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Applied Probability Trust (2 December 2004)

APPROXIMATE SIMULATION OF HAWKES PROCESSES

JESPER MØLLER,∗ Aalborg University

JAKOB G. RASMUSSEN,∗∗ Aalborg University

Abstract

This article concerns a simulation algorithm for unmarked and marked Hawkes

processes. The algorithm suffers from edge effects but is much faster than the

perfect simulation algorithm introduced in our previous work [12]. We derive

various useful measures for the error committed when using the algorithm, and

we discuss various empirical results for the algorithm compared with perfect

simulations.
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1. Introduction

This paper concerns a useful simulation algorithm for unmarked and marked Hawkes

processes [5, 6, 7, 8, 10]. Such processes are important in point process theory and its

applications, cf., for example, p. 183 in [5]. Particularly, marked Hawkes processes have

applications in seismology [9, 13, 14, 15] and neurophysiology [2, 4]. The algorithm

in this paper suffers from edge effects but is of more practical importance than the

perfect simulation algorithm introduced in our earlier work [12].

There are many ways to define a marked Hawkes process, but for our purpose it

is most convenient to define it as a marked Poisson cluster process X = {(ti, Zi)}
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2 J. MØLLER & J. G. RASMUSSEN

with events (or times) ti ∈ R and marks Zi defined on an arbitrary (mark) space M

equipped with a probability distribution Q. The cluster centres of X correspond to

certain events called immigrants and the rest of the events are called offspring.

Definition 1. (Hawkes process with unpredictable marks.)

(a) The immigrants follow a Poisson process with a locally integrable intensity

function µ(t), t ∈ R.

(b) The marks associated to the immigrants are i.i.d. with distribution Q and

independent of the immigrants.

(c) Each immigrant ti generates a cluster Ci, which consists of marked events of

generations of order n = 0, 1, . . . with the following branching structure: First we

have (ti, Zi), which is said to be of generation zero. Recursively, given the 0, . . . , n

generations in Ci, each (tj , Zj) ∈ Ci of generation n generates a Poisson process

Φj of offspring of generation n + 1 with intensity function γj(t) = γ(t − tj , Zj),

t > tj . Here γ is a non-negative measurable function defined on (0,∞). We refer

to Φj as an offspring process, and to γj and γ as fertility rates. Furthermore,

the associated mark Zk to any offspring tk ∈ Φj has distribution Q and Zk is

independent of tk and all (tl, Zl) with tl < tk. As in [5] we refer to this as the

case of unpredictable marks.

(d) The clusters given the immigrants are independent.

(e) Finally, X consists of the union of all clusters.

Definition 1 immediately leads to the following simulation algorithm, where t− ∈

[−∞, 0] and t+ ∈ (0,∞] are user-specified parameters, and the output is all marked

points (ti, Zi) with ti ∈ [0, t+).

Algorithm 1. The following steps (i)-(ii) generate a simulation of those marked events

(ti, Zi) ∈ X with 0 ≤ ti < t+.

(i) Simulate the immigrants on [t−, t+).

(ii) For each such immigrant ti, simulate Zi and those (tj , Zj) ∈ Ci with ti < tj < t+.

Usually in applications steps (i) and (ii) are easy because (a)–(c) in Definition 1 are

straightforward. As discussed in Section 4.4, Algorithm 1 and many of our results
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apply or easily extend to the case where the immigrant process is non-Poisson.

Ideally we should take t− = −∞, but in practice we need to determine t− such that
∫ 0

t
−

µ(t) dt < ∞. When
∫ t
−

−∞
µ(t) dt > 0, Algorithm 1 suffers from edge effects, since

clusters generated by immigrants before time t− may contain offspring in [0, t+). The

objective in this paper is to quantify these edge effects and to compare Algorithm 1

with the perfect simulation algorithm in [12].

The paper is organised as follows. Section 2 contains some preliminaries. Sec-

tion 3 contains some convergence results needed in this paper. In Section 4 various

quantitative results for edge effects are introduced, and among other things we relate

our results to those in Brémaud et al. [3] (which concerns approximate simulation of

a stationary marked Hawkes process with unpredictable marks). Section 5 presents

various examples of applications and empirical results for both Algorithm 1 and the

perfect simulation algorithm in [12].

