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Bisimulation for Higher-Dimensional Automata

A Geometric Interpretation

Ulrich Fahrenberg

Abstract

We show how parallel composition of higher-dimensional automata
(HDA) can be expressed categorically in the spirit of Winskel & Nielsen.
Employing the notion of computation path introduced by van Glabbeek,
we define a new notion of bisimulation of HDA using open maps. We
derive a connection between computation paths and carrier sequences
of dipaths and show that bisimilarity of HDA can be decided by the
use of geometric techniques.

Keywords: Higher-dimensional automata, bisimulation, open maps,

directed topology, fibrations.

1 Introduction

In his invited talk at the 2004 Express workshop, van Glabbeek [12] places
higher-dimensional automata (HDA) on top of a hierarchy of models for con-
currency. In this article we develop a categorical framework for expressing
constructions on HDA, building on work by Goubault in [13, 14].

Following up on a concluding remark in [14], we introduce a notion of
bisimulation of HDA, both as a relation and using open maps1 [20]. Our
notion differs from the ones introduced by van Glabbeek [11] and Cattani-
Sassone [5].

Employing recent developments by Fajstrup [9], we show that bisimilar-
ity of HDA is equivalent to a certain dipath-lifting property, which can be
attacked using (directed) homotopy techniques. This confirms a prediction
from [14].

This report is the long version of a paper [7] accepted for presentation
at the 2005 FOSSACS conference held in Edinburgh.

The author is indebted to Eric Goubault and Emmanuel Haucourt for
many valuable discussions during his visit at CEA in Paris, and to Lisbeth
Fajstrup and Martin Raussen at the Department of Mathematical Sciences
in Aalborg.

1Note that there is a clash of terminology here: Openness in the sense of [20] has
nothing to do with being open in the topological sense.

1



2 Cubical Sets

Cubical sets were introduced by Serre in [23] and have a variety of appli-
cations in algebraic topology, both in homology, cf. [21], and in homotopy
theory, cf. [3, 6, 19]. Compared to the more well-known simplicial sets, they
have the distinct advantage that they have a natural sense of (local) direc-
tion induced by the order on the unit interval. This makes them well-suited
for applications in concurrency theory, cf. [10].

A precubical set is a graded set X = {Xn}n∈N together with mappings
δν
i(n) : Xn → Xn−1, i = 1, . . . , n, ν = 0, 1, satisfying the precubical identity

δν
i δµ

j = δµ
j−1δ

ν
i (i < j) (1)

These are called face maps, and if x = δν1

i1
· · · δνn

in
y for some cubes x, y and

some (possibly empty) sequences of indices, then x is called a face of y. If
all νi = 0, x is said to be a lower face of y; if all νi = 1, x is an upper face
of y.

As above, we shall omit the subscript (n) in δν
i(n) whenever possible.

Elements of Xn are called n-cubes.
A cubical set is a precubical set X together with mappings εi(n) : Xn →

Xn+1, i = 1, . . . , n + 1, such that

εiεj = εj+1εi (i ≤ j) δν
i εj =











εj−1δ
ν
i (i < j)

εjδ
ν
i−1 (i > j)

id (i = j)

(2)

These are called degeneracies, and equations (1) and (2) together form the
cubical identities.

A cubical set with symmetries is a cubical set with extra mappings
τi(n) : Xn → Xn, n ≥ 2, i = 1, . . . , n − 1, encoding an action of the sym-
metric groups Xn × Sn → Xn “permuting the coordinates.” The following
constraints apply:

τiτi = id

(τiτi+1)
3 = id

τiτj = τjτi (i 6= j ± 1)

δν
i τj =











δν
i (i 6= j, j + 1)

δν
i+1 (i = j)

δν
i−1 (i = j + 1)

τiεj =











εi+1 (j = i)

εi (j = i + 1)

εjτi (j 6= i, i + 1)

(3)

The standard example of a cubical set with symmetries is the singular
cubical complex of a topological space, cf. [21]: If X is a topological space,
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let SnX = Top(In,X), the set of all continuous maps In → X, where I is
the unit interval. If the maps δν

i , εi, τi are given by

δν
i f(t1, . . . , tn−1) = f(t1, . . . , ti−1, ν, ti, . . . , tn−1)

εif(t1, . . . , tn) = f(t1, . . . , t̂i, . . . , tn)

τif(t1, . . . , tn) = f(t1, . . . , ti−1, ti+1, ti, ti+2, . . . , tn),

(the notation t̂i means that ti is omitted) then SX = {SnX} is a cubical
set with symmetries.

Morphisms of (pre)cubical sets (with symmetries) are required to com-
mute with the structure maps, i.e. if X, Y are two (pre)cubical sets (with
symmetries), then a morphism f : X → Y is a sequence of mappings
f = {fn : Xn → Yn} that fulfill the respective subset of the equations

δν
i fn = fn−1δ

ν
i εifn = fn+1εi τifn = fnτi

This defines three categories, pCub, Cub, and Cubτ , all of which are
presheaf categories over certain small categories of elementary cubes, cf. [18],
hence they are Cartesian closed, complete, and cocomplete.

The forgetful functors

Cubτ −→ Cub −→ pCub

have left adjoints, providing us with “free” functors in the opposite direction,
which we in both cases denote by F .

A (pre)cubical set (with symmetries) X = {Xn} is said to be k-dimensional
if Xn = ∅ for n > k. The full subcategories of k-dimensional objects in our
three cubical categories are denoted pCubk, Cubk, and Cubk

τ , respectively.
The free-forgetful adjunctions above pass to the k-dimensional categories.

