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a b s t r a c t

Emerging applications (e.g. electric vehicles, renewable energy systems, more electric aircrafts, etc.) have
brought more stringent reliability constrains into power electronic products because of safety require-
ments and maintenance cost issues. To improve the reliability of power electronics, better understanding
of failure modes and failure mechanisms of reliability–critical components in power electronic circuits
are needed. Many efforts have been devoted to the reduction of IGBT failures, while the study on the
failures of freewheeling diodes is less impressive. It is of importance to investigate the catastrophic
failures of freewheeling diodes as they could induce the malfunction of other components and eventually
the whole power electronic circuits. This paper presents an overview of those catastrophic failures and
gives examples of the corresponding consequences to the circuits.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Power electronics plays an important role in energy conversion
applications, such as motor drives, utility interfaces with
renewable energy sources, power transmission (e.g. high voltage
direct current systems, and flexible alternating current transmis-
sion systems), electric or hybrid electric vehicles. Therefore, the
reliability of power electronics becomes more and more vital,
and should draw more attention [1]. According to a survey, semi-
conductor failures and soldering joints failures in power devices
take up 34% of power electronic system failures [2]. Another survey
shows that around 38% of faults in variable speed ac drives are due
to failures of power semiconductor devices [3]. A recent question-
naire on industrial power electronic systems also shows that the
responders regard power electronic reliability as an important is-
sue, and 31% of responders selected power semiconductor devices
as the most fragile component in their applications [4]. Therefore,
it demands a better understanding of failure mechanisms of power
semiconductor devices so as to reduce their failure rates.

Diodes and Insulated Gate Bipolar Transistors (IGBTs) are two
kinds of reliability–critical power semiconductor devices widely
used in power electronic circuits [1]. Power diodes are usually as-
sumed to have outstanding ruggedness performance. However,
freewheeling diodes fail under various circumstances, especially
during the turn-on transition of IGBTs in high switching frequency
applications. The freewheeling diodes slow down the switching
speed of the IGBTs due to severe stresses induced by the reverse
recovery process. Therefore, it is worth to investigate the failures

of freewheeling diodes and exploring the solutions to improve
the reliability of both freewheeling diodes and IGBTs.

Diode failures can generally be classified as catastrophic failures
and wear out failures. Diode wear out failures are mainly induced
by accumulated degradation with time, while catastrophic failures
are triggered by single-event overstress, such as overvoltage,
overcurrent, overheat. Prognostics and Health Management
(PHM) method can monitor the degradation of diodes and estimate
wear out failures [5]. However, PHM is not applicable for cata-
strophic failures, which are more difficult to be predicted.

Several overview papers cover the topic on diode failures. In [6],
Rahimo et al. discuss the major reverse recovery failure modes of
freewheeling diode in IGBT applications. While it only focuses on
snappy recovery and dynamic avalanching, no static failure is men-
tioned. In [7], Ciappa gives a comprehensive overview on the wear
out failure mechanisms of power semiconductor devices, such as
bond wire fatigue, aluminum reconstruction, substrate cracking,
interconnections corrosion, and solder fatigue and voids. However
it mainly focuses on IGBT, and freewheeling diodes catastrophic
failures are not discussed. Therefore, a detailed and comprehensive
review on diode catastrophic failures is still lack in the prior-art
literatures. Moreover, it is also worth to investigate the influence
of freewheeling diode failures to IGBT operations in power elec-
tronic converters.

The aim of this paper is to provide a review of the key behaviors
of diode catastrophic failure due to overstresses and the corre-
sponding influence to IGBTs in power electronic circuits. Section 2
classifies the types of freewheeling diode catastrophic failures. Sec-
tion 3 summarizes the catastrophic failures of diode in terms of
failure mode and failure mechanism. Section 4 investigates the
influence of freewheeling diode failures to IGBT operations in
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power electronic converters, followed by the conclusion in
Section 5.

2. Classification of failure modes of freewheeling diodes

The catastrophic failure modes of freewheeling diodes can be
classified into open-circuit failures and short-circuit failures. Nor-
mally open-circuit failures are considered not fatal to converters,
since the converter can operate with lower quality of output [8].
On the contrary, short-circuit failures are more fatal to converters,
as the uncontrolled short-circuit current may destroy the active
switching devices (e.g. IGBTs) or other components in the circuit.
Fig. 1 shows the typical open-circuit failures and short-circuit
failures of freewheeling diodes.

2.1. Open-circuit failures

Freewheeling diode open-circuit failures are generally due to
mechanical causes. Open-circuit failure mode can happen because
of external disconnections due to vibration, or internally by bond
wire lift-off or rupture after temperature swings or high short-circuit
current.