2. Preliminaries

Let F denote the c.d.f. (cumulative distribution function) for L, the length of a

cluster, i.e. the time between the immigrant and the last event of the cluster. Consider

the mean number of events in any offspring process Φi, ν̄ ≡ Eν, where

ν =

∫ ∞

0

γ(t, Z) dt

is the total fertility rate of an offspring process and Z denotes a generic mark with

distribution Q. We assume that

0 < ν̄ < 1, (1)

which among other places is needed in Proposition 1. This assumption is discussed in

detail in [12]. Finally, let

h̄(t) = Eγ(t, Z)/ν̄, t > 0, (2)

which can be interpreted as the normalised intensity function for the first generation

of offspring in a cluster started at time 0.
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3. Approximations of F

It turns out that F is unknown even for very simple cases of Hawkes processes, cf.

[12].

We first recall some convergence results from [12] and next establish a new useful

result (Proposition 1) which provide useful approximations of F .

For n ∈ N0, let 1n denote the c.d.f. for the length of a cluster when all events of

generation n+1, n+2, . . . are removed. Clearly, 1n is decreasing in n, 1n → F pointwise

as n → ∞, and

10(t) = 1, t ≥ 0. (3)

Let C denote the class of Borel functions f : [0,∞) 7→ [0, 1]. For f ∈ C, define ϕ(f) ∈ C

by

ϕ(f)(t) = E

[

exp

(

−ν +

∫ t

0

f(t − s)γ(s, Z) ds

)]

, t ≥ 0. (4)

Then, as verified in [12] the assumption of unpredictable marks implies that

1n = ϕ(1n−1), n ∈ N, (5)

and

F = ϕ(F ). (6)

The recursion (5) provides a useful numerical approximation to F . As the integral

in (4) with f = 1n−1 quickly becomes difficult to evaluate analytically as n increases,

we compute the integral numerically, using a quadrature rule.

Convergence with respect to the supremum norm of 1n and certain other functions

towards F is established in [12]. In this paper establishing convergence with respect

to the L1-norm becomes relevant. We let C1 denote the class of functions f ∈ C with

‖F − f‖1 < ∞, where ‖g‖1 =
∫ ∞

0 |g(t)| dt is the L1-norm.

Proposition 1. With respect to the L1-norm, ϕ is a contraction on C1, that is, for all

f, g ∈ C1 and n ∈ N, we have that fn, gn ∈ C1 and

‖ϕ(f) − ϕ(g)‖1 ≤ ν̄‖f − g‖1. (7)

Furthermore, F is the unique fixpoint,

‖F − fn‖1 → 0 as n → ∞, (8)
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and if either f ≤ ϕ(f) or f ≥ ϕ(f), then fn increases respectively decreases towards F

with a geometric rate:

‖F − fn‖1 ≤
ν̄n

1 − ν̄
‖ϕ(f) − f‖1. (9)

Proof. Let f, g ∈ C1. Recall that by the mean value theorem (e.g. Theorem 5.11

in [1]), for any real numbers x and y, ex − ey = (x − y)ez(x,y), where z(x, y) is a real

number between x and y. Thus by (4),

‖ϕ(f) − ϕ(g)‖1 =

∫ ∞

0

∣

∣

∣

∣

E

[

e−νec(t,f,g)

∫ t

0

(f(t − s) − g(t − s))γ(s, Z)ds

]∣

∣

∣

∣

dt (10)

where c(t, f, g) is a random variable between
∫ t

0 f(t−s)γ(s, Z) ds and
∫ t

0 g(t−s)γ(s, Z) ds.

Since f, g ≤ 1, we obtain ec(t,f,g) ≤ eν , cf. (1). Consequently,

‖ϕ(f) − ϕ(g)‖1 ≤

∫ ∞

0

∣

∣

∣

∣

E

[
∫ t

0

(f(t − s) − g(t − s))γ(s, Z) ds

]∣

∣

∣

∣

dt (11)

≤ E

[
∫ ∞

0

∫ ∞

0

|f(u) − g(u)| du γ(s, Z) ds

]

= ν̄ ‖f − g‖1 (12)

where in the latter inequality we have used first the triangle inequality, next Fubini’s

theorem, and finally a simple transformation. Thereby (7) is verified. The remaining

part is verified along similar lines as in the proof of Theorem 1 in [12] (with the minor

observations that F is the unique fixpoint because of (8), and that we use monotone

convergence when establishing (9)).�

Remark 1. The following observation motivates why we restrict attention to the class

C1 in Proposition 1, at least when considering functions f ∈ C such that f ≤ F : For

such functions f convergence fails as

‖F − f‖1 = ∞ ⇒ ‖F − fn‖1 = ∞, n ∈ N. (13)

To verify this, consider two non-negative Borel functions f ≤ g defined on [0,∞). Then

as in (10)–(12), but now observing that c(t, f, g) is between 0 and ν,

‖ϕ(f) − ϕ(g)‖1 ≥ E

[
∫ ∞

0

∫ ∞

0

(g(u) − f(u))e−νγ(s, Z) ds du

]

= ‖f − g‖1E[νe−ν ].