3 Shells and Tori

The total boundary of an element x ∈ Xn of a precubical set X is the 2n-
tuple

∂x = (δ0
1x, δ1

1x, . . . , δ0
nx, δ1

nx)

The precubical identity (1) implies some relations between the faces of the
elements in ∂x; in general 2n-tuples of (n − 1)-cubes satisfying these face
relations are called shells. So a shell is a 2n-tuple of (n − 1)-cubes which
could be filled in by an n-cube; if one exists, it is called a filler of the shell.
To sum up, the set of (n− 1)-shells in X is

�Xn−1 =
{

(s0
1, s

1
1, . . . , s

0
n, s1

n) ∈ X2n
n−1

∣

∣

δν
i sµ

j = δµ
j−1s

ν
i for all 1 ≤ i < j ≤ n− 1, ν, µ = 0, 1

}
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We can treat shells as (hollow) cubes and define face maps, degeneracies,
and symmetries involving �Xn−1 and Xn−1 as follows:

δ̃ν
i (s0

1, . . . , s
1
n) = sν

i ε̃ix = ∂εix

τ̃i(s
0
1, . . . , s

1
n) = (s0

1, . . . , s
0
i+1, s

1
i+1, s

0
i , s

1
i , . . . , s

1
n)

(4)

Also, we can extend a mapping f : Xn−1 → Yn−1 to f̃ : �Xn−1 → �Yn−1

by f̃(s0
1, . . . , s

1
n) =

(

f(s0
1), . . . , f(s1

n)
)

. Noting that the expression ∂εix above
can be resolved using the identities on δν

i εj in (2), we have defined functors
�n : pCubn−1 → pCubn, �n : Cubn−1 → Cubn, �n : Cubn−1

τ → Cubn
τ

for all n ∈ N+. These coskeleton functors are in fact right adjoints to
the truncation functors pCubn → pCubn−1, Cubn → Cubn−1, respectively
Cubn

τ → Cubn−1
τ , cf. [3].

We record the following trivial consequence of the definition:

Lemma 1 The functors �n defined above are full and faithful for all n ∈N+.

Proof: Faithfulness is trivial. To prove fullness, we notice that a shell is
uniquely determined by its boundary. Hence if f : �nX → �nY , and
s = (s0

1, . . . , s
1
n) ∈ �Xn−1, then

f(s) =
(

δ0
1f(s), . . . , δ1

nf(s)
)

=
(

f(δ0
1s), . . . , f(δ1

ns)
)

=
(

f(s0
1), . . . , f(s1

n)
)

Thus f is determined by its restriction to a map X → Y . �

Given a precubical set X and x ∈ Xn, say that x is a torus if δ0
i x = δ1

i x
for all i = 1, . . . , n. Applying the definition to shells, we arrive at the set of
torus shells �Xn−1 ⊆ �Xn−1.

Note that a degenerate shell is not a torus in general, hence the structure
�nX = (�Xn−1,Xn−1, . . . ,X0) is only precubical. But if x ∈ Xn−1 is itself
a torus, all εix are again tori. Hence if we start with a set X1 of loops,
for example, we can iterate the torus shell construction, arriving at the free

ω-torus on X1, �
ωX1. Note that there are natural symmetries in �

ωX1,
making it an object of Cubτ .

4 Product and Tensor Product

The product of two (pre)cubical sets (with symmetries) is given by

(X × Y )n = Xn × Yn

with face maps, degeneracies, and symmetries defined component-wise. This
is a product in the categorical sense. A cubical relation between cubical sets
X, Y is a cubical subset of the product X × Y .
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The tensor product of two precubical sets Z = X � Y is given by

Zn =
⊔

p+q=n

Xp × Yq

with face maps

δα
i (x, y) =

{

(δα
i x, y) (i ≤ p)

(x, δα
i−py) (i ≥ p + 1)

(x, y) ∈ Xp × Yq

The category Cub inherits this tensor product, however some identifi-
cations have to be made to get well-defined degeneracy maps, cf. [4]. The
tensor product of two cubical sets Z = X � Y is then given by

Zn =
(

⊔

p+q=n

Xp × Yq

)/

∼n

where ∼n is the equivalence relation generated by, for all (x, y) ∈ Xr × Ys,
r + s = n− 1, letting (εr+1x, y) ∼n (x, ε1y). If x� y denotes the equivalence
class of (x, y) ∈ Xp × Yq under ∼n, the face maps and degeneracies of Z are
given by

δα
i (x�y) =

{

δα
i x � y (i ≤ p)

x � δα
i−py (i ≥ p + 1)

εi(x�y) =

{

εix � y (i ≤ p + 1)

x � εi−py (i ≥ p + 1)

5 Transition Systems

We shall construct our category of higher-dimensional automata as a special
arrow category in Cub. To warm up, we include a section on how transition

systems can be understood as an arrow category in Cub1, the category of
digraphs. Though our exposition differs considerably from the standard one,
see e.g. [24], the end result is basically the same.

A digraph is a 1-dimensional cubical set, i.e. a pair of sets (X1,X0)
together with face maps δ0, δ1 : X1 → X0 and a degeneracy mapping
ε = ε1 : X0 → X1 such that δ0ε = δ1ε = id. Morphisms of digraphs
(X1,X0), (Y1, Y0) are thus mappings f = (f1, f0) commuting with the face
and degeneracy mappings. A predigraph is a 1-dimensional precubical set.
Note that we allow both loops and multiple edges in our digraphs.

The category of digraphs has a terminal object ∗ consisting of a single
vertex and the degeneracy edge on that vertex. A transition system is a
digraph which is freely generated by a predigraph together with a specified
initial point, hence the category of transition systems is 〈∗ � FpCub1〉, the
comma category of digraphs freely generated by predigraphs under ∗. In the
spirit of [24], passing from a predigraph to the digraph freely generated by
it means that we add idle loops to each vertex, hence allowing for transition
system morphisms which collapse transitions.

5



As for labeling transition systems, we note that there is an isomorphism
between the category of finite sets and the full subcategory of pCub1 induced
by finite one-point predigraphs, given by mapping a finite set Σ to the one-
point predigraph with edge set Σ. Identifying finite sets with the digraphs
freely generated by their associated predigraphs, we define a labeled transi-

tion system over Σ to be a digraph morphism λ : 〈∗�FpCub1〉 → Σ which is
induced by a predigraph morphism. This last convention is to ensure that
idle loops are labeled with the idle label ε∗.

Say that a morphism λ ∈ Cub1 is non-contracting if λa = ε∗ implies
a = εδ0a for all edges a, and note that if the source and target of λ are
freely generated by precubical sets, then λ is non-contracting if and only if
it is in the image of the free functor pCub1 → Cub1.

For morphisms between labeled transition systems we need to allow func-
tions that map labels to “nothing,” i.e. partial alphabet functions. The
category of finite sets with partial mappings is isomorphic to the full sub-
category Σ of Cub1 induced by digraphs freely generated by finite one-point
predigraphs. Hence we can define the category of labeled transition systems
to be the non-contracting comma-arrow category 〈∗ � FpCub1

�� Σ〉, with
objects pairs of morphisms—the second one non-contracting

∗ −→ X −→−→ Σ

and morphisms pairs of arrows making the following square commute:

∗

��

∗

��

X1
//

����

X2

����

Σ1
// Σ2

We shall always visualise non-contracting morphisms by double arrows.
Note that our transition systems have the special feature that there can

be more than one transition with a given label between a pair of edges; in the
terminology of [24] they are not extensional. Except for that, our definition
is in accordance with the standards.