2.2. Short-circuit failures

Short-circuit is also a common failure mode of freewheeling
diodes in power electronic circuits. Failures can happen during
reverse blocking state as well as the reverse recovery transition.
Fig. 2 shows the definition of reverse and forward voltage for
diodes [9]. There are five major failure mechanisms as shown in
Fig. 1, which will be discussed in next section.

3. Major failure mechanisms of freewheeling diodes

3.1. Open-circuit mechanisms

Similar to IGBTs, diode open-circuit will not be initially fatal to
the converter, but may result in secondary failures of other devices
in a power electronic circuit due to interaction among them.

The mechanism is similar to that of IGBTs. Bond wire lift-off
failure can happen after short-circuit, caused by high temperature
fatigue and the mismatch of Coefficients of Thermal Expansion
(CTEs) between Silicon and Aluminum. Crack may also be initiated
at the periphery of the bonding interface, and the bond wire finally
lifts-off when crack propagates to the weaker central bonding area.
Central bond wires normally fail at first, and then the survivor
bond wires follow [10]. Bond wire rupture is usually slower than
lift-off mechanism and usually observed after long power cycling
tests or long time operation.

3.2. Short-circuit mechanisms

The short-circuit failures of freewheeling diode could lead to
potential destruction to the relevant IGBTs, and other components,
as it induces uncontrolled high current to the circuit. The failure

mechanisms can be static high voltage breakdown, leakage current
rising, snappy recovery, dynamic avalanche during reverse
recovery, as well as high temperature due to the power dissipation
and so on.

3.2.1. Static high voltage breakdown
High reverse voltage can cause diodes static avalanche. With

reverse voltage reaching first static avalanche point, the current
rises with positive slope, while no permanent failure happens. If
the voltage reaches the second avalanche point, there will be a
Negative Differential Resistance (NDR), which will lead to the cur-
rent filament and a quick short-circuit. Detailed numerical simula-
tions are carried for a rated 3.3 kV/1 kA diode, and the results are
shown in Fig. 3 [11]. Another research reveals metallization
between copper and silicon can also lead to diode electrical break-
down [12]. It is also revealed that the avalanche capability is
strongly dependent on the initial breakdown location and the edge
termination design by numerical simulation and experiments, and
the common failure locations are near the chip’s edge and the bond
wires [13]. Since operating voltage of freewheeling diodes is
normally much lower than rated voltage, static high voltage break-
down is not common in nowadays applications.

3.2.2. Rising of leakage current
The leakage current of power diodes is usually very low, but it

increases with voltage and temperature. The value is roughly
doubled for every 10 �C raise of temperature. This effect is more
obvious for gold-diffusion diodes, which may be thermally de-
stroyed at high temperature [9].

With operating voltage and temperature above the rating
parameters, leakage current increases dramatically and the diodes
fail into short circuit at the chip’s peripheral surface [14,15]. Exper-
iments show that the diodes operation temperature can be
increased without risks of failure by improving the junction edge
current control, like a junction passivation process [16,17]. A fur-
ther research reveals the mechanism is junction carrier avalanche
multiplication, and the weak spots are near the chips’ edge [18].
The leakage current rising can also be due to repetitive electro-
static discharge [19]. Since short-circuit failures during freewheel-
ing diode reverse status can damage IGBT and circuit quickly, it is
critical to prevent this event.

3.2.3. Snappy recovery
Freewheeling diodes are prone to fail easily during reverse

recovery process because of snappy recovery. The behavior of
snappy recovery is shown in Fig. 4, in which a steep decline in
the current is observed after the reverse recovery current reaches
the peak value. The main reason is the sudden disappearance of
the remaining carriers at the end of the recovery process. Due to
high di/dt and stray inductance in the circuit, high voltage spikes
can appear and damage the diode.

Diode failure behavior
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Fig. 1. Overview of freewheeling diodes catastrophic failures.
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Fig. 2. Definition of reverse and forward voltage of diodes.
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It has been validated that both reverse recovery charge and
time increase with diode effective contact area, and snappy
recovery is clearly observed for larger area in numerical simulation
and experiments [20]. Thus special attention should be paid to
choose the diode size for avoiding diode failures. H+ irradiation
has been proposed to obtain trade-off between diodes switching
speed and softness, which can avoid snappy recovery, validated
by comprehensive experiments and numerical investigations
[21–23]. A new design procedure of freewheeling diodes based
on measurement and simulation is also proposed to improve the
reverse recovery softness [24]. Controlled Injection of Backside
Holes (CIBH) diodes are also proposed to increase the soft reverse
recovery behavior [25]. However, it is still a critical point to avoid
snappy recovery when designing freewheeling diodes.

