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ABSTRACT

This paper describes a neuro-control fuzzy critic design procedure based on
reinforcement learning. An important component of the proposed intelligent
control configuration is the fuzzy credit assignment unit which acts as aritic,
and through fuzzy implications provides adjustment mechanisms to the nain
controller. The main controller is the neuro-control unit consisting of a full
interconnected multi-layer feed forward neural network. The neura network
adjusts its weights according to the credit assigned to its output by the fuzz
credit assignment unit, using back propagation algorithms. The fuzzy credit
assignment unit comprises a fuzzy system with the appropriate fuzzification,
knowledge base and defuzzification components. When an external reinforcenent
signal (afailure signal) is received, sequences of control actions are evaluated and
modified by the action applier unit. The desirable ones instruct the neuro-control
unit to adjust its weights and are simultaneously stored in the memory unit during
the training phase. In response to the internal reinforcement signal (set point
threshold deviation), the stored information is retrieved by the action applier unit
and utilized for re-adjustment of the neural network during the recall phase. In
order to illustrate the effectiveness of the proposed technique, the controller is
tested on a cart-pole balancing problem. Results of extensive simulation studies
show a very good performance in comparison with other intelligent control
methods.

Keywords- Neuro, control, fuzzy, credit, reinforcement



1. INTRODUCTION

Many control theories have dealt successfully with a large class of control problens b
mathematically modeling the process and solving the analytical models to generate
appropriate control actions. However, the analytical models tend to become conplex,
especidly in large, intricate systems. The nonlinear behavior of many practicd systens and
the unavailability of quantitative data regarding the input-output relationships make the
analytical approaches even more difficult. Hence, many researchers have focused attention
on neural network and fuzzy logic techniques as viable alternatives to the traditional
controller design methods. Artificial Neural Networks (ANN) and Fuzzy Logic (FL) are
complementary technologies in that ANN uses numerica information from the systemto be
trained or controlled, while FL technique uses linguistic information extracted from experts.
Ideally, thetwo sources of information should be combined.

ANN is basicaly a numerical technique which utilizes experimental and trained
information, while fuzzy decision making is based primarily on uncertainties, imprecision,
incomplete data and approximate reasoning. Experimental data are the lowest level of
information while the judgment of an expert is the secondary source of information.
However, when numeric experimental data are scarce and expensive, they cannat provide a
firm base for training an ANN to carry out complex relationships. Thus, the aternative
sources of information are the rough and evaluative data, usually available from experts. A
fuzzy expert system is particularly suitable when the training data provide incomplete
information. Furthermore, an evaluative type of data may idedly be used in the framework
of areinforcement learning process.

In many practical cases there are sub-sections of a problem for which enough
experimental data is available, while for other parts either no data is available or they are
very limited. In these cases, the problem may be divided into appropriate sections, utilizing
advantages of both ANN and Fuzzy Logic (FL) techniques. Several authors have reported,
using this strategy for different applications [1,2]. Many different ANN topologies in
conjunction with FL have also been reported for control applications [3]. A five layer NN in
which the first or the input layer represents the linguistic input and the fifth layer those of
the output variables has been studied in [4]. In that report the second and the fourth layers
represent the membership functions for input and output respectively. The neurons in the
third layer comprise the rule base of the controller. The connections between the third and
the fourth layers form the fuzzy relations and the inference procedure. Each connection in
the third layer is an antecedent and thaose in the fourth layer are the consequents of a rule.
The back propagation algorithm is employed to train the network. Anather configuration for
the neuro-fuzzy control is the Approximate Reasoning based on Intelligent Control (ARIC)
due to Bernji [5]. The ARIC configuration essentially consists of two main parts, one is the



Action-state Evaluation Network (AEN) and the other is the Action Sdection Network
(ASN). The AEN acts as a critic and guides the main controller, and the ASN is a nulti-
layer NN-based fuzzy controller. A reinforcement learning algorithm is used to achieve the
desired performance. Lin and Lee [6,7] proposed a reinforcement structure/parameter
learning neural-network-based fuzzy logic control to solve various reinforcement learning
problems. Based ontheir previous works[7], the authors integrate two neural network fuzz
logic controllers, each of which is a connectionist model with a feed forward multi-layer
network. One network performs the fuzzy logic control function and the other predicts the
external reinforcement signa while providing compensatory and other informative data for
the controller. Both structure and parameter learning are performed automatically during the
training phase. The technique works satisfactorily as demonstrated on a cart-pole system
However, the learning speed iscomparatively low, and the method relatively complex in the
context of an on-lineimplementation.

