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ON APPROXIMATION WITH WAVE PACKETS GENERATED

FROM A REFINABLE FUNCTION

LASSE BORUP AND MORTEN NIELSEN

Abstract. We consider best m-term approximation in Lp(Rd) with wave
packets generated from a single refinable function. The main examples of
such wave packets are orthonormal wavelets or more generally tight wavelet
frames based on an MRA (so-called framelets). The approximation classes
associated with best m-term approximation in Lp(Rd) with such wave packets
are completely characterized in terms of Besov spaces.

As an application of the main result we show that for m-term approximation
in Lp(Rd) with elements from an oversampled version of a framelet system with
compactly supported generators, the associated approximation classes turn out
to be (essentially) Besov spaces.

1. Introduction

The standard method used to generate “atoms” such as wavelets or wavelet frames
is to begin with a refinable function φ ∈ L1(R

d) ∩ L2(R
d) and then construct the

generators {ψi}Li=1 of the wavelet or wavelet frame system by applying a filter to
φ, i.e.,

(1.1) ψ̂i(2ξ) = mi(ξ)φ̂(ξ).

Usually mi is a so-called high-pass filter, but this is not important for the results
considered in this paper. We call a function ψi of the type given by (1.1) a wave
packet generated by the refinable function φ.

The main purpose of this paper is to study approximation of smooth functions with
m-term approximants formed by dilating and translating one or more wave packets
of the form given by (1.1). More precisely, given a finite collection of wave packets
{ψi}i∈F and K ∈ Z, we consider the dictionary

XK({ψi}i∈F ) := {ψi(2j · −k/2K) : j ∈ Z, k ∈ Z
d, i ∈ F} ⊂ L2(R

d),

We notice that K is an oversampling ratio, and for regular wavelet systems one
usually considers K = 1.

The associated (nonlinear) space of all possible m-term expansions by elements
from XK({ψi}i∈F ) is given by

Σm(XK({ψi}i∈F ) :=

{

S : S =

m
∑

j=1

ajgj , with aj ∈ C, gj ∈ XK({ψi}i∈F )

}

.
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We measure the approximation error in the Triebel-Lizorkin norm Ḟ γp (Lq(R
d)), see

[9]. The error of the best m-term approximation of f from XK(ψ) is then given by

σm(f,XK(ψ))Ḟγ
p (Lq) := inf

S∈Σm(XK (ψ))
‖f − S‖Ḟγ

p (Lq).

We let Aγ
t (Ḟ

γ
p (Lq(R

d)), XK(ψ)), 0 < t ≤ ∞, denote the approximation class of all
functions f such that

(1.2) |f |Aγ
t (Ḟγ

p (Lq),XK(ψ)) :=

( ∞
∑

m=1

(

nγσm(f,XK(ψ))Ḟγ
p (Lq)

)t 1

m

)1/t

<∞,

with the usual modification when t = ∞. Now the fundamental question is whether
it is possible to completely characterize Aγ

t (Ḟ
γ
p (Lq(R

d)), XK(Ψ)) in terms of known
smoothness spaces. When p = 2 and 1 < q < ∞ For “nice” bi-orthogonal wavelet
systems in L2(R

d) and for parameters γ = 0, p = 2, and 1 < q < ∞ in (1.2)

(we recall: Ḟ 0
2 (Lq(R

d)) ≈ Lq(R
d)), the approximation classes are known to be

essentially Besov spaces. In the paper [4] it was proved that for tight wavelet frames
based on a spline multiresolution for L2(R), one obtains the same approximation
classes if we put K = 2.

The main result of this paper is that given one or more compactly supported wave
packets of the form (1.1), based on a compactly supported refinable function, it
is always possible to find K0 ∈ N such that for K ≥ K0, the approximation class
A0

2(Ḟ
γ
p (Lq)) is given by (essentially) a Besov space, just like in the orthonormal

wavelet systems. The precise statement (Theorem 3.2) is given in Section 3, and
it is perhaps surprising that the existence of such a K0 does not depend on the
particular form of the filters mi from (1.1).

