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An Analysis of the PLLs With Secondary Control
Path

Saeed Golestan, Member, IEEE, Malek Ramezani, Member, IEEE, and Josep M. Guerrero, Senior Member, IEEE

Abstract—The phase-locked loops (PLLs) are widely used in
different areas of applications particularly for synchronization
and control purposes in grid connected applications. A major
challenge associated with the PLLs is how to improve their
dynamic performance without jeopardizing their stability and
filtering capability. Recently, some approaches based on adding
a secondary control path (SCP) to the PLL structure have been
proposed to deal with this challenge. The objective of this paper
is to briefly analyze these approaches. The study starts with an
overview of the PLLs with SCP. The paper proceeds with the
small-signal modeling of some of these PLLs, which significantly
simplifies the analysis. Using these models, the effects of adding
the SCP on the PLL structure are studied. The obtained results
show that the SCP may not be a practical approach to improve
the PLL dynamic performance mainly because it aggravates the
stability problem.

Index Terms—Dynamic performance, phase locked loop (PLL),
synchronization.

I. INTRODUCTION

GENERALLY speaking, a PLL is a closed-loop feedback
control system which synchronizes its output signal in

frequency as well as in phase with an input signal [1]. The
phase detector (PD), the loop filter (LF), and the voltage
controlled oscillator (VCO) are the main building blocks of
a typical PLL [2].

A major challenge associated with the PLLs is how to
improve their dynamic performance without jeopardizing their
stability and filtering capability. To overcome this challenge,
several approaches have been proposed in literature, which are
reviewed in the following.

To provide a fast dynamic response and, at the same time, to
achieve a high disturbance rejection capability, Freijedo et al.
[3] suggest to add one or more lead compensators in cascade
with the LF in the forward path of the PLL. The suggested
lead compensators are second order and have pairs of purely
imaginary poles and zeros. So, they provide the selective
cancellation like a notch filter without lagging the loop below
−180◦ (stability limit). Thus, the PLL can achieve a high
bandwidth (a fast dynamic response) without jeopardizing the
stability and the filtering capability.
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To improve the PLL dynamic performance during the
startup and phase jumps without degrading its filtering capa-
bility, an effective method based on adaptive adjustment of the
gain of the frequency estimation loop is suggested by Karimi
Ghartemani et al. [4]. This approach has a general form and
can be applied to a wide variety of three-phase and single-
phase PLLs.

To provide a fast phase angle re-tracking during the tran-
sients, Thacker et al. [5] suggest to add a frequency feedback
(FFB) term to the PD. During the transients, the FFB term
dynamically adjusts the LF gains, while keeping the LF
zero fixed, thus improves the PLL dynamic response. This
approach, similar to the Karimi’s approach [4], is applicable
to a wide range of single-phase and three-phase PLLs.

To improve the stability and dynamic performance of the
pre-filtered synchronous reference frame PLLs (SRF-PLL)
while maintaining good filtering capability using a derivative
filtered proportional-integral-derivative (PID) controller as the
LF is suggested in [6]. Compared with the commonly adopted
proportional-integral (PI) type LF, the PID-type LF provides
an additional degree of freedom, and enables the designer to
compensate the phase delay introduced by the pre-filtering
stage of the PLL.

In recent years, some approaches based on adding a sec-
ondary control path (SCP) to the PLL structure have been
proposed in literature [7]-[10]. Supposedly, the SCP improves
the PLL dynamic performance without affecting its stability
condition. However, no formal analysis has yet been performed
to support this claim.

This paper deals with the analysis of the PLLs with SCP.
The study starts with a brief overview of these PLLs. The
small-signal modelling of these PLLs are then presented which
simplifies the analysis. Using these models, the effects of
adding the SCP on the PLL structure are briefly studied. The
obtained results show that adding the SCP to the PLL structure
may not be a practical approach to improve its dynamic per-
formance mainly because it aggravates the stability problem.