3.2.4. Reverse recovery dynamic avalanche
Dynamic avalanching occurs at high di/dt switching speeds, as

shown in Fig. 5. Dynamic avalanching can result in the generation
of a hot spot in the silicon die itself due to non-uniform current
crowding which leads to the destruction of the device. The causes
of these hot spots can range from process to material variations in
a single diode silicon chip [26].

Impact ionization near N-N+ junction is considered as the main
reason for the failure. It leads to the negative differential resistance
and current filament, finally a thermal runaway [27–30]. This
process called Egawa effect [26] is very similar to the second
breakdown in bipolar transistors. Local heating and explosion at
the corner of anode is observed even the reverse voltage is lower
than static breakdown voltage [31]. A detailed study of dynamical
behavior of the plasma layer also explains this reverse recovery
failure [32,33]. To avoid the second current bump observed during
reverse recovery failure, a merged P-i-N Schottky diode is proposed
to replace conventional P-i-N freewheeling diode [34]. It shows

deep N+ emitter and wide n-base can improve the dynamic ava-
lanche characteristic in 2D simulations [35,36]. It is also proved
CIBH diode can prevent the filaments in N-N+ junction by 2D
numerical simulations [33]. An improved impact-ionization model
is proposed to simulate high electrical fields in diodes [37]. Electro
thermal simulations show that thermal-induced filament can lead
to destructive thermal runway and it is sensitive to contacts
thermal resistance [38]. There could be further work to improve
both die structure and thermal performance.

3.2.5. High power dissipation
When the diode forward current is high and temperature is ris-

ing, the forward voltage will increase. If the forward voltage
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Fig. 4. Current characteristics of snappy reverse recovery behavior [9].

Fig. 5. Freewheeling diode reverse-recovery failure with IGBT short circuit failure
[6].

Fig. 6. Operation of a single phase inverter under different failure conditions – r

reverse recovery transition, s reverse state, t load short-circuit.
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exceeds a specified limit value, the overload high power dissipa-
tion may fatally damage the silicon die [9].

4. Influence of freewheeling diode failures on the operations of
IGBTs in power electronic circuits

Fig. 6 shows a single phase inverter consisting of IGBTs (T1�T4)
diodes (D1�D4), and stray inductance Ls (which may lead vital
stress to device).

The operation of the inverter is as follows: initially, T2 and T3 are
on, the current iL flows through the load, then T2 and T3 are turned-
off and T1 and T4 are switched on after a certain period of dead
time. Because the load determines the direction of the current flow,
the current will flow through the diodes D1 and D4 back to the volt-
age source. After iL decreases to zero and to the negative, the
current will flow through T1 and T4.

There are three typical failure behaviors:

(a) When the current is commutating from diode to IGBT, the
freewheeling diode reverse recovery failure may lead to an
IGBT short-circuit failure, as shown by r in Fig. 6.

(b) When IGBTs T1 and T4 are on, and the current iL flows
through the load, reverse diode D3 fails into the short-circuit,
the short-circuit current between V+ and V�may damage T1

fast, as shown s in Fig. 6.
(c) When current is flowing through D1 and D4, a load short cir-

cuit will cause overstress of the diodes and IGBTs (symbol-
ized as t – closing the switch S1 in Fig. 6). As the current
flowing through D1 and D4 will be commutated to T1 and
T4 rapidly, short-circuit current on IGBTs will be larger.
During the transient, both the high reverse recovery current
and the voltage may produce large energy dissipation and
damage the diode. However, the IGBT may also fail first if
the peak voltage is over the rated voltage [39].

As an example, Fig. 7 shows the simulation results of the
scenario s in which D3 is short during the conduction of T1. It
could subsequently induce the failure of T1 due to its increased
current stress as shown in Fig. 7.

5. Conclusions

The typical failure modes and failure mechanisms of freewheel-
ing diodes due to over stresses are overviewed in this paper. Initial
short-circuit failures may lead to open-circuit finally. Short-circuit
failures can happen at five typical occasions.

The influence of the freewheeling diode failures to IGBT failures
is also investigated on the circuit level. The associated behaviors of
the IGBTs are also briefly described.

The overview in this paper could be useful for further work in
the following areas: correlations between IGBT and diode failures;

improvements of diode performance due to failure mechanisms;
effective protection circuits dealing with different catastrophic
failures; fault tolerant design coping with freewheeling diode
catastrophic failures; better models of failure mechanisms; better
models and tests of devices beyond the specific rating.
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