By (1), E[νe−ν ] > 0, and so letting g = F , we obtain (13) when n = 1, whereby (13)

follows by induction.

As noted the sequence fn = 1n decreases towards F pointwise. In order to obtain

L1-convergence by Proposition 1 we need 10 ∈ C1, that is, EL = ‖1 − F‖1 is finite. A

sufficient and necessary condition for this is given in Lemma 1 in [12].
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To construct a sequence fn which increases towards F in the L1-norm, it suffices to

find f ∈ C1 such that ϕ ≤ ϕ(f). Methods for finding a c.d.f. G with G ≤ ϕ(G) are

discussed in [12] (see in particular Proposition 3 in [12]), in which case G ≤ F (see

Theorem 1 in [12]). Note that if G ≤ F is a c.d.f. and ‖1− F‖1 < ∞, then G needs to

have a finite mean, since ‖1 − G‖1 = ‖F − G‖1 + ‖1 − F‖1. �

4. Edge effects

Let N(t−, t+) denote the number of missing events when using Algorithm 1. In this

section we consider the mean number of missing offspring, E(t−, t+) ≡ EN(t−, t+),

and the probability of having any missing offspring, P(t−, t+) ≡ P(N(t−, t+) > 0).

Furthermore, we relate these to the total variation distance between simulations and

the target distribution.

4.1. The mean number of missing offspring

Consider a cluster C0 = {(si, Zi)} started at time t0 = 0. This has conditional

intensity function

λ0(t) = γ(t, Z0) +
∑

0<si<t

γ(t − si, Zi), t ≥ 0, (14)

and unpredictable marks with distribution Q. For t > 0, let λ(t) = Eλ0(t) be the

intensity function of the offspring in C0, and γ̄(t) = Eγ(t, Z) = ν̄h̄(t) be the intensity

function of the first generation of offspring in C0. The following proposition expresses

E(t−, t+) and λ(t) in terms of µ and γ̄.

Proposition 2. We have that

λ(t) =

∞
∑

n=1

γ̄∗n(t) =

∞
∑

n=1

ν̄nh̄∗n(t), t ≥ 0, (15)

where ∗n denotes convolution n times, and

E(t−, t+) =

∫ t
−

−∞

(
∫ t+−t

−t

λ(s) ds

)

µ(t) dt. (16)

Proof. We claim that ρn = γ̄∗n is the intensity function of Gn, the n-th generation
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of offspring in the cluster C0: This is clearly true for n = 1, and so by induction

ρn+1(t) = E
∑

si∈Gn

γ(t − si, Zi) = E
∑

si∈Gn

E[γ(t− si, Zi)|si] = E
∑

si∈Gn

γ̄(t − si)

=

∫ t

0

ρn(s)γ̄(t − s) ds = γ̄∗(n+1)

where we have used Campbell’s theorem in the second last equality and the induction

hypothesis in the last equality. Thereby (15) follows. Finally, if I denotes the Poisson

process of immigrants,

E(t−, t+) = E
∑

ti∈I

∑

s∈Ci

1[ti < t−, 0 ≤ s < t+] = E
∑

ti∈I: ti<t
−

E

[

∑

s∈Ci

1[0 ≤ s < t+]

∣

∣

∣

∣

ti

]

= E
∑

ti∈I: ti<t
−

∫ t+−ti

−ti

λ(u) du

which reduces to (16) by Campbell’s theorem. �

Remark 2. It follows immediately that

ρ = µ + µ ∗ λ (17)

is the intensity function of all events. When quantifying edge effects it is natural to

consider E(t−, t+)/E(t+), where the expected number of events on [0, t+]

E(t+) =

∫ t+

0

ρ(t) dt

is the expected number of events on [0, t+]. �

4.2. The probability of having any missing offspring

Obviously, P(t−, t+) is an increasing function of t+ ∈ (0,∞]. Proposition 3 gives an

expression and upper and lower bounds for P(t−,∞).

Proposition 3. We have that

P(t−,∞) = 1 − exp

(

−

∫ t
−

−∞

(1 − F (−t))µ(t) dt

)

. (18)

Further, for any f ∈ C1 such that f ≤ ϕ(f), we have an upper bound,

P(t−,∞) ≤ 1 − exp

(

−

∫ t
−

−∞

(1 − fn(−t))µ(t) dt

)

, (19)
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which is a decreasing function of n, and a lower bound

P(t−,∞) ≥ 1 − exp

(

−

∫ t
−

−∞

(1 − 1n(−t))µ(t) dt

)

, (20)

which is a increasing function of n.