To express parallel composition of transition systems, we follow the ap-
proach of [24] and use a combination of product, relabeling and restric-
tion. In our context, the product of two transition systems ∗ → X1 → Σ1,

∗ → X2 → Σ2 is the transition system ∗ −→ X1 ×X2
λ
−→ Σ1 × Σ2, where

the arrow λ is given by the universal property of the product Σ1 × Σ2. We
note that, indeed, the product of two one-point digraphs with edge sets Σ1
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respectively Σ2 is again a one-point digraph, with edge set

{(a, b), (a, ε∗), (ε∗, b) | a ∈ Σ1, b ∈ Σ2}

One easily shows λ to be non-contracting, and the so-defined product is in
fact the categorical product in the category 〈∗�FpCub1

��Σ〉.
A relabeling of a transition system is a non-contracting alphabet mor-

phism under the identity, i.e. an arrow in 〈∗�FpCub1
��Σ〉 of the form

∗

��

∗

��

X

����

X

����

Σ1
//
// Σ2

Restriction of transition systems is defined using pullbacks; given a tran-
sition system ∗ → X2 → Σ2 and a mapping σ : Σ1 → Σ2, we define the
restriction of X2 to Σ1 by the pullback

∗

$$

��

  

X1
//

����

X2

����

Σ1 σ
// Σ2

where the mapping ∗ → Σ1 is uniquely determined as Σ1 is a one-point
digraph. It is not difficult to show that the so-defined morphism X1 → Σ1

is in fact non-contracting.

6 Higher-Dimensional Automata

The category Cub has a terminal object ∗ consisting of a single point and
all its higher-dimensional degeneracies. The category of higher-dimensional
automata is the comma category 〈∗�FpCub〉, with objects cubical sets freely
generated by precubical sets with a specified initial 0-cube.

For labeling HDA, we follow the approach laid out in [13, 14]. We assume
the finite set Σ of labels to be totally ordered and define a precubical set !Σ′

as follows: !Σ′
0 = {∗}, !Σ′

n is the set of (not necessarily strictly) increasing
sequences of length n of elements of Σ, and

δα
i(n)(x1, . . . , xn) = (x1, . . . , x̂i, . . . , xn)

Then we let !Σ be the free cubical set on !Σ′.
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Lemma 2 Given a finite set Σ, then the free cubical set with symmetries

on !Σ is isomorphic to the free ω-torus �
ωΣ.

Proof: Passing from the precubical set !Σ′ to the cubical set !Σ amounts
to introducing sequences of symbols (x1, . . . , xn) where some of the xi have
been replaced by the special symbol ⊥, and to define

εi(x1, . . . , xn) = (x1, . . . , xi−1,⊥, xi, . . . , xn)

Passing to the free cubical set with symmetries amounts to allow all
permutations of such sequences (x1, . . . , xn), with τi being the permutation
(. . . , xi, xi+1, . . .) 7→ (. . . , xi+1, xi, . . .).

Mapping sequences (x1, . . . , xn) to (x1, x1, . . . , xn, xn), with the obvious
operations on the mappings δν

i , εi, τi, we have the claimed isomorphism. �

Define a morphism f : X → Y of cubical sets to be non-contracting if
f(x) = εiδ

0
i f(x) implies x = εiδ

0
i x for all x ∈ Xn, n ∈ N, i = 1, . . . , n. Note

again that if the cubical sets X, Y are freely generated by precubical sets,
then a morphism f : X → Y is non-contracting if and only if it is the image
of a precubical morphism under the free functor.

Let !Σ be the full subcategory of Cub induced by the cubical sets !Σ
as above. By Lemmas 2 and 1, !Σ is isomorphic to the category Σ of the
preceding section, hence !Σ is isomorphic to the category of finite sets and
partial (and not necessarily order-preserving) mappings.

The category of labeled higher-dimensional automata is then defined to
be 〈∗ �FpCub �� !Σ〉, with objects ∗ −→ X −→−→ !Σ and morphisms commu-
tative diagrams

∗

��

∗

��

X1
//

����

X2

����

!Σ1
// !Σ2

Note that by this construction, the label of an n-cube is the ordered n-tuple
of the labels of all its 1-faces.

7 Constructions on HDA

As in [13], we replace the product of transition systems by the tensor product

of higher-dimensional automata. The tensor product of two HDA ∗ →

X1
λ
−→ !Σ1, ∗ → X2

µ
−→ !Σ2 is defined to be

∗ −→ X1 � X2
λ�µ
−→ !Σ1 � !Σ2
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The following lemma, where Σ1 ⊎ Σ2 denotes the disjoint union of Σ1

and Σ2 with the order induced by declaring Σ1 < Σ2, ensures that this in
in fact a HDA:

Lemma 3 Given alphabets Σ1, Σ2, then !Σ1 � !Σ2 = !(Σ1 ⊎ Σ2).

Proof: Starting with the precubical sets, we have

!(Σ1 ⊎ Σ2)
′
n = {(x1, . . . , xn) | ∃ k : x1 < · · · < xk ∈ Σ1, xk+1 < · · · < xn ∈ Σ2}

(!Σ′
1 � !Σ′

2)n =

n
⊔

k=0

{(x1, . . . , xn) | x1 < · · · < xk ∈ Σ1, xk+1 < · · · < xn ∈ Σ2}

so these sets are the same. Also the face maps are easily seen to be identical,
hence the precubical sets !(Σ1 ⊎ Σ2)

′ and !Σ′
1 � !Σ′

2 are isomorphic. To see
that equality also holds for their cubical cousins, we only have to note that
the relation (εr+1x, y) ∼n (x, ε1y) in defining the tensor product does not
actually identify anything in this case, as

(εr+1x, y) = (x, ε1y) = (x1, . . . , xr,⊥, y1, . . . , ys) �

For relabeling HDA we use non-contracting morphisms under the iden-
tity, and we note that if g is defined by the diagram

∗

��

∗

��

X

��

f

��

X

g

����

!Σ1
//

λ
// !Σ2

then non-contract ability of g follows from f and λ being non-contracting.
If we want to express the tensor product of two HDA ∗ → X → !Σ1,

∗ → Y → !Σ2 with non-disjoint alphabets Σ1, Σ2, we can do so by following
the tensor product above with a relabeling !Σ1 � !Σ2 → !(Σ1 ∪ Σ2) induced
by the natural projection Σ1 ⊎ Σ2 → Σ1 ∪ Σ2 (which is not necessarily
order-preserving). This projection is a total alphabet morphism, hence the
relabeling map is indeed non-contracting.