We use the standard approach to obtain the characterizaion of the approximation
classes. First we prove a Jackson inequality for best m-term approximation with
elements from the dictionary XK({ψi}i∈F ) for sufficiently large values of K. The
proof in Section 2 is based on an application of the of φ-transform machinery by
Frazier and Jawerth [3]. To obtain the characterization of the approximation class,
we establish a Bernstein inequality for m-term expansions from XK({ψi}i∈F ). This
is done in Section 3. Put together, the Jackson and Bernstein inequality leads to
the main result, Theorem 3.2. Our main application of the results is to framalet
systems, i.e., to tight wavelet frames based on an MRA.

2. Jackson inequalities for general wave packets

In this section we establish a Jackson inequality for best m-term approximation
with elements from the dictionary XK({ψi}i∈F ) for sufficiently large values of K.
The proof is based on the φ-transform technique of Frazier and Jawerth. We will
state the result from [3] that is needed below, but first we introduce the following
notation.

D denotes the set of dyadic cubes Q = Qνk = 2−ν([0, 1]d + k), ν ∈ Z, k ∈ Zd.
We will use two index notations in this paper; {φQ}Q∈D will denote a sequence of

functions indexed by the dyadic cubes while φQ(x) := 2−νd/2φ(2νx− k).

For γ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞, we let ḟγp,q(D) respectively ḃγp,q(D) be the
collection of all complex-valued sequences s = {sQ}Q∈D such that

‖s‖ḟγ
p,q

:=
∥

∥

∥

(

∑

Q∈D

(|Q|−
γ
d
− 1

2 |sQ|χQ)q
)

1

q
∥

∥

∥

Lp

<∞,
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respectively

‖s‖ḃγ
p,q

:=
(

∑

ν∈Z

2νq(γ+ d
2
− d

p
)
(

∑

Q∈Dν

|sQ|
p
)

q
p
)

1

q

<∞.

We recall the following result given by Frazier and Jawerth in [3]. For x ∈ R we let
bxc denote the integer satisfying x− 1 < bxc ≤ x.

Theorem 2.1. Let s ≥ 0, 0 < q ≤ ∞, 0 < p < ∞, J = d/min(1, p, q), and
N = max(bJ − d − sc,−1). Suppose δ satisfies s − bsc < δ ≤ 1, and suppose
M > J . Let u be a function satisfying the four conditions:

|û(ξ)| ≥ c > 0 if 2−1 ≤ |ξ| ≤ 2,(2.1)
∫

xγu(x) dx = 0 if |γ| ≤ N,(2.2)

|∂γu(x)| ≤ cγ(1 + |x|)−M if |γ| ≤ bs+ 1c,(2.3)

|∂γu(x) − ∂γu(y)| ≤ sup
|z|≤|y−x|

|x− y|δ

(1 + |x− z|)M
if |γ| = bs+ 1c.(2.4)

Given µ ∈ Z, let g(x) = 2µdu(2µx). Then there is a µ0 ≤ 0 with the property
that if µ ≤ µ0, there exists a family of functions {g̃Q}Q∈D, such that for all f ∈

Ḟ sq (Lp(R
d)), we have

f =
∑

Q∈D

〈f, g̃Q〉gQ,

with ‖{〈f, g̃Q〉}‖ḟs
p,q

≤ c‖f‖Ḟ s
q (Lp), and for any sequence s = {sQ}Q∈D, we have

∥

∥

∥

∑

Q∈D

sQgQ

∥

∥

∥

Ḟ s
q (Lp)

≤ c‖s‖ḟs
p,q
.

Remark 2.2. If (2.3) and (2.4) are substituted by the condition

(2.5) |u(x) − u(y)| ≤ sup
|z|≤|y−x|

|x− y|δ

(1 + |x− z|)M−s
,

Theorem 2.1 holds true for s < 0.

Remark 2.3. It is easy to verify that exactly the same result as given in The-
orem 2.1 holds true if the Besov space Ḃsq (Lp(R

d)) is considered instead of the
Triebel-Lizorkin space.

