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Material-point method analysis of
bending in elastic beams

S.M. Andersen’ and L. Andersen'
"Department of Civil Engineering, Aalborg University, Denmark

Abstract

The aim of this paper is to test different types of spatiaipolation for the material-
point method. The interpolations include quadratic ele@md cubic splines. A
brief introduction to the material-point method is giveim§le liner-elastic problems
are tested, including the classical cantilevered beamlgmobAs shown in the paper,
the use of negative shape functions is not consistent wéhrtaterial-point method
in its current form, necessitating other types of interpolasuch as cubic splines
in order to obtain smoother representations of field quastitlt is shown that the
smoother field representation using the cubic splines giglohysically more realistic
behaviour for impact problems than the traditional lineseipolation.

Keywords: MPM, spatial interpolation, cubic splines, beam bendingpact.

1 Introduction

Over the last decades the material-point method (MPM) hasrged as a serious
tool for numerical modelling of continuum problems invalgi large deformations
and contact between multiple bodies. The method in its otufogm has been devel-
oped by Sulsky et al. [1, 2]. The method originates from thetiga-in-cell method,
developed by Harlow [3]. Some of the early applications efriraterial-point method
include impact problems [4] and simulations of membrane§]5

In the MPM, two descriptions are used. Material points felloy the deformation
of the material are utilised to track the position and theestariables while a computa-
tional background grid is employed to solve the governingagigns. As the material
points carry all the information about the material, totaeldom exists for choosing a
mesh. Hence, the material-point method avoids some drdwlassociated with the
traditional methods adopting a purely Lagrangian or Eatedescription.



Recently, research has focused on the accuracy and tleabfetindation of the
method. In [7] the energy conservation in the material-poiethod is analysed. In
the work of Guilkey and Weiss [8], implicit time integratisnpresented, and an alter-
native implicit scheme is proposed by Sulsky and Kaul [9].ofker way to obtain a
smoother field representation is given by Bardenhagen H6te the field quantities
are smoothed by combining shape functions associated kgthdmputational mesh
and characteristic functions defined for each of the matpamts. In the work by
Love and Sulsky [11], a formulation of the material-pointtha is proposed using
hyperelastic materials and nonlinear elastodynamicsgtsiown to preserve conser-
vative field properties.

An issue that deserves attention is the choice of comput@timesh and spatial
discretization order, which is analysed in this paper. Taditional material-point
method approach has been to use a regular mesh consistewarigular or triangular
first-order elements. As known from the finite-element mdilibe use of low-order
elements can cause locking in problems where material hgnsidominant. The use
of second-order elements (or computation cells) and cuthiicess in the material-point
method is tested against first-order elements for simpkielbending problems and
problems involving impact. However, the use of second-ofidée elements implies
the use of shape functions that have the possibility to becoegative. As shown
in the appendix, negative mass associated with grid nodestisonsistent with the
MPM in its current form.

The scope of this paper is as follows. Firstly, an outlinehef governing equations
is given in Section 2. Secondly, the material-point metlsogresented in Section 3,
with particular focus on the four different spatial dis&zations. Finally, numerical
examples are given in Section 4.

2 Governing equations

A linear-elastic continuum is considered. A steel beam ciin rgasonable accuracy
be described as such a material, provided that the defansatemain small. In
this paper, only two-dimensional problems are analysedlaaéhitial computational
domain is denotef, € R?. At the timet, the domain is denoted(¢). The boundary
09 is divided into two disjoint setsd(2,, with prescribed displacements ab@. with
known traction.

The accuracy of a numerical model for an elastic continuupedds on its ability
to obey the three governing equations, i.e. balance of mtumgemmass conservation,
and conservation of mechanical energy. Firstly, consienvatf mass implies that

dp

v=20 1
p +pV-v=0, (1)
wherev = v(x, t) is the spatial velocity and = p(x, t) is the current density. Further,

V is the gradient operator and - a is the divergence of the vector fiedd Secondly,



conservation of momentum involves that
dv
Pt
whereo = o(x,t) is the Cauchy stress tensor ahd= b(x, ) is the specific body
force. Finally, mechanical energy conservation is enshyeithe equation
dE de
— =0 — b 3
whereF is the internal energy per unit mass in the current configpmad = e(x, t)
is the strain ande/dt the corresponding strain rate. Heke: B = a,;;b;; in Cartesian
coordinates. The total derivatividt is given as
dc Oc
— = — -V 4
T TN “)
wherec is the considered field quantity ards the velocity of the material relatively
to the coordinate system. When material points that folloes deformation of the
material are utilised, the relative velocity is zero and tlavective term does not
appear. Furthermore, the balance of mass is implicitlyrasisu
In order to complete the description of the continuum, a e law relating
the strain rates and the stress rates of the material is ded@de strain rate can be
determined from the equation

de 1

dt 2
where superscript’ denotes the transpose. The stress depends on the type ofmate
under consideration. A general linear-elastic constieutnodel can be expressed as

do de
dt dt’
whereD is the fourth-order elasticity tensor.