For restrictions we again use pullbacks:

Proposition 4 Given a higher-dimensional automaton ∗ → X2 → !Σ2 and

an injective mapping !Σ1 → !Σ2, then ∗ → X1 → !Σ1 as defined by the

9



pullback diagram

∗

$$

��

  

X1
f

//

��

λ

��

X2

µ

����

!Σ1 σ
// !Σ2

is again a higher-dimensional automaton.

The arrow ∗ → !Σ1 is uniquely determined as !Σ1 has only one cube in
dimension zero. We will need the injectivity of σ later, to show that our
to-be-defined notion of bisimilarity is respected by restrictions.

Proof: We need to show that λ is non-contracting. Let x ∈ X ′
n ∈ X ′ and

i ∈ {0, . . . , n}, and assume that λx = εiδ
0
i λx. Then

µfx = σλx = εiδ
0
i σλx = εiδ

0
i µfx

and as µ is non-contracting, this implies f(x) = εiδ
0
i f(x).

Let Z be the cubical set generated by a single n-cube Zn = {z}, and let
h1, h2 : Z → X ′ be the cubical morphisms induced by h1z = x, h2z = εiδ

0
i x.

Then λh1z = λh2z = εiδ
0
i λx and fh1z = fh2z = εiδ

0
i fx, hence by the

universal property of the pullback, h1 = h2, whence x = εiδ
0
i x. �

8 Bisimulation

In this section we fix a labeling cubical set L and work in the non-contracting
double comma category 〈∗�FpCub��L〉 of HDA over L. The morphisms

∗

����
��

��

��
33

33
33

X
f

//
//

��
33

33
33

λ
��

33
33

33
Y

µ
����
��
��

����
��
��

L

in this category respect labelings, hence they are non-contracting themselves:
If f(x) = εiδ

0
i f(x) for some x ∈ X and some i, then λ(x) = µ(f(x)) =

εiδ
0
i λ(x) and thus x = εiδ

0
i x.

A computation path, cf. [11], in a precubical set X is a finite sequence
(x1, . . . , xn) of cubes of X such that for each k = 1, . . . , n − 1, either xk =
δ0
i xk+1 or xk+1 = δ1

i xk for some i. A computation path (x1, . . . , xn) is said
to be acyclic if there are no other relations between the xi than the ones

10



above. A rooted computation path in a HDA ∗
i
−→ X is a computation

path (i∗, . . . , xn), and a cube x of the HDA is said to be reachable if there
is a rooted computation path (i∗, . . . , x). Figure 1 shows an example of an
acyclic rooted computation path.

i∗

xn

Figure 1: An acyclic rooted computation path which ends in a
2-cube xn

We say that a precubical set X is a computation path if there is a com-
putation path (x1, . . . , xn) of cubes in X such that all other cubes in X are
faces of one of the xi, and similarly for acyclic computation paths. An ele-

mentary computation step is an inclusion (x1, . . . , xn) →֒ (x1, . . . , xn, xn+1)
of computation paths.

Let CPath be the full subcategory of the category of HDA induced by
the acyclic rooted computation paths, then it is not difficult to see that any
morphism in CPath is a finite composite of elementary computation steps
and isomorphisms.

Following the terminology of [20], we say that a morphism f : X → Y is
CPath-open if it has the right-lifting property with respect to morphisms in
CPath. That is, we require that for any morphism m : P → Q ∈ CPath and
any commutative diagram as below, there exists a morphism r filling in the
diagram

P //

m

��

X

f

��

Q //

r

??

Y

Lemma 5 A morphism f : X → Y is CPath-open if and only if it satisfies

the property that for any reachable x ∈ X and for any z′ ∈ Y such that

f(x) = δ0
i z

′ for some i, there is a z ∈ X such that x = δ0
i z and z′ = f(z).

Following established terminology, this could be called a “higher-
dimensional zig-zag property.”

Proof: Assume first f to be CPath-open. Let x ∈ X be reachable and
z′ ∈ Y such that f(x) = δ0

i z
′. Let P ′ = (i∗, . . . , x) be a computation path in

X, and let P = (i∗, . . . , x′) be an acyclic computation path with a surjective
mapping p : P → P ′. Let α be a cube of the same dimension as z′, put
δ0
i α = x′, and let Q = (i∗, . . . , x′, α).

11



Let q : Q → Y be the morphism defined by q(w) = f(p(w)) for w ∈
(i∗, . . . , x′), and q(α) = z′. We have a commutative diagram

P
p

//
� _

��

X

f

��

Q
q

//

r

??

Y

and as f is CPath-open, we can fill it in with a morphism r : Q → X. Let
z = r(α), then f(z) = z′, and δ0

i z = r(δ0
i α) = r(x′) = p(x′) = x.

For the other direction, assume f to satisfy the property of the lemma.
By induction it is sufficient to show that f is open with respect to elementary
computation steps.

Let P = (i∗, . . . , x), Q = (i∗, . . . , x, α) be two acyclic rooted computation
paths with δ0

i α = x for some i, and with morphisms p : P → X, q : Q→ Y
such that the diagram

P
p

//
� _

��

X

f

��

Q
q

// Y

commutes. Then f(p(x)) = q(x) = q(δ0
i α) = δ0

i q(α), hence there exists
z ∈ X such that f(z) = q(α) and p(x) = δ0

i z. We can now define a morphism
r : Q → X filling in the diagram by r(w) = p(w) for w ∈ (i∗, . . . , x), and
r(α) = z. �

This suggests the following definition of bisimulation of HDA: Given two

HDA ∗
i
−→ X

λ
−→ L, ∗

j
−→ Y

µ
−→ L over the same alphabet, then a

bisimulation of X and Y is a cubical relation R ⊆ X × Y which respects
initial states and labelings, i.e. (i∗, j∗) ∈ R0, and if (x, y) ∈ R then λx = µy;
and for all reachable x ∈ X, y ∈ Y such that (x, y) ∈ R,

• if x = δ0
i z for some z, then y = δ0

i z′ for some z′ so that (z, z′) ∈ R,

• if y = δ0
i z

′ for some z′, then x = δ0
i z for some z so that (z, z′) ∈ R.