The concept of credit assgnment is one of the frequently addressed research topics in
the field of artificia intelligence. The basic idea is that if the performance efficiency of a
process can be evaluated, then the contributing factors may be rewarded or punished
accordingly. In a rule base system, this means that a reward or a punishment may be
assigned to the set of rules. The idea was first used by Samuel [8] in the game of checkers
and Michie and Chambers [9] used the reward/punishment strategy in their boxes system. In
ancther paper, the state space is partitioned into non-overlapping parts (boxes), and b
applying forces in the opposing directions and assigning credits to the smaller regions using
two neuro-like adaptive elements, the control system is able to learn the balancing of a cart-
pole system [10].

In this paper, a neuro-control fuzzy critic design based on reinforcement learning is
developed. An important part of the proposed intelligent control configuration is the fuzz
credit assignment unit which acts as a critic and provides adjustment mechanisns to the
main controller. The main controller is the neuro-control unit consisting of a fully connected
multi-layer neural network. The neura network adjusts its weights according to the credit
assigned to its output by the fuzzy credit assignment unit, using back propagation
algorithms. The fuzzy credit assignment unit comprises a fuzzy system with the appropriate
fuzzification, data base, rule base, inference engine and defuzzification components.
Initialy, sequences of control actions are evaluated and, if necessary, modified by the action
applier unit. The desirable ones instruct the neuro-control unit to adjust its connection
weights and are simultaneously stored in the memory unit during the training phase. In
response to the internal reinforcement signal, the stored information is consequently utilized
by the action applier unit for re-adjustment of the neural network weights, during the recall



phase. In order to illustrate the effectiveness of the proposed technique, the controller is
implemented on a cart-pole balancing problem. Simulation results obtained indicate ver
good comparisonwith other intelligent control techniques.

2. NEURO CONTROL

Many characteristics of ANN have attracted control engineers to apply this technique to
severa control problems successfully [11]. The main properties of NN which make it
suitable for control applications are its ability for universal mapping, availability of efficient
learning algorithms, existence of special purpose hardware in this field and the similarity of
NN functioning to the human brain. Neuro-control techniques may be classified according to
control design strategies and objectives. Five different design strategies have been reported
in the literature [11,12] which are briefly reviewed below.

In the traditional expert systems, a control strategy is evolved based on the observation
of actions of an expert operator: supervised neuro control is based on this principle. An
essential factor in the implementation of this technique is the availability of a set of reliable
training data representing a clear relationship between the input variable U and the desired
output X. There are many network topologies and training algorithms capable of learning
the mapping of U into X. Direct Inverse Control (DIC) design approaches are particularl
suited to the problems of trgjectory following in the robotics manipulator [13,14]. If the
mapping of a control variable, such as the joint angles of a robotics arm, is invertable with
respect to the manipulated variable, such as the position of the gripper, then the DIC strateg
can be applied by training a neural network to follow the defined tragjectory in a direct
manner. The basic difference betweenNeural Adaptive Control (NAC) and the well know
conventional adaptive control method [15] is that a NN is used in the place of the usual
linear mappings. However, the implementation of the neural adaptive control strategy is
inherently more complex. One of the well known methods in the classica adaptive control is
the Model Reference Adaptive Control (MRAC) in which the control system is designed to
follow a desired reference model. A neural MRAC can be implemented by defining a cost
function as the difference between the output of the model and that of the system, and
minimizing this cost function by such method as the back propagation utility [11]. Another
problem frequently addressed in the field of adaptive control is that of dealing with hidden
and slowly varying modes and parameters of a dynamic system. This difficulty can be dealt
with by NN using either of the following two complementary methods. The first method is
based on the real-time learning in which the weights of NN are adjusted with respect to the
experienced gained during the real-time operation. Another technique is the adjustment of
the memory units related to the estimation of the hidden parameters. The combination of the
two methods results in a more effective neuro control technique. However, the conbined