—V -0+ b, 2)

(Vv + (VV)T) , (5)

(6)

3 Thematerial-point method

3.1 Discretization

To formulate the material-point method (MPM) form of the gaving equations,
Egs. (1) to (3) must be given in a discrete form. The donfajns divided into N,
sub-domain$2, and all the mass is ascribed to material points located icehé&oid
of each domain. This provides the density field

Np
p(x,t) = Z mpd(x — X,), (7)



wherem,, is the mass associated with the material point at the sgattabinatesx,.
The values ofn,, are based on the initial configuration and they do not changegl
the computation; hence, the total mass is conserved.

In order to obtain the material gradients, a computationial ig formed. Thus,
the domain( is divided into N, finite elements. In the numerical examples, dif-
ferent kinds of discretization are applied, including fostler four-node rectangular
elements, second-order eight- and nine-node rectangelareats and cubic splines.
This defines a number of computational nod®s, with standard nodal basis func-
tions ¢;(x) associated with node By letting the nodal basis functions describe the
spatial variation, the velocity and the acceleration fieldsrepresented as

Nn

Vo) = 3 Bi0vilt), ‘;—; 2> Q)i(x)%, (®)

i=1 =

respectively, wherer;(¢) are the nodal values of the velocities at the timeThe
equations are solved in an updated Lagrangian frame, eigghiat no time derivatives
of the shape functions occur.

The weak form of the balance of momentum is obtained by midépon of Eq. (2)
by an arbitrary test functiow(x, ¢) and integrating over the domdih Standard nodal
basis functions are also used to describe the test funetjore.

wit) = Y ®x)wilt), ©

wherew;(¢) are the nodal values of the test function at the tit@incew is arbitrary,
except where displacements are prescribed, the balanceroéntum reduces to

n dv;
L = e 10
jzl m J dt 7 + 1 ( )

Herem,; = m;;(t) are the components of a consistent mass matrix formed &ntlee t
t, whereas the internal and external forces are defined as

Np

fiint — _Z%a‘p . G’ipu fext =T; +b’L7 (11)

7
1 Pr

respectively, wherg, = p,(t) ande, = o,(t) are the mass density and Cauchy
stresses at the material pojnand the time, respectively. Further,

Gip = VO;(x)[x=x, (12)

is the gradient of the nodal basis functions and the spe®fily force is given as

Np
b = m,®i(x,)b,(1), (13)
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whereb,(t) = b(x,,t) is the external acceleration associated with materialtpoin
The applied traction is found by integrating over the boupdé the domain:

T = /BQT O, (x)T(x, t)dx. (14)

In most of the numerical examples presented, lumped nodsé@saare utilised in
Eqg. (10). The lumped mass associated with nogdeexpressed as

NP
mi(t) = Y my®i(x,(t). (15)
p=1
Thereby, using lumped masses, the balance of momentum adefibed as
dv; ,
— = £ £ 16
e (16)

3.2 TheMPM-algorithm

The general algorithm of the material point method can bergas follows. A prob-

lem is formulated with a set of material points that are gia#ithe relevant material
properties. Firstly including any initial conditions, theundary conditions are im-
posed on the underlying grid and initial conditions are isgmbat the material points.
Then the time integration algorithm is started. For all tsteps,

1. a computational mesh is generated,
2. the information is transferred from the material poiotghe grid nodes,
3. the equation of momentum is solved at the grid nodes,
4. information is transferred back to the material points,
5. the state variables are updated.
Different implementations are possible. The algorithmdusethis paper is given as:
1. Initialisation of state variables at the material poaitthe timet* = 0.
2. At each time step: Generation of a computational backgtonesh.

3. Nodal velocities are calculated by solving the system

Z mf?cjvé»g = Z mpvl;q)i(xp), (17)

where} ", m¥, vk = pl is identified as the nodal momentum.