II. OVERVIEW

Fig. 1 shows the basic scheme of the proposed PLL by
Riccardo et al [7], which includes a classical quadrature PLL
(qPLL) and a SCP. The SCP operates in a dq reference
frame, rotating synchronously with the grid voltage nominal
angular frequency ωn, and provides an estimation of the grid
voltage angle. The authors in [7] claim that the suggested
SCP improves the PLL dynamic response without affecting
its stability condition. To justify this, the small-signal model
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Fig. 1. Basic scheme of the feedforward qPLL (FFqPLL) [7].

Fig. 2. Small signal model of the FFqPLL [7].

of the FFqPLL is obtained as shown in Fig 2. In this model,
the action of SCP is modeled by an unknown transfer function,
named G(s). Then, it is discussed that the poles of G(s) are
external to the feedback loop. Consequently, the presence of
the SCP has no effect on the qPLL stability.

Fig. 3 shows the proposed PLL by Rani et al. [8], which
includes a conventional SRF-PLL and a SCP. In this PLL,
referred to as the feedforward frequency PLL (FPLL), the
VCO’s center frequency is dynamically adjusted by the SCP.
The authors in [8] claim that the suggested SCP improves the
PLL dynamic performance without jeopardizing its stability
condition.

In [9] and [10], a PLL referred to as the all-digital PLL
(ADPLL) is proposed. The ADPLL can be understood as a
traditional digital PLL (DPLL) which a SCP has been included
in its structure. The SCP is a period detector which makes the
center frequency changeable. Its main purpose, as mentioned
in [9] and [10], is to improve the DPLL tracking speed. In the
small-signal model of the ADPLL, the dynamics of the SCP
has been neglected (see Fig. 5 in [9] and [10]).

III. SMALL-SIGNAL MODELING

In this section, the small-signal modeling of the FPLL and
the FFqPLL are presented. These models consider the dynam-
ics of the SCPs. Regarding the ADPLL, this modeling cannot
be done, as no detailed information about the implementation
of SCP is given in [9] and [10].

A. FPLL

For the sake of simplicity, let the three-phase input voltages
of the FPLL be of the form

va(t) = V cos

θ︷ ︸︸ ︷
(ωt+ φ)

vb(t) = V cos(ωt+ φ− 2π/3)
vc(t) = V cos(ωt+ φ+ 2π/3)

(1)

Fig. 3. Basic scheme of the feedforward frequency PLL (FPLL) [8].

Fig. 4. The small-signal model of the conventional SRF-PLL.

where V , ω, and φ are the input voltages amplitude, angular
frequency, and initial phase-angle, respectively.

Applying the Clarke transformation to the three-phase input
voltages (1) yields the αβ coordinate voltages as[

vα(t)
vβ(t)

]
=

[
V cos(θ)
V sin(θ)

]
. (2)

According to Fig. 3, the SCP output signal can be expressed
in the Laplace domain as

ωf (s) = LPF(s)× L

(
d
{
tan−1 (vβ (t) /vα (t))

}
dt

)
. (3)

where L denotes the Laplace operator.
Substituting the αβ coordinate voltages (2) into (3), yields

ωf (s)= LPF(s)× L

(
d
{
tan−1 (tan(θ))

}
dt

)

= LPF(s)× L
(
d {θ}
dt

)
︸ ︷︷ ︸

ω

= LPF(s)× ω(s). (4)

Using (4), and the small-signal model of the conventional
SRF-PLL as shown in Fig. 4, the small-signal model of the
FPLL can be obtained as shown in Fig. 5. An alterna-
tive mathematically-equivalent representation of this model is
shown in Fig. 6.

B. FFqPLL

The small-signal modeling of the FFqPLL is performed
under the same simplifying assumption as in the case of
FPLL, i.e., considering the input voltages as an undistorted
and balanced three-phase system.

As shown in Fig. 1, the dq coordinate voltages in the
SCP are obtained by applying the Park transformation with
a rotating angle of θn = ωnt to the αβ coordinate voltages,
i.e., [

vd(t)
vq(t)

]
=

[
cos(θn) sin(θn)
− sin(θn) cos(θn)

] [
V cos(θ)
V sin(θ)

]
=

[
V cos (θ − θn)
V sin (θ − θn)

]
(5)

These dq coordinate voltages are then passed through two
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Fig. 5. The small-signal model of the FPLL.

