply by adding them physically to the
cube at query time and, consequently, a different approach is taken here. The basic idea is to evaluate a
TSQL query by constructing and evaluating an OLAP query and a set of XML queries separately, and then
combining the results of these queries using a relational database. This has the additional advantage that
any OLAP server can be used. In order to achieve acceptable performance with this approach, it is assumed
that the temporary tables can be stored on the same machine as the OLAP database.

The overall architecture is shown in Figure 2(b) with an indication of which technologies are used in the
prototype. The Cube TSQL Evaluator (referred to as TSQL Evaluator in the following), processes TSQL
queries fed to it by the client tool by fetching data from the OLAP and XML components and combining
it in a temporary component. A relational DBMS is used for the temporary component because the final
result can easily be computed by joining the fact table resulting from the OLAP component query, and
tables containing the external data. Another auxiliary component stores metadata used in the evaluation of
a TSQL query such as specifications of the external dimensions and measures. Both the temporary and the
metadata component uses the MS SQL Server DBMS.

TSQL Evaluator The architectural design of the TSQL Evaluator is shown in Figure 5. When a TSQL
query is posed to the TSQL Evaluator it obtains an available Request Thread from a pool of threads and
passes the query to it. The Request Thread uses the Parser to transform the query string into a query tree
and passes this on to the Query Evaluator. Here, it is determined whether the Cache Manager can provide
the requested result or a part of it. At this point, a number of asynchronous requests for external data not
found in the cache are issued to the Execution Engine.

The next step is for the Query Evaluator to find an optimal evaluation plan, considering various op-
timization techniques as discussed in Section 6. When selecting the optimal evaluation plan the Query
Evaluator makes use of the cost estimates provided by the Global Cost Evaluator. Based on the plan, the
Execution Engine asynchronously evaluates an MDX query on the cube. All queries issued by the Exe-
cution Engine are performed by a Component Interface, which also handles any local optimization of the
individual queries and maintains the cost information for its data source. If the result of an XML query
becomes available before it was anticipated and the OLAP query has not yet been posed, the global plan is
reconsidered. Upon completion of the component queries, the Execution Engine informs the Cache Man-
ager about the intermediate results that have been added to the temporary component during execution of
the TSQL query. These results can then be used by the Cache Manager until they expire.

The TSQL Evaluator also uses pre-fetching of intermediate results to increase query performance. This
is handled by the Pre-fetcher. When the load of the system is low, the Pre-fetcher executes a number of
component queries, and stores these intermediate results in the temporary component. It then informs the
Cache Manager about these results, making them available for use in subsequent TSQL queries.

6 Query Processing

Given the overall architecture presented above, the evaluation of a TSQL query is performed in these main
steps: 1) split the TSQL query into a pure OLAP query and a set of XML queries; 2) evaluate these queries
in parallel; 3) join the OLAP fact table and the tables containing external data as specified by the decoration

15

Data Source

Global Cost
Evaluator

Metadata
Manager

Parser

Query Evaluator

Request Thread

Execution Engine

Cache Manager

Pre-fetcher

Component
Query Evaluator

Component Interface

Component
Cost Evaluator

Statistics
Manager

Request or update

Request
or update

Evaluate
cost

Evaluate
cost

Request

Execute
query

Request
Evaluate
cost

Update

Execute
query

Figure 5: Architecture of the TSQL Evaluator.

and extension operators. 4) perform any additional grouping and/or selection on the combined result.
Generally, the performance of a TSQL query using external dimensions or measures will not be as

good as if these data were integrated physically. However, for many queries, it is possible to achieve a
performance close to that of the corresponding query on physically integrated data. We now discuss a
number of optimization techniques. The three most significant ones are caching of full or partial query
results, determining an optimal evaluation strategy, and “inlining” of external selection predicates.