4. The strain increment&e, at material poinp and the time” are found by

Atk O
Aek = 28 (
Ep 2 =1

5. The strains are updated at the material pointsgj.&. = e} + Ael.

GEvE + (GEvhYT ) (18)

p Y zpz

6. The stresses at the material points are found accordiaghosen strain-driven
constitutive model and based on the updated strgih

7. The vectors of internal and external nodal forces areddynEq. (11).

8. Updated velocities at the material points are found usitegnal forces:

k+1 — V 4 Atk Zn Zn m 1q) fznt k (19)
=1 1
9. The new position of the material poinjts are found by
X = x + AtF % % m;;' ;(xk)ph. (20)
=1 j=1
10. The material density is updated at thejmaterial points as
Pyt = ppe VAL (21)

11. Finally, set**! = t* + At* andk = k + 1 and repeat from item 1.

Typically, the time step is constant, i.At* = At = constant. The interpolation from
the material points to the computational mesh defined by Ef).i§ a weighted-least-
squares approach [2]. Several choices have been made intordetain the above
algorithm. For instance, for momentum-based updates, F).Has been made in
order to reduce the numerical dissipation and increaseddity of the method.

Still a number of critical choices are to be made, regarding

e the size of the computational cells,

the use of an adaptive grid or a uniform grid,

the number of material points per cell,

the application of implicit or explicit time integration,

the use of a forward leap-frog algorithm or higher-ordereimtegration,

the use of consistent or lumped mass,

the type of background mesh to use.

The first three items regarding the spatial discretizatrenpaoblem specific and will
not be addressed here in more detail. The two next issudg teldahe accuracy of
the method for a given computational cost. Here, an expbamulation with forward
leap-frog integration is used. The two last issues reggrthe type of background
mesh and the use of consistent or lumped masses are analyhexdpaper.



3.3 Setting of the problem

As mentioned, the field variables are represented by thd bade functions. Thereby
also the stress increments will vary according to the shapetions used. When linear
shape-functions are applied, the gradient of the shapdifunsan either direction are
constant within an element. Hence, when more material pare located within

an element, stress-increments for all these material pairg identical. With regard
to beam problems in structural mechanics, the stress is ikrtowary according to

Navier’s equation:

ox(z,y) =

whereo, () is the normal stress\/ (x) is the moment about the neutral axisis the
coordinate along the neutral axig,s the perpendicular distance to the neutral axis
and/, is the second moment of inertia about the neutral axis. Téeswdal problem
of a cantilevered beam with the lengtltand exposed to a single fordg, is illustrated

in Figure 1. In this particular case, the moment is given\byr) = (z — L)F. This
suggests that using quadratic shape functions, whererdssshcrements are varying
linearly within each element, is better suited for the solubf beam problems. Also

it is known from finite-element theory that the use of firsti@r elements can cause
locking for this kind of problem. In the following, the elemis used for the numerical
experiments are presented.

(@ y
A P
Y
N >
L
(b) M(x) © vy
A - A
. — M(0) = PL M@0
| T~y =H/2
: -----E On
I ~
N |
A

Figure 1: A classical problem in structural mechanics: (apf@etry and boundary
conditions, (b) distribution of the bending momentf|x), and (c) distribution of the
normal stressg,,, at cross-sectiod — A.



3.4 Different interpolations used

The four types of elements utilised in the background mestshown in Figure 2.
Standard normalised coordinates are used. For the lineaesits as well as the nine-
node quadratic elements and the eight-node serendipityesie andn vary between
—landl, i.e. £ € [-1,1] andn € [-1,1]. Lagrangian interpolation functions are
applied, defined by:

e Linear element with four nodes:

e Quadratic element with nine nodes:

Ni(&,m) = 3(& =0 —n), No(&,m) = 5(1=E)(0° —n),
N3(&m) = 3+ 0> —n), Na(€,n) = 5(&+&)(1—n),
N5(&,m) = H(E+O* +n), Ne(&n) =301 -0 +n),
Nz (&) = 2(E = +n), Ns(&n) =3 =81 —n?),
No(&m) = (1 =&)(1 —n?).
e Serendipity element with eight nodes:
Ni(&n) =11 =1 =n)(=E—n—1), Nao(&,m) = 3(1 =€) (1—1n),
Ny(&,m) =11+ =n)(E—=n—1), Nu(&n) =501+ -7,
Ns(&n) =11+ +n)(E+n—1), Ne(&n) =3(1-8)(1+n),
Ne(&m) = 11 =OA+n)(=E+n—1), Ns(&n) =351 -0 —n).