Note that bisimilarity is indeed an equivalence relation.

Proposition 6 Two HDA Y , Z are bisimilar if and only if there is a span

of CPath-open maps Y ← X → Z.

Proof: If f : X → Y is CPath-open, then the cubical relation R = {(x, f(x)) |
x ∈ X} is a bisimulation by Lemma 5.

Conversely, if R ⊆ Y ×Z is a bisimulation, then as R respects labelings,

it is itself a HDA over the same alphabet as Y and Z, with maps Y
f
←−

R
g
−→ Z induced by the projections of the product. These maps respect

labelings, and they are CPath-open by Lemma 5. �

12



Note that when restricted to labeled transition systems, bisimulation
of HDA is equivalent to strong bisimulation [22], the only difference being
that strong bisimulation requires the existence of corresponding transitions,
whereas HDA-bisimulation actually specifies a correspondence.

9 Bisimulation is a Congruence

We show that bisimulation is a congruence with respect to the constructions
on HDA introduced in Section 7. For relabelings this is clear, and for tensor
product we have the following lemma.

Lemma 7 Given CPath-open morphisms f ∈ 〈∗ � FpCub �� L〉, g ∈ 〈∗ �

FpCub��M〉, then f � g ∈ 〈∗�FpCub��L � M〉 is again CPath-open.

Proof: Let f : X1 → Y1, g : X2 → Y2, and let x1 � x2 ∈ X1 � X2 be
reachable. Let z′1 � z′2 ∈ Y1 � Y2 such that f � g(x1 � x2) = f(x1) � g(x2) =
δ0
i (z

′
1�z′2) for some i. Assume that δ0

i (z
′
1�z′2) = δ0

i z
′
1�z′2, then f(x1) = δ0

i z′1,
g(x2) = z′2. By CPath-openness of f we have z1 ∈ X1 such that x1 = δ0

i z1

and z′1 = f(z1), hence f �g(z1 �x2) = z′1�z′2 and δ0
i (z1�x2) = x1�x2. The

proof for the case δ0
i (z

′
1 � z′2) = z′1 � δ0

i−pz
′
2 is similar, using CPath-openness

of g. �

Hence if we have spans of CPath-open morphisms Y1
f1
←− X1

g1
−→ Z1,

Y2
f2
←− X2

g2
−→ Z2, then Y1 � Y2 and Z1 � Z2 are bisimilar via the span of

CPath-open morphisms Y1 � Y2
f1�f2
←− X1 � X2

g1�g2
−→ Z1 � Z2.

For restriction, we need the following lemma first.

Lemma 8 Let

X
f

//

g

��

Y

h

��

Z
k

// W

be a pullback square in Cub, and let y ∈ Y , z ∈ Z such that h(y) = k(z).
Then there exists x ∈ X fulfilling f(x) = y, g(x) = z.

Proof: Assume that h(y) = k(z) ∈ Wn, then y ∈ Yn, z ∈ Zn. Let U be
the cubical set generated by a single n-cube Un = {u}, and consider the
diagram

U
ŷ

##

ẑ

��

ϕ

  

X
f

//

g

��

Y

h

��

Z
k

// W

13



where ŷ : U → Y , ẑ : U → Z are the morphisms induced by u 7→ y
and u 7→ z, respectively, and ϕ is defined by the universal property of the
pullback. Let x = ϕ(u), then by commutativity, f(x) = y and g(x) = z. �

Congruency of bisimilarity with respect to restriction is then implied by
the next lemma.

Lemma 9 Given a CPath-open morphism f : X → Y ∈ 〈∗ � FpCub �� L〉
and a non-contracting injective morphism σ : L′ → L, then the unique

morphism f ′ : X ′ → Y ′ defined by the double pullback diagram

X ′
g

//

f ′

  

λ′

��

X
f

��~~
~~

~~
~~

λ

��

Y ′ h
//

µ′

��

Y

µ

��

L′
σ

// L

is again CPath-open.

Proof: Note [1, Prop. 2.5.3] that injectivity of σ implies that also g and h
are injective.

Let x′ ∈ X ′, y′ ∈ Y ′, and i ∈ N+ such that f ′(x′) = δ0
i y′. Then

f(g(x′)) = h(f ′(x′)) = δ0
i h(y′), hence by CPath-openness of f we have z ∈ X

such that g(x′) = δ0
i z and f(z) = h(y′).

Now λ(z) = µ(f(z)) = µ(h(y′)) = σ(µ′(y′)), hence by Lemma 8 we have
z′ ∈ X ′ such that g(z′) = z. Then g(δ0

i z′) = δ0
i z = g(x′) and h(f ′(z′) =

f(g(z′)) = f(z) = h(y′), hence by injectivity, δ0
i z

′ = x′ and f ′(z′) = y′. �

Hence if Y,Z ∈ 〈∗ � FpCub �� L〉 are bisimilar via a span of CPath-open
maps Y ← X → Z, the above lemma yields a span of CPath-open maps
Y ′ ← X ′ → Z ′ of their restrictions to L′.

10 Geometric Realisation of Precubical Sets

We want to relate CPath-openness of a morphism of higher-dimensional au-
tomata to a geometric property of the underlying precubical sets. In order
to do that, we need to recall some of the technical apparatus developed
in [10, 9].

The geometric realisation of a precubical set X is the topological space

|X| =
⊔

n∈NXn × [0, 1]n
/

≡

14



where the equivalence relation ≡ is induced by identifying

(δν
i x; t1, . . . , tn−1) ≡ (x; t1, . . . , ti−1, ν, ti, . . . , tn−1)

for all x ∈ Xn, n ∈ N, i = 1, . . . , n, ν = 0, 1, ti ∈ [0, 1]. Geometric realisation
is turned into a functor from pCub to Top by mapping f : X → Y ∈ pCub

to the function |f | : |X| → |Y | defined by

|f |(x; t1, . . . , tn) = (f(x); t1, . . . , tn)

This is similar to the well-known geometric realisation functor from simpli-

cial sets to topological spaces, cf. [2].
Given x ∈ Xn ∈ X, we denote its image in the geometric realisation

by |x| = {(x; t1, . . . , tn) | ti ∈ [0, 1]} ⊆ |X|. The carrier, carr z, of a point
z ∈ |X| is z itself if z ∈ X0, or else the unique cube x ∈ X such that
z ∈ int |x|, the interior of |x|. The star of z is the open set

St z =
{

z′ ∈ |X|
∣

∣ carr z ⊳ carr z′
}

There is a natural order on the cubes [0, 1]n which is “forgotten” in the
transition pCub −→ Top. One can recover some of this structure by instead
defining functors from pCub to the d-spaces or the spaces with distinguished

cubes of M. Grandis [15, 16, 17], however here we take a different approach
as laid out in [10].