The technique that is likely to provide the largest general performance improvement is caching. Ba-
sically, this is done by keeping some of the otherwise temporary tables produced during the evaluation of
a TSQL query. In principle, all of the intermediate results produced during the evaluation could be kept
for later use, but this is not a very efficient way of utilizing the cache space. Instead, we attempt to cache
only the most useful intermediate results. However, which results are most useful depends e.g. on the exact
pattern of usage for the system and thus, no single caching strategy is best for all situations. Instead, the
caching strategy is based on assigning a score to each of the temporary tables and using this to determine
which tables to expunge when the cache fills up. This score is determined from a number of factors that
affect the quality of the cached table.

The evaluation strategy described above is not always optimal. Most significantly, the order in which
decorations and extensions are performed may have a large impact on query performance. Generally, exten-
sion is performed before decoration which means that the dimension table is only joined with the combined
fact table, rather than with both the OLAP result and the external measure table. Decorating with an ex-
ternal dimension may result in a much smaller fact table than before e.g. if the dimension is only used for
selection. However, decoration may also increase the size if any dimension values are decorated by more
than a single decoration value, i.e. if the hierarchy is non-strict. Extension does not change the number of
rows in the result but it may change the total size of the table significantly. Which of these join orderings
are the fastest is also affected by other aspects such as the size of the DBMS cache. To decide the order of
decorations and extensions, the cost of each approach is estimated and the fastest is chosen. An estimation

16

may have to be performed for each combination of the external dimensions and measures, but since their
number will usually be small (rarely more than 2–3), the overhead of the estimations will be limited.

The external predicate inlining technique [8] is used to evaluate selection predicates with references to
external dimensions more efficiently. The straightforward way of evaluating these predicates is to retrieve
only values for the lowest aggregation level from the cube, decorate with the external dimensions, evaluate
the predicate, and finally calculate all the higher-level aggregates. If an external dimension is only used
for selection it will have to be removed again before aggregation. To be able to decorate with an external
dimension, the defining level of the dimension must be present in the intermediate cube result and this may
increase its size significantly. Consequently, such a predicate may result in a considerable performance
reduction. However, the inlining technique transforms the TSQL predicate such that it can be evaluated in
the cube query without actually decorating with the external dimension. The basic idea is to evaluate the
original predicate on the external dimension table, getting back a set of literal data values, and construct a
new predicate that refers only to these literal values. For example, a predicate “[SupplierCities] IN (’Los
Angeles’,’New York’)” is translated to “[Supplier] IN (’A.A’,’B.B’) which can be evaluated entirely in the
OLAP component, resulting in much better performance.

When evaluating a TSQL query, it is first determined whether the whole or a part of the final result is in
the cache. If a useful cached result is found, it is used. If no cached result can be used, the next step is to
fetch the external data. Before starting new external queries for XML data, however, the cache is searched
for external data that can be used in the evaluation, i.e. either external dimension and measure tables or
raw XML data. For each subpredicate in the WHERE clause that refers to an external dimension, it is then
determined whether the subpredicate should be inlined or evaluated after the OLAP query has completed.
This is done by estimating and comparing the costs of the different strategies. It is then necessary to wait
for the external dimension data for each of the subpredicates that should be inlined. While waiting, the
inlining strategy is reconsidered if the estimated retrieval time for any of the external data to be inlined is
exceeded significantly, or if any of the data that should not be inlined arrives before it was expected. When
all external data to be inlined has been stored in tables, the OLAP query is constructed and started. Next,
the same query is formulated in SQL and evaluated on the external measure tables when the measure data
has been retrieved. Finally, the decoration/extension strategy is determined by comparing the costs of the
different strategies. The decorations and extensions are then performed and the subpredicates that were not
inlined are evaluated. Additional grouping may also be performed to remove levels only used for decoration.

The cost model consists of three submodels, one for the OLAP component, one for the XML compo-
nents, and one for the temporary component. The OLAP cost model uses parameters such as query overhead
time, disk read rate, fact and cube sizes, rollup fractions, predicate selectivity, and the use of pre-aggregation
to determine OLAP cost estimates. The XML cost model uses parameters such as query overhead time, data
read rates, network transfer rates, and documents parameters such as node sizes, fanouts, predicate selectiv-
ity, and path cardinality. The temporary component cost model is a standard relational cost model. The cost
model parameters are generally estimated using probing queries and are adapted when the real queries are
executed. Experiments show the cost models to work well.