The last type of interpolation employs cubic splines thatthe one-dimensional
case are given by

0 for €| > 2,
S3(€) = ¢ §(2—1¢])? for 1 <[] <2, (23)
2lEP 5P for 0< [l <1

This cubic-spline interpolation is used for each individuwaterial point and maps the
material-point values to nodes a maximum distance of twa godes away in either
direction. In two dimensions, this provides the 16-poirnsil shown in Figure 2.

Thereby the local coordinates are restrained lay[0, 1] andn € [0, 1], and the shape
functions become:



fa 8* 12T 16
) LDy Lo~ ] - (1, 1)
7 6/ 5 7 6/ 5 3 7] 1] 15
(1’ 1) nL ni—» ni—» 1
4 77T_>3 A e 4] I8 o ¢ 4] 2 6 € 10 14)
o 1 2 30 o 2 30 o 5. 9| 13
CL-D) LoD Ty Ty
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Figure 2: The different elements used: (a) Linear interpata (b) serendipity ele-
ments, (c) quadratic interpolation and (d) cubic splines.

Ni(&m) = 31 =L —n)®,  Na(&m) = 51— PE —n* + 5P,

N3(&,m) = (1 =€+ sn+ 30" — 57°),  Nu(&,n) = 55(1 — &),

N5(&m) = (3 -+ 3N3(1 =) Ne(&n) =(E -+ 38E -0+ 17°),
N(&m) = (B =+ 3G +n+ 30" — 50°),

Ns(&m) = (3= +358)5m%  No(&m) = (3 + 356+ 38 — 38%)c(1 —n)?,
Ni(&,m) = (§+ 36+ 38 — 3 E —n* +37°),

Nu(€n) = (5 + 56+ 58 = 5@ + 5n+30° — 50°),

Nip(&,n) = (% + %5 + %52 - %53)%773,

Ni(&m) = =81 =03, Nuln)=18E -0+ ),

Nis(&,m) = 23+ 3n+3n* —30°),  Nis(&n) = £E3%
Since each material point interpolates to all grid nodesouvo cells away, it is not
clear how to interpolate near the boundary. For the threeraypes of interpolation,
a rigid boundary is enforced by setting the velocity of thel grodes to zero at the

boundary. Here a simple approach is made for the cubic splRigid boundaries are
imposed by having an extra column of grid nodes where theciteds are set to zero.

4 Numerical examples

In order to test the accuracy of the different types of intéapon, the free vibrations
of a linear-elastic bar are analysed. The geometry of thiel@nois shown in Figure 3.
In the present analysis, the length of the bal is 5 and the height i = 1. Young'’s
modulus isE = 10*, while Poisson’s ratio is = 0.3 and the initial mass density
is po = 10%. A discretization with 180 material points and 45 grid noieapplied,



using3 x 3 uniformly distributed material points in each computateati. The total
time of the simulation i$;,; = 8 and the fixed time ste@t = 0.003 is utilised. The
bar is given a cosine-shaped initial velocity field

T

v(x) = Acos (f) , (24)

A small velocity amplitude ofA = 0.01 is applied in order for the grid masses to
remain positive when quadratic nine-node elements are. ugéth the other three
types of elements, large amplitudes can be prescribed witwch problems.

The velocity gradients stemming from the initial velocitglél yield strains, and
therefore stresses, thus leading to an interchange froemiatic into potential energy.
Since no material dissipation is present in the model, umpaahfree vibrations should
occur with no loss of mechanical energy. Therefore, theityuadl the different types
of interpolation may be tested by their ability to consenechmanical energy.

The energy of the system is most naturally measured by thggnéthe material
points, as they carry all the information about the probl¢lsstages of the compu-
tational cycle. As only mechanical energy is consideregl{dtal energy of the system
is given by

Etot - Ekm + Epot (25)

where E;,, denotes the kinetic energy arid,,, denotes the potential energy. The
kinetic energy is defined as

1
Eiin = = Z MyVy -« Vp (26)

and, provided that no gravitational fields or other poteriigds exist, the potential
energy is solely the strain energy of the material poings, i.