Given a precubical set X and x, y ∈ X, we write x ⊳ y if x is a face of y.
This defines a preorder ⊳ on X. If x is a lower face of y we write x ⊳− y, if it
is an upper face we write x ⊳+ y. The precubical set X is said to be locally

finite if the set {y ∈ X | x ⊳ y} is finite for all x ∈ X0.
Define a precubical set X to be non-selflinked if δν

i x = δµ
j x implies i = j,

ν = µ for all x ∈ X, i, j ∈ N+, ν, µ ∈ {0, 1}. Note [10, Lemma 6.16]: If x ⊳ y
in a non-selflinked precubical set, then there are unique sequences ν1, . . . , νℓ,
i1 < · · · < iℓ such that x = δν1

i1
· · · δνℓ

iℓ
y.

The geometric realisation of a non-selflinked precubical set contains no
self-intersections; if (x, s1, . . . , sn) ≡ (x, t1, . . . , tn), then si = ti for all
i = 1, . . . , n. By [10, Thm. 6.27], the geometric realisation of a non-selflinked
precubical set is a local po-space; a Hausdorff topological space with a rela-
tion ≤ which is reflexive, antisymmetric, and locally transitive, i.e. transitive
in each Uα for some collection U = {Uα} of open sets covering X. In our
case, the relation ≤ is induced by the natural partial orders on the unit cubes
[0, 1]n, and a covering U is given by the stars St|x| of all vertices x ∈ X0.

A dimap between local po-spaces (X,≤X), (Y,≤Y ) is a continuous map-
ping f : X → Y which is locally increasing : for any x ∈ X there is an open
neighbourhood U ∋ x such that for all x1 ≤X x2 ∈ U , f(x1) ≤Y f(x2).
Local po-spaces and dimaps form a category lpoTop, and by [10, Prop. 6.38],
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geometric realisation is a functor from non-selflinked precubical sets to local
po-spaces.

Let ~I denote the unit interval [0, 1] with the natural (total) order, and
define a dipath in a local po-space (S,≤) to be a dimap p : ~I → S. We recall
[9, Def. 2.17]: Given a locally finite precubical set X and a dipath p : ~I →
|X|, then there exists a partition of the unit interval 0 = t1 ≤ · · · ≤ tk+1 = 1
and a unique sequence x1, . . . , xk ∈ X such that

• xi 6= xi+1

• t ∈ [ti, ti+1] implies p(t) ∈ |xi|

• t ∈ ]ti, ti+1[ implies carr p(t) = xi

• carr p(ti) ∈ {xi−1, xi}

The sequence (x1, . . . , xk) is called the carrier sequence of the dipath p, and
we shall denote it by carrs p. It can be shown, cf. [9, Lemma 3.2], that for
all i = 2, . . . , n, either xi−1 ⊳−xi or xi ⊳

+ xi−1. Note that the definition in [9]
makes an extra assumption on X which, in fact, is not necessary. Figure 2
shows an example of a carrier sequence.

Figure 2: A dipath and its carrier sequence

In general we call a sequence of cubes (x1, . . . , xn) a carrier sequence if
xi−1 ⊳− xi or xi ⊳

+ xi−1 for all i = 2, . . . , n. Note that computation paths are
carrier sequences, and conversely, that carrier sequences can be turned into
computation paths by adding in some intermediate cubes. The next lemma
shows that any carrier sequence actually is the carrier sequence of a dipath.

Lemma 10 Given a carrier sequence (x1, . . . , xn) in a locally finite non-

selflinked precubical set X and z ∈ int |xn|, there exists a dipath p : ~I → |X|
such that carrs p = (x1, . . . , xn) and p(1) = z.

Proof: We shall inductively construct a sequence of dipaths (pn, . . . , p1)
such that pi(1) = z and carrs pi = (xi, . . . , xn) for all i. Let pn be the
constant dipath pn(t) = z.

Assume that we have a dipath pi+1 such that pi+1(1) = z and carrs pi+1 =
(xi+1, . . . , xn). Then pi+1(0) ∈ int |xi+1|. We treat the case xi ⊳− xi+1

first, then xi = δ0
j1
· · · δ0

jℓ
xi+1 for a unique sequence j1 < · · · < jℓ. Let

J = {j1, . . . , jℓ}, then (xi; t
′
1, . . . , t

′
k) ≡ (xi+1; t1, . . . , tk+ℓ), where tα = 0 for
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α ∈ J , and the sequence (t′1, . . . , t
′
k) is constructed from (t1, . . . , tk+ℓ) by

deleting all 0s.
Let pi+1(0) = (xi+1; s1, . . . , sk+ℓ), and define y = (xi+1; s̃1, . . . , s̃k+ℓ) by

s̃α = 0 if α ∈ J , s̃α = sα if α /∈ J . Then y ≤ pi+1(0), y ∈ |xi| ∩ |xi+1|, and
y ∈ int |xi|. We can concatenate pi+1 (on the left) with a dipath from y to
pi+1(0) to get pi.

Now for the case xi+1 ⊳+ xi. Let again J = {j1, . . . , jℓ} such that xi+1 =
δ1
j1
· · · δ1

jℓ
xi for a unique sequence j1 < · · · < jℓ, then (xi+1; t

′
1, . . . , t

′
k) ≡

(xi; t1, . . . , tk+ℓ), where tα = 1 for α ∈ J , and the sequence (t′1, . . . , t
′
k) is

constructed from (t1, . . . , tk+ℓ) by deleting all 1s.
Let pi+1(0) = (xi; s1, . . . , sk+ℓ) = (xi+1; s

′
1, . . . , s

′
k), and define y =

(xi; s̃1, . . . , s̃k+ℓ) by s̃α = 1
2 if α ∈ J , s̃α = sα if α /∈ J . Then y ≤ pi+1(0)

and y ∈ int |xi|, hence we can again concatenate pi+1 with a dipath from y
to pi+1(0) to get pi. �

We can similarly fix z ∈ int |x1| and get a dipath p with p(0) = z, but
we will only need the former case. We shall also need the following two
technical lemmas.