methaod requires the Adaptive Critic (AC) [11] agorithm in the controller network, as well
as the system identification component in place of the back propagation agorithm. In the
conventional adaptive control, Lyapanov's function is frequently used to deal with stability.
In the case of ANC thisis more difficult and the critic network actsin avery similar way to
Lyapanov'sfunction. Basicall Adaptive Critic (AC) and Back Propagation Utility (BU) are
the realization of the optimal control methods by NN. The main idea is to define utilit
function with a performance index to be maximized and a cost function to be minimized.
Implementation of either of these methods requires more than a single NN. Generally, an
Action Network is needed to receive the current states and possibly other information as
input and to produce the control action as output. The utility function can also be
implemented by a NN (utility network) with fixed weights. In most cases there are rmodel
network having inputs as current states, sa R(t) as well as the control action U(t) and
predicts as output R(t+1) and a vector of the sensor values X(t+1). The mode network can
also be astochastic network providing estimates rather than the prediction.

3. FUZZY LOGIC CONTROL

The idea of fuzzy sets and fuzzy logic proposed by Zadeh [16] has been agpplied to man
control and decisionrmaking systems. The basic configuration of a fuzzy logic syste
consists of a fuzzy rule base and fuzzy inference engine. The fuzzy rule base contains a
collection of IF/THEN rules and the fuzzy inference engine uses these rules to map fro
fuzzy sets in the input universe of information to fuzzy sets in the output universe of
information. In order to use such a fuzzy system for control applications where inputs and
outputs are real-variables, a fuzzifier is added to the input and a defuzzifier is added to the
output. The fuzzifier maps crisp inputs to the universe of discourse of the input and the
defuzzifier maps fuzzy sets at the output to the crisp points. A fuzzy controller design, which
is essentialy a synthesis of both the control loop and a set of linguistic rules, has been
applied to many industrial systems and processes [17-19]. The efficiency of such a fuzz
control system depends largely upon the competence of the designer with regards to: a) the
completeness of the fuzzy rule base; b) the subjective definition of the membership function;
and c) the chaice of fuzzy implication operators. Extensive research has been focused on
fuzzy adaptive systems, that is, self-organizing, self-learning, etc. Wang [20] considers a
fuzzy logic system as a universal approximator and proposes severa training algorithms. A
three layer feed forward NN in conjunction with back propagation algorithm has been
utilized to design an adaptive fuzzy control system. Training algorithms based on orthogonal
least square, table-lookup and nearest neighborhood clustering have aso been described in
[20]. Anather direction of development is the application of Genetic Algorithms (GA'S) in



designing and optimizing fuzzy systems [21]. Efficient use of GA’s in conjunction with

fuzzy logic controller design has been reported by several authors [22,23]. In [22] a three-
phase framework for learning dynamic control systems has been studied and a genetic
algorithm is applied to drive the control rules as decision tables. In the second phase, the
rules are automatically transformed into a comprehensive form, and in the last stage the final

rules are tuned viamanipulation of the fuzzy relational matrix. Park et al. [23] show that the
performance of the fuzzy control system may be improved if the fuzzy reasoning model is
supplemented by a genetic-based learning mechanism. They employed a GA-based
procedure to optimize the set of parameters for the fuzzy reasoning model, based either on
their initial subjective selection or on a random selection. More recently , a systematic
approach to design of fuzzy controller is presented Cheng [24].

4. THE PROPOSED NEURO-CONTROL FUZZY CRITICS

The basic intelligent configuration of the proposed Neuro Control Fuzzy Critic (NCFC)
systemsisshownin Figure 1.

L ~ Failure signal
Physical
AATU
e Action System

MU FCA |

Fig. 1. NCFC configuration

The NCFC system consists of four distinct parts. An important part is the Fuzzy Credit
Assignment (FCA) unit, which guides the control system toward the desired performance b
evaluating the states of the system and calculating a measure of "goodness' of the syste
performance. Based on the evauated information, the FCA directs the other units. In
accordance with the credit given to the states of the system by FCA, the Action Applier Unit
(AAU) implements appropriate changes to the output of the Neuro-Control Unit (NCU). As
the NCU tends toward a satisfactory performance (a convergent state with weight adjusted),
these changes are gradually reduced to zero. The FCA continuoudy monitors the effects of
these changes and, upon observing an improvement in the system performance, the set of
state variables, the corresponding control actions and the assigned performance "goodness”
values are stored in the Memory Unit (MU). The external reinforcement signal provides a
supervisory informaion for the NCU which employs the back propagation learning



algorithm to adjust its weights until eventually all control actions are assigned 'good
values. At this stage, the AAU has completed itstask and the