Proof. Let It
−

be the point process of immigrants ti < t− with {(tj , Zj) ∈ Ci : tj ≥

0} 6= ∅. Then It
−

is a Poisson process with intensity function λt
−

(t) = (1−F (−t))µ(t)

on (−∞, t−), since we can view It
−

as an independent thinning of the immigrant

process on (−∞, t−), with retention probabilities p(t) = 1 − F (−t), t < t−. Hence,

since P(t−,∞) equals the probability that It
−

6= ∅, we obtain (18). Thereby (19) and

(20) follows from (18) and Proposition 1. �

Remark 3. Proposition 1 ensures that the upper bound in (19) and the lower bound in

(20) converge monotoneously to P(t−,∞) provided e.g. that µ is bounded and EL < ∞,

cf. Remark 1. �

4.3. The total variation distance between simulations and the target distri-

bution

Recently, Brémaud et al. [3] derived related results to Propositions 2 and 3 when

µ(t) is constant and t+ = ∞. Proposition 4 below generalises their results to the

situation in the present paper where µ(t) is not necessarily constant and t+ may be

finite. Moreover, or proof is much simpler.

We let X̃ be another marked Hawkes process obtained from X by removing all

clusters Ci with immigrants ti < t−. Furthermore, we let Y and Ỹ denote the

restriction of X and X̃ to the marked events on [0, t+), and denote their distributions

by π(t−, t+) and π̃(t−, t+). Thus the output of Algorithm 1 follows π̃(t−, t+), which

approximates the target distribution π(t−, t+).

Proposition 4. Let ‖ · ‖TV denote the total variation distance, then

‖π(t−, t+) − π̃(t−, t+)‖TV ≤ P(t−, t+) ≤ E(t−, t+). (21)

Proof. By the construction of Ỹ , we have that Ỹ ⊆ Y . The first inequality then

follows immediately from the coupling inequality (see e.g. [11]), while the second

inequality is trivially satisfied. �
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Remark 4. In contrast to the first upper bound in (21) the second upper bound does

not depend on knowing F or any approximation of F , cf. Propositions 2 and 3. �

4.4. Extensions and open problems

It would be of practical importance to extend our results to the case of predictable

marks. Proposition 4 is still true if the conditional intensity function for X is larger

than or equal to the conditional intensity function for X̃; this follows by a thinning

argument, cf. [5]. However, this observation seems of little use, since the assumption

of unpredictable marks is essential in the proofs of (15) in Proposition 2 and (19)–(20)

in Proposition 3. Moreover, though (18) in Proposition 3 remains true, it is expected

to be of limited use, since F is expected to be of a more complicated form in the case

of predictable marks.

The following observations may also be of practical relevance.

Algorithm 1 applies for a non-Poisson immigrant process, e.g. a Markov or Cox

process provided it is feasible to simulate the immigrants on [t−, t+). Furthermore,

Proposition 2 remains true for any immigrant process with intensity function µ. Finally,

Proposition 3 partly relies on the immigrants being a Poisson process: for instance,

if now µ is a random intensity function and the immigrant process is a Cox process

driven by µ, then (18)–(20) should be modified by taking the mean of the expressions

on the right hand sides.

5. Examples and comparison with perfect simulation

Illustrative examples of specific unmarked and marked Hawkes processes (with plots

showing perfect simulations) are given in [12]. In this section we consider the same

examples of models and demonstrate the use and limitations of our results in Section 4.

We also demonstrate the practical differences between Algorithm 1 and the perfect

simulation algorithm in [12].

5.1. An unmarked Hawkes process model

The events and marks of X are independent if and only if γ(t, z) = γ(t) does not

depend on the mark z (for almost all z) in which case the events form an unmarked

Hawkes process. In this section we consider an unmarked Hawkes process with expo-



10 J. MØLLER & J. G. RASMUSSEN

nentially decaying fertility rate given by γ(t) = αβe−βt, where 0 < α < 1 and β > 0

are parameters.

Note that 1/β is a scale parameter for the distribution of L, ν̄ = να, and h̄ = βe−βt.

Hence h̄∗n is the density for a gamma distribution with shape parameter n and inverse

scale parameter β. Using (15), we obtain λ(t) = αβe(α−1)βt. Inserting this into (16),

assuming that t− > −∞ and µ(t) = δeκt where δ > 0 and κ > (α−1)β are parameters,

we obtain that

E(t−, t+) =
αδ

(1 − α)((1 − α)β + κ)
(1 − e(α−1)βt+)e((1−α)β+κ)t

− .