Lemma 11 Given locally finite non-selflinked precubical sets X, Y , a mor-

phism f : X → Y , and a dipath p : ~I → |X|, then carrs(|f | ◦ p) = f(carrs p).

Proof: Let carrs p = (x1, . . . , xn), carrs(|f | ◦ p) = (y1, . . . , ym). We can
assume that x1 = carr p(0) ∈ X0, then carr |f |(p(0)) = y1 ∈ Y0. We proceed
by induction:

Let k ∈ {1, . . . , n} such that yi = f(xi) for all i = 1, . . . , k − 1, and let
sk ∈ [0, 1] such that carr p(sk) = xk and carr p(s) 6= xk for s < sk. Note that
carr |f |(p(sk)) = yk.

Assume that xk ⊳+ xk−1, then xk = δ1
i1
· · · δ1

iℓ
xk−1 for some sequence of

indices I = (i1, . . . , iℓ). Write p(sk) = (xk−1; t1, . . . , tq), then tj = 1 if j ∈ I,
and 0 < tj < 1 otherwise. Also, p(sk) = (xk; tj1 , . . . , tjα

), where the ji are
exactly those indices not in I. Hence

|f |(p(sk)) = (f(xk−1); t1, . . . , tq) = (f(xk); tj1 , . . . , tjα
)

and as 0 < tji
< 1 for all ji, this implies |f |(p(sk)) ∈ int f(xk), and thus

yk = carr |f |(p(sk)) = f(xk). The proof for xk−1 ⊳− xk is similar. �

Note that, taking p to be a constant dipath, the lemma implies that
carr |f |(z) = f(carr z) for any z ∈ |X|.

Lemma 12 Given locally finite non-selflinked precubical sets X, Y , a mor-

phism f : X → Y , a dipath q : ~I → |Y |, and a carrier sequence (x1, . . . , xn)
in X such that carrs q = (f(x1), . . . , f(xn)), then there exists a dipath p :
~I → |X| such that carrs p = (x1, . . . , xn) and q = |f | ◦ p.
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Proof: Denote f(xi) = yi, and let 0 = t1 ≤ · · · ≤ tn+1 ≤ 1 be the partition
of the unit interval associated with carrs q = (y1, . . . , yn). Let i ∈ {1, . . . , n},
and assume yi ∈ Yk.

For t ∈ [ti, ti+1] we have q(t) ∈ |yi|, hence there exists a dimap qi : ~I → ~Ik

such that
q |[ti,ti+1](t) = (yi, qi(t))

and we can define p on [ti, ti+1] by p |[ti,ti+1](t) = (xi, qi(t)). Then p(t) ∈
int |xi| for t ∈ ]ti, ti+1[, hence carrs p = (x1, . . . , xn). We have q = |f | ◦ p
by definition, and p is continuous because the cubes xi are glued together
in the same way as the cubes yi: Y being non-selflinked implies that if
yi = δ0

j1
· · · δ0

jℓ
yi+1, then also xi = δ0

j1
· · · δ0

jℓ
xi+1, and similarly for yi+1⊳

+yi.�

Note again the implication of the lemma for constant dipaths: If x ∈ X
and z′ ∈ |Y | are such that carr z′ = f(x), then there exists z ∈ |X| such
that carr z = x and z′ = |f |(z).

11 Bisimulation and Dipaths

In this final section we again fix a labeling cubical set L and work in the cat-
egory of higher-dimensional automata over L. Recall that in this category,
all morphisms are non-contracting.

First we note the following stronger variant of Lemma 5:

Lemma 13 A morphism f : X → Y is CPath-open if and only if it satisfies

the property that for any reachable x1 ∈ X and for any computation path

(y1, . . . , yn) in Y with y1 = f(x1), there is a computation path (x1, . . . , xn)
in X such that yi = f(xi) for all i = 1, . . . , n.

Proof: Inductively apply Lemma 5 to the computation path (y1, . . . , yn).�

We call a HDA ∗ −→ X special if the cubical set X is freely generated by
a locally finite non-selflinked precubical set, and for the rest of this section
we assume our HDA to be special. Note that this is not a severe restriction:
Local finiteness is hardly an issue, and the requirement on a precubical set
to be non-selflinked is a natural one which is quite standard in algebraic
topology, cf. [2, Def. IV.21.1].

A point z ∈ |X| in the geometric realisation of a HDA ∗
i
−→ X is said

to be reachable if there exists a dipath p : ~I → |X| with p(0) = |i ∗ | and
p(1) = z. This notion of “geometric” reachability is closely related to the
one of computation path reachability defined in Section 8:

Proposition 14 A point z ∈ |X| in the geometric realisation of a special

HDA ∗
i
−→ X is reachable if and only if carr z is reachable.
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Proof: Assume first z to be reachable, and let p : ~I → |X| be a dipath with
p(0) = |i ∗ |, p(1) = z. Let (x1, . . . , xn) = carrs p, then xn = carr z, so by
turning carrs p into a computation path, we have a computation path from
i∗ to carr z.

Now assume carr z to be reachable, and let (i∗, . . . , carr z) be a compu-
tation path. Let p : ~I → |X| be its associated dipath as given by Lemma 10.
Then carrs p = (i∗, . . . , carr z), hence p(0) = |i ∗ |, and p(1) = z. �

We can now prove the main result of this paper, linking bisimulation of
HDA with a dipath-lifting property of their geometric realisations:

Theorem 15 Given a morphism f : X → Y of two special HDA, then f
is CPath-open if and only if, for any reachable z ∈ |X| and for any dipath

q : ~I → |Y | such that q(0) = |f |(z), there is a dipath p : ~I → |X| filling in

the diagram
(

|X|, z
)

|f |
��

(~I, 0)

p
99

q
//
(

|Y |, |f |(z)
)

If we identify z with the mapping z : 0 7→ z ∈ |X|, we can draw the
above diagram in a more familiar fashion as

0
z
//

� _

��

|X|

|f |
��

~I q
//

p

??

|Y |

That is, if we make the assumption that all cubes in the HDA X are reach-
able, then f is CPath-open if and only if |f | has the right-lifting property
with respect to the inclusion 0 →֒ ~I.