NP
Epot = % 3 ZL—:JP ‘e, 27)
p=1
Here it is noted that the strain energy is mathematically eefined, as the calculation
of stress increments according to Eq. (6) yields a hypaiela®del. Hence, only the
incremental form of the constitutive model is valid and tekatione = D : ¢ is gen-
erally not valid. However for small deformations it is presed that the expression for

OO OO0 00OO0O00OOJOOO0OO0OO0OO0O0O
OO OI0OO00OOI0O0OOJOOO0OOOOOOOOO
=05 (c]eje)0je]e]c]e]e)e]0]e]0]10]0)]0]C,0]0]e0]0],e]e]e)e]e]e)

: OO OO0 00OO0O00OOJ0OOV0OO0O00OOOO0O
OOOI0OO00OOI0O0OOJOOO0OOOOOOOOO
0 QO OI0OO0OOIOOV0OOIOOOOOI0OOOOOOO

0 1 2 3 4 5 6 7
T

Figure 3: The discretization for the vibrating-bar problem
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the potential energy is sufficiently accurate to provideinfation about the accuracy
of the different elements.

When lumped masses are used, the kinetic energy of the rodefined as

kin

N
1 n

Enodes = 5 E m;V; - V. (28)
i=1

When consistent mass is used, the nodal kinetic energyes duiy
1 o
Epptes = 5 Zmz’j"j " Vi (29)
j=1

For conservative systems, where the mechanical energyéntain constant, a total
error is defined as the change in total energy:

Stot == Etot - EZZ;LtZt (30)
Alternatively, the total error is defined as
gtot - AEkm + AEpotu (31)

whereAEy;, andAE,, express the changes in kinetic and potential energy, respe
tively, between the initial and the current configuratiortted system. In accordance
with the definitions by Bardenhagen [7], this error is divddeto an error due to inter-
polation of kinetic energy from the grid to the material @sig;,,;, and an algorithmic
error associated with everything elgg,, i.e.

(c:tot = _Sint - Salga (32)

where
8int — AEnodes o AEkmy Salg — _AEnodes o AEpot-

kin kin

In order to test the accuracy of the different elements uesl guantitiesty;,,,
Eredes ooty Eroty Eint and&,, are calculated at each time step of the simulation. The
results are shown in Figures 4 to 7 using lumped masses.

It is seen that linear elements, the 9-node quadratic elenaenl the cubic splines
all yield smooth vibrations, while the 8-node serendipigneents perform very poorly.
This is likely due to the negative grid masses associatell @atner nodes. Also, it
is observed that the total energy is almost conserved fahalkimulations. Hence,
the interpolation error and the algorithm error cancel.sTikiobserved very clearly
for the eight-node elements, where the errors are largeobaltenergy is neverthe-
less conserved. Comparing the magnitude of the interpolairor, it is smallest for
the nine-node interpolation, followed by the linear eletseomewhat surprisingly,
the interpolation error is larger using cubic splines thaimgi linear elements. When
consistent masses are used, the interpolation error becpene. In Figure 8 the in-
terpolation error is compared for the linear and the quadfahode elements and it
is clearly observed that the quadratic interpolation redube interpolation error.

11
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Figure 4: Energy measures for the vibrating-bar problemgidinode elements.
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Figure 5: Energy measures for the vibrating-bar problemgi8inode elements.
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Figure 6: Energy measures for the vibrating-bar problemgi8inode elements.
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Figure 7: Energy measures for the vibrating-bar problemgusubic-splines.
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Figure 8: Comparison of the interpolation errors.

4.1 Bending of a cantilevered beam

Next, the problem presented in Subsection 3.3 is analyset lfeam with the length
L = 8 and the heigh = 1. In [12] an analytical solution for the deflections is given
for linear-elastic materials. The horizontal deflectiogiigen by

Pz?y vPy*  Py? PL? Pc?

- . 33
u(@,y) 551 65l Toar T BEr aarV (33)
and the vertical deflection is given by
vPxy?> P2® PL?’x PL?
- . . 34
vy = S5 Y51~ 2E1 T 3E1 (34)

It is basically a quasi-static problem where equilibriurpiesumed for the bar during
the deformation. This leaves the question on how to simutaising the dynamic
framework of the material-point method as presented ab®emy solutions to this
probably exist. Here it is chosen to gradually apply a forc@ anaterial acceleration
b(xp,t). The force is linearly increased starting from zero durimg$imulation.