NCU acts as the final controller. The functioning of the components of the NCFC is
described in more detail in the following sections.

a) Neuro control unit

This unit comprises a fully connected feed forward multi-layer NN. The nunier of
inputs to the network equals the number of state variables, and the number of neurons in the
output layer equals the number of control actions applied to the system. The back
propagation training algorithm with the sgmoid activation function is employed and the
weights are initialized with smdl random numbers. Since it is required to emphasize those
actions with a better " goodness' value and de-emphasize the others with lesser credit, the
learning rate is formulated as a function of the measure of " goodness " of the control
action. The steepest-descent algorithm is used for modification of the weights. This
algorithm adjusts the weights in the negative direction of the gradient of the mean square
error functionandisformulated as follows:

Wicsa =W +p(-0y) @)
Where the connection weights are denoted b W, and |l is the learning rate. Oy is the

gradient of a point in the Mean Square Error (MSE) plane at the point W =W, andis
expressed as:
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Where eisthe output error of the NCU, the weights are updated according to:
692k
Wi =Wy +U(-—— 3
ke = Wi +( AW, ) 3)

Since asigmoid activation functionis assumed, EqQ. (3) can be further simplified. Denote the
derivative of the square of the error for the jth neuronin the layer | as:
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Where s(')j is the output and e; ®) s the error for the jth neuron in the layer (1) andis
given as,

NGO,

V=3 s iwly) (5)

i=1
Where N(I)j is the number of neurons in the(l +1) layer. With the above definition, we
have;

0]

N*7j
8V =( 3 8w y)sgm(s?) (6)
i=1

Substituting for e(')j in Eqg. (6).

50 =e0j sgmi(sV ) @)
Therefore, the formula for the update of the weights for a sigmoid activation function is
given as,

WO (k+1=w'j (k) +25M 5 1) x O (k) 8)
andis expressed in agenera form &s;

Wict1 =W +28x X 9)

b) Fuzzy credit assignment

The main function of this unit is to train the NCFC with the desirable control actions.
Based on the approximate reasoning and fuzzy inference, the effect of a particular control
action is assigned a truth value. The fuzzy inference procedure consist of three stages:
fuzzification, decision-making logic and defuzzification. In the fuzzification stage, the state
variables are normdized, scaled and assigned appropriate membership functions, and an
suitable technique may be used for defuzzification. The decison-making logic is performed
as follows. Suppose the set of fuzzy rules has more than one antecedent and only one
consequent. Let v, represent a value satisfying the ith rule, for the input variables, such
that;

V(i) = min{pj; (X1),---Mi (Xin)} (10)



where L;; (X;) is the degree of membership of theinput X; in the fuzzy set, whose label is
used in the jth antecedent of rule i, and n denates the number of antecedents in the fuzz
rules. The result of applying V; in the consequent of the ith rule, denoted by m(i), is
obtained as;

m(i) = pg ~H(w(i) (11)

where U represents a monotonic membership function whose labels (w(i)) are used in the
consequent of the ith rule. The assumption that LI is monctonic and is a ore-to-one
function guarantees the uniqueness of the w (i) and thereafter that of m(i). Finaly, the
measure of " goodness', T(E) may be evaluated by combining the consequents of the rules
asfollows.

5 mv(i)
T(E)= .=1r_ (12)
30

Where r denctes the number of fuzzy rulesin the rule base of the FCA.

The calculated value of T(E) is used as the supervisory information to train the NCU.
The AAU inspects the value of T(E) and where necessary modifies the control action
accordingly. If it has a greater membership grade than a prescribed fuzzy threshold value,
the current control action with associated values of input variables and the measure of
"goodness" of the control action are stored in the MU.