Proof: The morphism f is non-contracting, hence it is the image of a pre-
cubical morphism, also denoted f , under the free functor. Assume first
f to be CPath-open, let z ∈ |X| be reachable and q : ~I → |Y | a dipath
with q(0) = |f |(z). Turn carrs q into a computation path (y1, . . . , yn). Let
x1 = carr z, then x1 is reachable, and y1 = carr |f |(z) = f(x1).

We can invoke Lemma 13 to get a computation path (x1, . . . , xn) in X
such that (y1, . . . , yn) = f(x1, . . . , xn). Lemma 12 then provides a dipath
p : ~I → |X| such that q = |f |◦p. The construction in the proof of Lemma 12
implies that p(0) = z.

For the other direction, assume |f | to have the dipath lifting property of
the theorem, let x1 ∈ X be reachable, y1 = f(x1) ∈ Y , and let (y1, . . . , yn)
be a computation path in Y .

19



Let q : ~I → |Y | be a dipath associated with (y1, . . . , yn) as given by
Lemma 10. Then carr q(0) = f(x1), thus we have z ∈ |X| such that carr z =
x1 and q(0) = |f |(z). By Proposition 14 the point z is reachable. The
dipath-lifting property then implies that we have a dipath p : ~I → X such
that q = |f | ◦ p and p(0) = z.

Let (x1, . . . , xn) = carrs p, then yi = f(xi) by Lemma 11. We show
that (x1, . . . , xn) is actually a computation path; this will finish the proof.
Assume xi ⊳− xi+1, i.e. xi = δ0

j1
· · · δ0

jℓ
xi+1 for some sequence of indices,

then yi = δ0
j1
· · · δ0

jℓ
yi+1. Since (y1, . . . , yn) is a computation path, and Y

is non-selflinked, the sequence of indices contains only one element jℓ, and
xi = δ0

jℓ
xi+1. Similar arguments apply to the case xi+1 ⊳+ xi. �

12 Conclusion and Future Work

We have in this article introduced some synchronisation operations for higher-
dimensional automata, notably tensor product, relabeling, and restriction.
Whether these operations capture the full flavour of HDA synchronisation
remains to be seen; some other primitives might be needed. Recent work by
Worytkiewicz [25] suggests some directions.

We have also defined a notion of bisimulation for HDA which is closely
related to van Glabbeek’s [11] computation paths. The notion of bisimula-
tion also defined in [11] appears to be weaker than ours, and their relation
should be worked out in detail.

The notions of computation paths defined in Cattani-Sassone’s [5] and
in [25] differ considerably from van Glabbeek’s, and as a consequence they
arrive at different concepts of bisimulation and even simulation. These dif-
ferences need to be worked out, and also the apparent similarities between
[5] and [25].

We have shown that our notion of bisimulation has an interpretation as a
dipath-lifting property of morphisms, making the problem of deciding bisim-
ilarity susceptible to some machinery from algebraic topology. In topological
language, a dipath-lifting morphism is a weak kind of fibration, hinting that
fibrations (well-studied in algebraic topology) could have applications, as
well. This also suggests that a general theory of directed fibrations should
be developed.

We believe that our bisimulation notion should be weakened, also taking
equivalence of computation paths [11] into account. We plan to elaborate
on this in a future paper, and we conjecture that this bisimulation-up-to-
equivalence has a topological interpretation as a property of lifting dipaths
up to directed homotopy. This weaker bisimulation appears to be closely
related to van Glabbeek’s, and there appears to be a strong connection
between his unfoldings of HDA and directed coverings of local po-spaces [8].

20



References

[1] Francis Borceux. Handbook of Categorical Algebra 1. Cambridge Uni-
versity Press, 1994.

[2] Glen E. Bredon. Topology and Geometry. Springer-Verlag, 1993.

[3] Ronald Brown and Philip J. Higgins. On the algebra of cubes. Journal

of Pure and Applied Algebra, 21:233–260, 1981.

[4] Ronald Brown and Philip J. Higgins. Tensor products and homotopies
for ω-groupoids and crossed complexes. Journal of Pure and Applied

Algebra, 47:1–33, 1987.

[5] Gian Luca Cattani and Vladimiro Sassone. Higher dimensional transi-
tion systems. In Proc. LICS’96, pages 55–62. IEEE Press, 1996.

[6] Sjoerd Crans. On Combinatorial Models for Higher Dimensional Ho-

motopies. PhD thesis, Utrecht University, 1995.

[7] Ulrich Fahrenberg. A category of higher-dimensional automata. In
Proc. FOSSACS’05, Lecture Notes in Computer Science. Springer-
Verlag, 2005. To be published.

[8] Lisbeth Fajstrup. Dicovering spaces. Homology, Homotopy and Appli-

cations, 5(2):1–17, 2003.

[9] Lisbeth Fajstrup. Dipaths and dihomotopies in a cubical com-
plex. Report R-2003-22, Department of Mathematical Sciences, Aal-
borg University, 2003. http://www.math.aau.dk/research/reports/
R-2003-22.ps. Submitted to Advances in Applied Mathematics.

[10] Lisbeth Fajstrup, Eric Goubault, and Martin Raussen. Algebraic topol-
ogy and concurrency. Report R-99-2008, Department of Mathemat-
ical Sciences, Aalborg University, 1999. http://www.math.aau.dk/

research/reports/R-99-2008.ps. Conditionally accepted for publi-
cation in Theoretical Computer Science.

[11] Robert Jan van Glabbeek. Bisimulations for higher dimensional au-
tomata. Email message, 1991. http://theory.stanford.edu/~rvg/

hda.

[12] Robert Jan van Glabbeek. On the expressiveness of higher dimensional
automata. Preprint, 2004. http://www.cse.unsw.edu.au/~rvg/hda.

pdf.

[13] Eric Goubault. The Geometry of Concurrency. PhD thesis, Ecole
Normale Supérieure, Paris, 1995. http://www.di.ens.fr/~goubault/
papers/these.ps.gz.

21



[14] Eric Goubault. Labelled cubical sets and asynchronous transition sys-
tems: an adjunction. In Preliminary Proceedings CMCIM’02, 2002.
http://www.di.ens.fr/~goubault/papers/cmcim02.ps.gz.

[15] Marco Grandis. Directed homotopy theory I. Cahiers de Topologie
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