Here the restriction on κ is equivalent to that ρ is finite, in which case ρ(t) = δeκt(κ +

β)/(κ + (1 − α)β), cf. (17).

Figure 1 shows E(t−, t+)/E(t+) as a function of −t− ≥ 0 in the case α = 0.9,

δ = β = 1, t+ = 10, and for different values of κ. As expected numerically smaller

values of t− are needed as κ increases. For κ ≥ 0, effectively perfect simulation are

produced when t− = −50.

Let f(t) = 1 − e−θt be the c.d.f. for an exponential distribution with parameter

θ = β(1 − α). As verified in [12], f ≤ ϕ(f), and so the bounds of P(t−,∞) in

Proposition 3 hold. Figure 2 shows these bounds when α = 0.9, β = δ = 1 and κ = 0

(i.e. µ = 1), and n = 0, 7, . . . , 70. The convergence of the bounds to P(t−, t+) is clearly

visible, and for n = 70 both bounds are practically equal. Also the plot reveals that

for the present choice of parameters, the probability for having one or more missing

events is effectively 0 for t− = −50.

We can determine N(t−, t+), or at least its distribution, from the perfect simulation

algorithm in [12]. Figure 3 shows one minus the corresponding empirical distribution

function based on 10000 perfect simulations when α = 0.9, β = δ = 1, κ = 0, t+ = 10,

and t− = 0,−10, or −50. In each of the three cases, since E(t+) = 100, the number

of missing events in the case t− = 0 is substantially reduced, but still too large, when

t− = −10, while edge effects are practically non-existent for t− = −50.

Comparing Figures 1–3 when for example α = 0.9, β = δ = 1, κ = 0, t+ = 10, and

t− = −50, Algorithm 1 and the perfect simulation algorithm from [12] are effectively

producing identical results. Algorithm 1 uses roughly one-thousandth of a second for

each simulation in our implementation, while the perfect simulation algorithm uses
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Figure 1: Plot of E(t−, t+)/E(t+) versus −t− for the unmarked case with parameters α = 0.9,

δ = β = 1, t+ = 10, and κ = −0.04,−0.02, 0, 0.25 (top to bottom).

one-tenth of a second.

5.2. A marked Hawkes process model with birth and death transitions

Consider a marked Hawkes process with

γ(t, z) = α1[t ≤ z]/EZ,

where 0 < α < 1 is a parameter, Z is a positive random variable with distribution Q,

and 1[·] denotes the indicator function. Then X can be viewed as a birth and death

process, with birth at time ti and survival time Zi of the i’th individual.

The special case where µ(t) = µ is constant and Z is exponentially distributed with

mean 1/β is considered at page 136 in [3]. Since h̄(t) = βe−βt is the same function as

in Section 5.1, E(t−, t+) is also the same as in Section 5.1. Further, a plot of P (t−, t+)

(omitted here) is similar to Figure 2 (when using the same parameters). Also a plot of

the empirical distribution function of N(t−, t+) (omitted here) is similar to Figure 3.
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Figure 2: Upper and lower bounds (19) and (20) of P (t−, t+) versus −t− in the unmarked

case with α = 0.9, µ = β = 1, t+ = ∞, and n = 0, 7, . . . , 70. The bounds using n = 70 are

shown in black to illustrate the approximate form of P(t−, t+), whereas the rest are shown in

gray.

When for example α = 0.9, β = µ = 1, t+ = 10, and t− = −50, Algorithm 1 uses

roughly one-five hundredth of a second for each simulation, and the perfect simulation

algorithm uses just under three seconds. As in the unmarked case both algorithms are

feasible, but the difference is much more clear in the present case.

5.3. A heavy-tailed distribution for L

We conclude by observing that heavy-tailed cases of the distribution of L are

problematic. For instance, suppose that

γ(t, z) = αze−tz,

where α ∈ (0, 1) is a parameter, and let Q be the exponential distribution with mean

1/β. As argued in [12], h̄(t) = β/(t + β)2 is a Pareto density and L has a heavy-
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Figure 3: One minus the empirical distribution function for N(t−, t+) in the unmarked case

with α = 0.9, β = δ = 1, κ = 0, t+ = 10, and t− = 0,−10,−50 (top to bottom).

tailed distribution with infinite moments and infinite Laplace transform. As EL =

∞, Proposition 1 and hence Proposition 3 seem of rather limited use, cf. Remark 1.

Proposition 2 is also not applicable, since λ is not known on closed form, cf. Example 7

in [12]. It is a challenging open problem to handle such heavy-tailed cases.
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