¢) Memory unit

The main task of the MU is to store those sets of state variables with the associated
control action and the corresponding values of the performance "goodness' received fro
the FCA unit. The capacity of the MU may be determined arbitrarily, as a free design
parameter. When all the memory places are occupied, the desirable and improved new data
may initidly replace the old ones with smaller "goodness" value. When all the places are
associated with the same "goodness' value, a simple technique for replacement is to use a
rotational procedure, or the method of random replacement may be aternatively used.
Ancther essential function of the MU isto provide a number of appropriate sets of the stored
datafor on-line re-adjustment of the weights of NCU.

d) Action applier unit

AAU produces and applies the control action to the actua plant and enables the FCA
unit to retrieve "good" control actions from the MU. As the NCU learns to control the plant
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satisfactorily, the role of the AAU will be reduced and eventualy the control actions
generated by the NCU will be directly applied to the plant. Different procedures nay be
adapted for the evaluation of the measure of efficiency of the NCU. A simple technique is to
alow the NCU to produce sequences of control actions over a period of time. Efficienc
may be calculated as the average taken over the consecutive values of the control actions
produced by the FCA for the given sequence. An alternative criterion is the rate of the
number of "good" cortrol actions to the "bad" ones produced by the NCU. The AAU
monitors and madifies the control actions; in this mode, the efficiency of the performance of
the NCU, denated by P, iscalculated asfollows.

P == (13)

Where T; is the "goodness’ value calculated by the FCA in the i" step and the following
value of P isused for modification of the NCU in the action correction mode.

k+1T
> T
= T, +kPk
i=1 k+1
= = 14
Pen 1 1 (14)

The output of the NCU (control action), denoted by U(t), is modified by arandom function
having its mean dependent on both U(t) and P, anditsvariance asafunction of P only

U)=20 f(ZlgU),P.h(p) (15)

Where f isthe probability distribution function of the random variable z which may be
assumed as uniform.

U(t)=2 0 Q(- plU (t).%) (16)

Where Q(.,.) isauniform probability distribution function Equation (15) is expressed in an
expanded form as,

U(t)=(1- pu(t)+Pr (17)

where I isarandom variable with zero mean and unity variance, giving Q(0,1) .

5. IMPLEMENTATION OF THE NCFC
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In order to demonstrate the proposed NCFC techniques, it is applied to a simulated cart-pole
problem. Fig.(2) shows the schemaic diagram of the system, and the highly nonlinear
mathematical model isgiven as;

§= gsinB+cosf[—f -m/ 62 sin@+ . sgn)] /(mg +m) —p pél ml (18)
|[§—(mcos2 6) /(Mg +m)]

. f +m/[62 sin®-Bcosh] - sgn(k)
mC

(19)

The state variables are chosen as the position and the velocity of the cart, xand X
respectively, as well as 6 and@ angular position and velocity of the pole with respect to
vertical axis. The input to the system is the control force U(t) and the objectiveisto keep the
pole balanced while the cart is constrained to move in a prescribed range. The constants in
Egs. (18) and (19) are; g the acceleration due to gravity, m. and m the masses of cart and
pole respectively, | isthe length of the pole, . isthe constant of friction between the cart
and the track and M, is that of the pole a the hinge. It is assumed that for

| x| >2.4mand/or |8 |>12°, a failure has occurred and a scalar external reinforcement
signa is generated. It is also assumed that the mathematical modd is nat known to the
control system configuration, but a one dimensional vector represents the states of the
system and is available at the required instances.

-

Fig. 2. Schematic diagram of the cart-pole syste

I) Design procedures

a) NCU: A five layer feed forward NN is implemented as the main controller. The
number of neuronsin the input layer isfour (state variables) and there are two hidden layers.
It is decided that the neurons in the first hidden larger be eight and those in the second
hidden layer be four. The number of hidden layers and the number of neurons in each of
these layers are arbitrarily chasen and depend on the particular application. There is onl



one neuron in the output layer as one control action is produced. The network is initialized
with very small random numbers and the steepest decent learning agorithm is used. Tie
NCU for this example is shown in Figure 3.

Fig. 3. The neura network for the NCU

b): FCA: For this application, the rule base consists of eighteen rules; twelve of which are
related to crediting the control actions for balancing the pole: these are given in Fig.4. The
other six are related to the positioning of the cart in the prescribed range and are shown in
Fig. 5. The corresponding Fuzzy Associative Memory (FAM) is aso shown for each case.
FCA assigns a fuzzy truth value to each control action and in the case of no action (no rule
isfired) an arbitrary label isassigned.