Fig. 6. Alternative mathematically-equivalent representation of the small-
signal model of Fig. 5.

low-pass filters (LPFs). The SCP output signal θf is finally
obtained by applying the inverse tangent operation to the
outputs of the LPFs, and adding θn to the result. It is very
difficult to analytically obtain a compact expression for θf .
However, based on extensive simulation studies, we have
found that it can be approximated by

θf (s) ≈ LPF (s) [θ(s)− θn(s)] + θn(s) (6)

when the grid voltage frequency is close to its nominal value;
the more closer the grid frequency to its nominal value, the
more accurate the approximation.

Using (6), and considering that the qPLL and the conven-
tional SRF-PLL are actually the same systems, the small-signal
model of the FFqPLL can be obtained as shown in Fig. 7,
which is very similar to the FPLL’s small-signal model (Fig.
6).

To evaluate the accuracy of the obtained small-signal mod-
els, a performance comparison between the PLLs under study
and their small-signal models is carried out. In this study, a PI
controller as the LF (i.e., LF(s) = kp+ki/s where kp and ki
are the proportional and integral gains, respectively), and a first
order LPF as the filter of the SCP (i.e., LPF(s) = ωp/(s+ωp),
where ωp is the cutoff frequency) is considered. The values of
the control parameters are summarized in Table I. The obtained
results are shown in Fig. 8. It can be observed that, for both
PLLs, the small-signal model can accurately predict the actual
PLL behavior.

IV. EFFECTS OF SCP

This section deals with the study of the effects caused by
SCP. It was shown that the FPLL and the FFqPLL have almost
same small-signal models. Therefore, throughout this study,
the FPLL’s small-signal model is considered.

TABLE I
PLLS PARAMETERS VALUES.

Parameter Value
Proportional gain, kp 70

Integral gain, ki 6500
Cutoff frequency, ωp 30 rad/s

Amplitude, V 1 pu
Sampling frequency, fs 10 kHz
Nominal frequency, ωn 2π50 rad/s

Fig. 7. The small-signal model of the FFqPLL.

A. Stability

The aim of this section is to answer this question: Does the
SCP affect the PLL stability?

It is clear from Fig. 5 that without the SCP, the FPLL is
the conventional SRF-PLL. Therefore, according to Fig. 4, the
open-loop transfer function can be obtained as

GSRF
ol = V LF (s)

1

s
. (7)

In most applications, a PI controller is selected as the LF, i.e.,
LF (s) = kp + ki/s. With this selection, (7) can be rewritten
as

GSRF
ol = V

kps+ ki
s2

. (8)

which describes a type-2 control system. Notice that a type-N
control system is characterized by presence of N poles at the
origin in its open-loop transfer function [11].

Now, the open-loop transfer function with considering the
SCP is obtained. From Fig. 5, and by considering the LPF
block in the SCP as a first-order LPF, i.e., LPF (s) =
ωp/(s+ωp), the open-loop transfer function of the FPLL can
be obtained as

GFPLL
ol =

θ̂

θe
=

(V kp + ωp) s
2 + V (ki + kpωp) s+ V kiωp

s3
(9)

By comparing (9) with (8), it can be concluded that the SCP
increases the type of the tracking loop by one. It is known that
increasing the type of tracking loop aggravates the stability
problem [12], [13]. Therefore, contrary to what was reported
in [7] and [8], the SCP affects the PLL stability.

B. Static Performance

In this section, the effect of the SCP on the steady-state
performance of the PLL is investigated.