We have performed a set of experiments with the prototype, using TPC-H data. The experiments showed
that for many queries, our federated approach is a viable alternative to physical integration. Especially the
inlining and caching techniques provided dramatic performance gains. Of course, some queries can never
be evaluated efficiently in a federated setting.

7 Conclusion and Future Work

In this paper we have presented a flexible extension to the TARGIT OLAP client that allows dimensions
and measures to be based on XML data residing outside the cube, e.g. on a Web-page. These dimensions

17

and measures can then, transparently to the end user, be used as ordinary dimensions and measures in the
cube. The theoretical work presented in this paper has covered a flexible method for integrating external
measures in OLAP databases as well as an formalization and extension of the TARGIT system’s internal
multigranular data model and query language with the ability to define and use external dimensions and
measures. Additionally, a set of optimization techniques have been developed for the TARGIT system,
which significantly extends the number of queries that can be evaluated efficiently. Most notably, a flexible
caching approach has been proposed, and the inlining technique, which was also described in earlier work,
has been adapted to the TARGIT platform. Another primary aspect of this work has been the construction
of a working prototype, designed and implemented based on the theoretical results and the existing TARGIT

system. We believe these contributions to be novel and interesting to both the database research and industry
communities.

Future work will focus on evaluating and improving the prototype in order to include it in the TARGIT

Analysis product, which is expected to happen over the next few releases. Another interesting direction
could be to let the system choose between logical and physical integration of external data based on the
usage pattern, the source’s update frequency, the amount of processing required to perform the physical
integration etc.

References

[1] S. Chawathe et al. The TSIMMIS Project: Integration of heterogeneous information sources. In Proc.
of IPSJ, pp. 7–18, 1994.

[2] F. Gingras and L. V. S. Lakshmanan. nD-SQL: A Multi-Dimensional Language for Interoperability
and OLAP. In Proc. VLDB, pp. 134–145, 1998.

[3] C. Graves et al. Professional SQL Server 2000 Data Warehousing with Analysis Services. Wrox Press,
2001.

[4] J. M. Hellerstein, M. Stonebraker, and R. Caccia. Independent, Open Enterprise Data Integration.
IEEE Data Engineering Bulletin, 22(1):43–49, 1999.

[5] R. Kimball. The Data Warehouse Toolkit. Wiley, 1996.

[6] T. Lahiri, S. Abiteboul, and J. Widom. Ozone - Integrating Semistructured and Structured Data. In
Proc. of DBPL, 1999.

[7] M. Middelfart. A Vision For Business Intelligence Systems in the Decade to Come. Technical report,
Targit, 2001.

[8] D. Pedersen, K. Riis, and T. B. Pedersen. XML-Extended OLAP Querying. In Proc. of SSDBM,
pp. 195–206, 2002.

[9] D. Pedersen, K. Riis, and T. B. Pedersen. A Powerful and SQL-Compatible Data Model and Query
Language for OLAP. In Proc. of ADC, pp. 121–130, 2002.

[10] M. T. Roth et al. The Garlic Project. In Proc. of SIGMOD, p. 557, 1996.

[11] A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases. ACM Computing Surveys, 22(3):183–236, 1990.

[12] Targit A/S. www.targit.com. Current as of June 30th, 2003.

18

[13] W3C. XML Path Language (XPath) Version 1.0. www.w3.org/TR/xpath. Current as of June
30th, 2003.

[14] W3C. Extensible Markup Language (XML) 1.0 (Second Edition). www.w3.org/TR/REC-xml.
Current as of June 30th, 2003.

[15] W3C. XQuery 1.0: An XML Query Language. www.w3.org/TR/xquery/. Current as of June
30th, 2003.

19