If © is NL and 6 is NM then Action is VB
If © is NS and 6 is NM then Action is BD
If © is PL and 6 is NM then Action is GD
If © is NL and 6 is NS then Action is BD
If © is PS and 6 is NS then Action is VG
If 8 isPL and 6 is NS then Action is GD
If 8 is NL and 8 is PS then Action is GD
If © is NS and 6 is PS then Action is VG
If © is PL and & is PS then Action is BD
If © is NL and 6 is PM then Action is GD
If © is PSand 6 is PM then Action is BD
If 8 isPL and 6 is PM then Action is VB

The corresponding Fuzzy Associate Memory (FAM) is shownin Fig. 4.
If 8 isNVS and 6 is ZE and 09 is PS and x is NL

then action is GD
If & isNVS and 8 is ZE and O is PS and x is NS

13



then action is VG

If 8 isNVS and 8 is ZE and C§ is PM and x is NL
then action is VG

If & isPVS and 6 is ZE and 08 is NM and x is PL
then action is VG

If © isPVS and 8 is ZE and CH is NS and x is PS
then action is VG

If & isPVS and 6 is ZE and 08 is NS and x is PL
then action is GD

Where CH denates the changein 6 andis calculated as;

CO; =6; ~6;4
NL NS NVS pvs PSS PL
NM| VB | BD GD
NS | BD vg | GD
PS [GD | VG ED
FM | GD BD | VB
0

Fig. 4. Fuzzy rules and the corresponding FAM for controlling the pole

The corresponding FAM’ s are dso given in Fig. 5.

NL NS PS FL
Ps GD Vi N VG
Co Co
PM| VG NS | VG GD
X X

Fig. 5. Fuzzy rules and the corresponding FAM’ s for controlling the cart

The rules are derived based on the triangular membership functions for the state
variables as well as the value of " goodness' of the control action. In order to obtain a

14



satisfactory resolution and prevent possible oscillation, nine labels are considered for the
state variables as shown in Fig. 6a.

_NL _ ZE PYS __ PL_ vB \ \ BD ep /fve
PS5 APM
| (h)

(a)

Fig. 6. Membership functions: (a)- state variables, (b)- the "goodness vaue

The fuzzy labels for the state variable are NL (Negative Large), NM (Negative
Medium), NS (Negative Small), NVS (Negative Very Small), Zero (ZE), PSV (Positive
Very Small), PS (Positive Small), PM (Positive Medium), PL (Positive Large). In the case
of the "goodness" value, four labels VB (Very Bad), BD (BaD), GD (GooD), and VG (Ver
Good), are used, as shownin Fig. 6b.
¢): AAU: Initially, AAU alows the NCU to apply the control action directly until a failure
signal is received (external reinforcement). This unit then calculates the mean of the sgte
performance in a recursive manner as follows:

SET " NUMBER OF ACTION " TO ONE

WHILE NOT ACCEPT FAILURE SIGNAL DO

GET " ACTION GOODNESS

System performance = [(number of action-1)* system performance + action

goodness]/Number action

INCREMENT "NUMBER OF ACTION

The AAU modifies the control action produced by the NCU asfollows;

Applied action= system performance* NCU's action + (1-system performance) e
Where e is a small random rumber with an arbitrary distribution function, and for this
example a uniform distribution is assumed The modified control action will be applied to
the system until another failure signal is received. The procedure is repeated until the control
action produces nofailure signal andthe learning phase is completed.

d): MU: For this application, the MU provides fifty places for storing the actions with higher
values than a preset threshold. Each place in the MU contains the values of the state
variables, associated control action and corresponding values of the performance
"goodness'. An internal reinforcement signd is generated when 6 and/or x deviates from

15



the set point by a pre-defined fuzzy threshold value. In the recall phase, a set of ten memor
contents is randomly selected for re-adjustment of the NCU'sweights.
[1) Simulation results