The material point in the upper right-hand corner is givenaaemal acceleration
corresponding to the downward foréeapplied as
—F m,

S (35)

)
mp Mot

bp?y

whereb, , denotes thei-component of acceleration of the material point, is the
mass associated with the material point, at which the acatede is applied, and;,;
is the total mass of the beam. The undeformed model is showigire 9 and the
material parameters for the beam afe= 3 - 10°, v = 0 andp, = 103. The number
of material points is 288, whereas 133 grid nodes are usdtelmitial configuration,
3 x 3 uniformly distributed material points are applied withigoh computation cell.
The total simulation time ig,,; = 20 with the time stepAt = 0.003.

Only a force of ¥ = 100, corresponding to very small deformations, is applied.
This is done for two reasons: Firstly, in order for the analgblution to be valid,
small deflections are presumed; secondly, small deflechomsiecessary to avoid a
change in sign of the nodal mass for the quadratic 9-nodesgitan
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Figure 10: Horizontal normal stresses in the cantileveeshbat the end of the simu-
lation and with different kinds of interpolation: (a) lingaterpolation; (b) serendipity
elements; (c) quadratic interpolation; (d) cubic splines.

The normal stresses at the material points at the end of thelaion with the
different element types are shown in Figure 10. It is seentki®acorrect variation of
the stress, linearly in both directions, is obtained fordight- and nine-node elements.
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Figure 11: Vertical deflection of the beam neutral axis aethe of the different MPM
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The stresses are of the same magnitude for the two typesroésts. For the linear
elements, as determined by the gradients of the shapeduascthe horizontal stresses
within an element are constant while the correct linearatamn is observed in the-
direction, i.e. along the beam. For the simulation usingcsplines it is seen that
the combination of the cubic splines in the interior anddinelements at the border
introduces an nonphysical stress variation.

In order to display the deflection of the neutral beam axis,aterage deflection
of the two material points near the neutral beam axis is tatied and plotted against
the z-coordinate. The result is shown in Figure 11. The anallygodution is also
plotted. As seen there is a considerable difference in thgnmale of the deflections.
The smaller deflections are observed for the linear intatpm while the simulation
using the cubic splines yields the largest deformationse déflections found using
the eight- and nine-node elements are almost identicalclibie splines yield a result
that is closest to the analytical solution, while the linaad the quadratic interpola-
tions yield deflections significantly lower than the anagtisolutions.

In order to show the variation of the deflections, anothewusation is performed
using cubic splines. The force is increased by an order ohihade toF’ = 800. The
final positions of the material points are plotted along wite analytical deflection
calculated from Eq. (33) and (34). The result is shown in Fagl2. Clearly, the
simulation correctly captures the basic features of théyéinaolution.

4.2 A box impacting on arigidly supported beam

A rigidly supported beam is hit by a falling box. The settirfglee problem is shown
in Figure 13. The beam has the material properfies 10°, v = 0.3 andp, = 103,
whereas the box has the properties= 10°, v = 0.3, py = 10%. As illustrated in
Figure 13, 864 material points with x 3 material points per cell are applied, and
there are 441 grid nodes in the model. The total time of thauksition ist,,; = 3,
using a time step oh¢ = 0.005, and the initial velocity of the box ig{"* = (0; —2),
i.e. the box moves downwards.
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Figure 12: The deflection of the beam obtained using cubioapicompared to the
analytic solution {* = 800).

A change of sign of the grid masses occurs when the nine-nietieeats with
guadratic interpolation are employed. Hence, this kindlefent is not able to sim-
ulate the problem. For the remaining element types, Figifed5 and 16 show the
energy and the computational errors. The shared velocityfbethe two bodies leads
to a funny-looking final configuration, where the bar has goupward deflection as
shown in Figure 17. The energy measures do not give a very gietare of what is
going on. Therefore, the averageposition of the material points that make up the
box is plotted as a function of time in Figure 17.

The collision modelled using the cubic splines gives a munbaher collision
than the linear elements or the eight-node serendipity ehsn The upward velocity
is considerably lower, indicating that the initial kineeoergy of the box has been
transformed to kinetic energy in the beam and strain eneugpgl the collision. Also,
the figure indicates that the larger amount of kinetic ena@ngye box is maintained
in the simulations with the eight-node elements.

N >
L

Figure 13: A box falling on a beam: Definition of geometry ammdibdary conditions
(left) and initial discretization (right).
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Figure 14: Energy measures for the impact problem usingriode elements.
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Figure 15: Energy measures for the impact problem using-gigtie elements.
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Figure 16: Energy measures for the impact problem usingcaines.