It was shown in previous section that the SCP increases the
type of tracking loop by one. It is well-known that increasing
the type of tracking loop enables the control system to track
faster reference signals with a lower steady-state error [13].
Therefore, it can be concluded that, in terms of the steady-
state performance, the SCP improves the PLL performance.
For example, Fig. 9 provides a comparison between the SRF-
PLL (FPLL without SCP) and the FPLL when the grid voltage
frequency changes linearly with time. The control parameters
are given in Table I. As shown, the FPLL yields a zero steady-
state phase error during frequency ramping interval, while the
SRF-PLL has a steady-state phase error of about 0.9◦. This
result was expected as the FPLL is a type-3 control system.
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Fig. 8. Performance comparison between (a) the FPLL and its small-signal model, (b) the FFqPLL and its small-signal model under a phase-angle jump of
+40◦ and a frequency step change of +5 Hz.

Fig. 9. Performance comparison between the FPLL and SRF-PLL (FPLL
without SCP) when the grid frequency changes linearly with time.

C. Dynamic Performance

In this section, the effect of SCP on the PLL dynamic
performance is studied.

From Fig. 5, the closed loop transfer function of the FPLL
can be obtained as

GFPLL
cl (s) =

θ̂

θ

=
(V kp + ωp) s

2 + V (ki + kpωp) s+ V kiωp
s3 + (V kp + ωp) s2 + V (ki + kpωp) s+ V kiωp

(10)

Fig. 10 shows the Bode plots of the closed-loop transfer
function (10) for V = 1 pu, kp = 70, ki = 6500, and four
different values of ωp: ωp = 0, 30, 300, and 1000 rad/s. Notice
that ωp = 0 corresponds to disconnecting the SCP from FPLL.
From Fig. 10, it can be observed that the presence of the
SCP increases the PLL closed-loop bandwidth, and in this
way improves the PLL dynamic performance. The higher the
cutoff frequency ωp, the higher the closed-loop bandwidth,
and the faster the dynamic response.

It should be emphasized here that all conclusions drawn in
section IV are for the case of using the PI-type LF in the PLL
control loop, and they may not be valid as a general rule.

Fig. 10. Bode plots of the closed-loop transfer function (10) for V = 1 pu,
kp = 70, ki = 6500 and four different values of ωp : ωp = 0 (solid line),
30 rad/s (dashed line), 300 rad/s (dash-dotted line), and 1000 rad/s (dotted
line)

V. SCP-LESS EQUIVALENT OF PLL WITH SCP

It is shown in this section that adding the SCP to the PLL
is mathematically equivalent to changing its LF.

From Fig. 5, the open-loop transfer function of the FPLL
can be obtained in general form as

GFPLL
ol (s) = V × LF(s) + sLPF(s)/V

1− LPF(s)︸ ︷︷ ︸
LF∗(s)

×1

s
. (11)

By comparing (11) with the open-loop transfer function of
the SRF-PLL, i.e., (7), it can be concluded that the FPLL
is mathematically equivalent with a conventional SRF-PLL
with LF∗(s) as the LF transfer function. For example, (12)
expresses LF∗(s) for a simple case of LF(s) = kp + ki/s
and LPF(s) = ωp/(s + ωp). Notice that the coefficient(s) of
LF∗(s) depend on the input voltage amplitude. Therefore, the
equivalency is valid for a fixed voltage amplitude.

LF∗(s) =

C0︷ ︸︸ ︷
(kp + ωp/V )+

C1︷ ︸︸ ︷
(ki + kpωp)

s
+

C2︷︸︸︷
kiωp
s2

. (12)
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VI. CONCLUSION

The aim of this paper was to analyze the PLLs with a
SCP. The paper was started with an overview of these PLLs.
The small-signal modeling of these PLLs was then presented.
Using these models, an analysis was performed. It was shown
that: 1) the SCP increases the type of PLL control loop
by one, which aggravates the stability problem; 2) the SCP
enables the PLL to track faster reference signals with a lower
tracking error; 3) the SCP increases the PLL bandwidth, and
thus improves its dynamic performance. It was also shown
that adding the SCP to the PLL is mathematically equivalent
to changing its LF. Considering that the SCP increases the
PLL implementation complexity, and aggravates the stability
problem, it can be concluded it may not be a practical approach
to improve the PLL dynamic performance. However, it may
be useful when tracking the fast reference signals, such as
frequency ramps, is necessary for the PLL.
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