In order to illustrate the efficiency of the proposed approach and in particular the
learning capabilities of the NCFC, simulation results for a wide range of the cart-pole
physical parameters and characteristics are presented. In each set of graphs, the time
behavior of the pol€'s angle, cart's position, control signal and failure signa is presented.
The value of the control force is limited to arange of 150 Newton. When the pol€'s angle
falls outside the range [-12,12] degrees, afailure signal is generated and a new value of this
state variable is randomly chasen (within the given range). The cart's position is allowed to
vary within [-2.4,2.4] meters and if it exceeds these limits, it is positioned in the mddle of
the track and the process cortinues. In al cases the time unit of 20 ms has been used in the
simulation, but the results are stored for the plots at every 10 integration steps (200 ms).
Each trial begins at the instant of receiving a failure signal and ends with either receipt of
ancther failure signal or the situation of cart-pole systems reaching a steady state (being
balanced), and it stays in that situation for a long time (approximately 3 hours). For each
simulation result, four sets of graphs are presented.

Figures (7a-7d) show the first set of time responses for the length of the pole; 1=0.5
meter, weight of the pole, m=0.1 kg and weight of the cart m1=2.0 kg. An undesirable
system behavior is observed at the beginning, but the system quickly learnsto improve and
attains desirable behavior. It is seen from the graph for the control force that an improperl
large control action has nat been required and just enough force is applied to keep the
system balanced. This is very near to the behavior of an optimal controller. From the
learning curve, it is observed that the number of trials taken for the completion of learning is
10.

In Figs. (8a-8d), only the length of the pole has been decreased to 1=0.2 meter and all
other parameters are unchanged. It is seen that the system response has not been
significantly affected and the learning process for the NCFC has been properly performed.
Similar results are shown in Figs. (9a-9d) for increased length of the pole (I:1.0) andin Fig.
(10a-10d) both the lengthof the pole and the weight of the cart have been increased (I=1.0
m, m=0.2 and m1=2.0 kg). It is seen that the intelligent NCFC is robust and has the learning
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capabilities of balancing the cart-pole systeg under a wide range of parameter variations

and model uncertainty.
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Fig. 10. Simulation resultsfor 1=1.0, m=0.2m, m1=2.0

In the above experiments, the parameters of the cart-pole systems were subject to
variations. It was previously mentioned that some of the characteristics of the NCFC are
arbitrarily chosen by the designer. One of these parameters is the number of layers in the
NCU unit. In this last experiment, the number of layers of the NCU was changed fro
(4,8,4,1) to (4,8,6,4,1), that is, a second hidden layer with six neurons has been added to the
NCU. It is observed from Fig. (11a-11d) that the learning speed hasbeen considerably
reduced, but since the number of layers and the number of neuronsis increased, the NCU is
capable of storing more information, making it more reliable and robust.
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Fig. 11. Resultsof simulation for 2-hidden layersfor NCU and
(1=0.5, m=0.1, m1=2.0)

Table 1. Comparison of different intelligent control methods
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Control design method Discrete | Initialize to | Continuous | No. of
state random force trials
AHC (Bartol et al. [10] ) yes no no 50
Boxes ( Michie, Chambers[9] ) yes no no 150
Anderson [26] no yes no 8000
Lee and Berenji [24] no no yes 6
ARIC (Berenji [5,25] ) no no yes 4
NCFC no yes yes 50

In Table 1, the proposed approach is compared with some of the well known intelligent
control techniques in which the cart-pole benchmark example has been used. In particular,
the results were compared in more detail with those obtained by ARIC due to Lee and
Berenji, and Berenji and Khedkar [25,26]. It was observed that, since the nucleus of the
ARIC is a fuzzy controller, the learning speed is high, and for this reason the number of
trials is small. However, for the same reason, even after the completion of learning the
control force behaves in an oscillatory manner, that is, in each step an amount of force is
exerted to compensate (neutralize) the previous action.

6. CONCLUSION

A neuro-fuzzy controller design procedure based on reinforcement learning has been
proposed. The essentia part of the intelligent control configuration is a mechanism for
credit assignment to the controller output which is a multi-layer feed forward neural
network. The proposed design approach has been implemented on the well known bench-
mark problem of cart-pole systems, and the results of extensive smulation studies are
presented. The results have shown very good performance in comparison with other
intelligent control techniques for controlling such systems. The procedure is also applicable
to other nonlinear and/or ill-defined complex systems and processes.
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