5 Conclusion

Different types of interpolation for the material-point thed have been tested. As
shown in the first numerical example, the vibration of a lirelastic bar, quadratic
interpolation provides the most accurate results for theesaumber of material points
and the same global number of grid nodes. However, when tefggmations occur,
the sign of the mass interpolated to the grid nodes changasine of the nodes and
the use of quadratic elements breaks down.

The main advantage of the material-point method is thetghdihandle large de-
formations, so therefore the use of quadratic elementsydiveited. This leads to the
study of interpolation using cubic splines. As shown fontleating-bar problem, the
order of accuracy using cubic splines is only comparabléédinear interpolation.
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Figure 17: Vertical position of the box during the simulat{teft) and the deformation
in the final configuration using cubic splines (right).

The main advantage of using the cubic splines is the smoditidrrepresentation.
The advantage is demonstrated by a third numerical sinonlaai falling box impact-

ing with a beam. When linear interpolation is used, the bailleses on the beam
upon collision before it finally bounces off. Using cubicispls, the box hits the bar
and bounces off in one smooth movement as physically expetteerefore, although
computationally more expensive, the cubic splines aresbsttited for problems in
which the modelled field quantities vary in a complex way.

Perhaps the main conclusion is that, as the quadratic witgrpn is unstable and
the cubic splines do not observe a higher order of accuradhi®implementation of
the MPM, the means to obtain higher accuracy for the MPM ligsvehere. Things to
explore could be other ways of calculating internal forcgsiging another integration
than the Riemann sum over material points.
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Appendix: Material-point method with negative mass

In the traditional version of the material-point method (MPusing linear interpola-

tion, the shape functions are always positive. This is netdfise for the nine-node
guadratic element and the eight-node serendipity elemdete it is analysed, how
the method behaves, when negative grid masses are enaliniteis presumed that
lumped masses are used and that all the material points hagame mass. Without
any loss of generality, only a rigid-body motion is conseter

Step 1: A negative grid mass:} is encountered at nodeand time steg.

Step 2. The grid velocities are found according to the definition
L
Vi = EZmpV;f@i(xl;), i=1,2,...,N,. (36)
7 p=1

This yields the correct sign of the velocity relatively tethelocity of the material
points as the negative mass is cancelled by the negative $tiagtion value.
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Step 3:  The strain increments at the material points are calculased

k Nn
2= 53

=1

GE vk 4 (GEvEYT ) p=1.2,...,N, (37)

ip Vi zpz

If the gradients of the shape functions are correct, thigpeeted to yield the correct
result. The update of stains and stress does not cause aigipsoin this context.

Step 4. Calculation of the internal forces in the background gricdhisans of

Np

f;nt,k:_zmp F.Ggk o i=1,2,....N,. (38)

— 1} v
Again, this is to be correct if the gradients of the shapeftions are correct.

Step 5:  Update the velocity of the material points as

vEH = yh +Atkzz m 0 (xE), p=1,2,..., N, (39)

i=1 j=1

Here the negative sign of the mass and the negative sign afhiyge-function also
cancel each other, leading to the a consistent velocitytepda

Step 6:  Update the position of the material points,

Ak Xn
xEt = xk 4 Zk“cb ), p=12,...,N,, (40)

where the updated momentum is givenly? = vimk 4+ £/ Atk Here it is
observed that the momentum is directed opposite to the rmateomentum. In the
update of the material point positions, three quantitiesdirected opposite to the
material quantities;p} ™", m¥ and ®;(x). Therefore, the material-point update is
inconsistent when negative mass is encountered.

In the testing of the eight- and nine-node elements, twoatheristic features are
observed. The nine-node quadratic element yields very gesualts when the grid
masses do not change sign, but breaks down immediately vileemasses change
sign. For the eight-node element, the shape functions iatedavith the four corner
nodes are always negative, while the shape functions adedawith the four side
nodes are always positive. The results obtained with thiet-€igde element are very
inaccurate, but it does not get unstable, as does the nide-element. These two
observations are probably due to the ‘self restorationéreht in the material-point
method. The incorrect material-point update is to a ceraiient compensated for
in the next time step, when the new internal forces are catied! If the sign of the
nodal mass at a grid node changes between two time stepseshisation becomes
a destabilisation instead. Consequently, the simulatecsme unstable, as observed
for the nine-node quadratic element.
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