Theorem 2.1 gives sufficient conditions for a function g to generate an atomic decom-
position of the Triebel-Lizorkin and Besov spaces. However, many interesting func-
tions do not satisfy the conditions (2.1) and (2.2). For example, whenever

∫

ψ 6= 0
then (2.2) clearly fails, but in the paper [8] it was shown how to build appropriate
wave packets from such functions with the required number of vanishing moments.
The wave packets then form atomic decompositions of the Triebel-Lizorkin and
Besov spaces. Another type of function often encountered in applications is one
that is very smooth, but with a comparatively small number of vanishing moments.
Often generators of tight wavelet frames will have these characteristics. We can
apply Theorem 2.1 directly to such functions, but we will only get atomic decom-
positions valid for a more restricted range of smoothness parameters than one would
expect from the smoothness of the generator. Inspired by [8], we now show how to
create wave packets from a function which does not satisfy the conditions (2.1) and
(2.2).
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Proposition 2.4. Given s ≥ 0, let φ ∈ Cs(Rd) be a compactly supported function

with φ̂(0) 6= 0 and let ψ be any fixed function in span{φ(2 · −k) : k ∈ Z}. Then for
N ∈ N0 there exists a J ∈ N and a finite set of coefficients {ck}

n
k=1, n ≤ 2N + 1,

such that the function u =
∑n
k=1 ckψ(2J(·− k)) satisfies the conditions (2.1)–(2.4).

Proof. Since φ has compact support we have that both φ and ψ satisfy (2.3) and
(2.4) for any M ∈ N. Thus, it suffices to prove that u satisfies (2.1) and (2.2).
Since ψ ∈ span{φ(· − k) : k ∈ Z}, there exists a trigonometric polynomial τ such

that ψ̂(ξ) = τ(ξ)φ̂(ξ). In particular, there exists an r > 0 such that τ(ξ) 6= 0 for

0 < |ξ| < r. Likewise there exists an r′ > 0 such that φ̂(ξ) 6= 0 for |ξ| < r′. Now, if
we choose J ∈ N such that 2J > 1/min(r, r′), then ũ = ψ(2J ·) satisfies (2.1).

In order to obtain N vanishing moments, we simply apply a high-pass filter with
symbol m(ξ) which has a zero of order N at ξ = 0 and no zeros on K := {ξ ∈

Rd : 1/2 ≤ |ξ| ≤ 2}. For example, let u =
(
∑d
j=1(∆ej

+ ∆−ej
)
)N
ũ, where ∆e is the

difference operator in the direction e ∈ Rd, ∆ef(x) = f(x+e)−f(x), and ej is a unit
vector in the j-th direction. Then it is easy to see that u satisfies (2.2). Moreover,

since F(∆ej
+∆−ej

)f(ξ) = 2(cos(ξ ·ej)−1)f̂ and |
∑d

j=1 cos(ξ ·ej)−1| ≥ 1−cos(1/2)

on K, u satisfies (2.1) too. �

By Proposition 2.4 there exists a K0 ∈ Z such that if K ≥ K0 then spanXK(ψ) is
dense in the Triebel-Lizorkin and Besov spaces provided that each generator ψi is
itself contained in that particular space (which clearly is not always satisfied). In
the remaining of this paper we will fix such a K and consider approximation using
m-term expansions with elements from the dictionaries XK(ψ).

As a consequence of Proposition 2.4 we have the following Jackson inequality.

Proposition 2.5. Given s ≥ 0, let φ ∈ Cs(Rd) be a compactly supported refinable
function and let ψ ∈ span{φ(2 · −k) : k ∈ Z}. Suppose 0 < p < ∞, 0 < t ≤ ∞,

0 ≤ β < γ < s and ψ ∈ Ḟ βt (Lp(R
d)), and define 1/τ := (γ − β)/d + 1/p. Then

there exists a finite constant C such that

σm(f,XK(ψ))Ḟβ
t (Lp) ≤ Cm−(γ−β)/d‖f‖Ḃγ

τ (Lτ ), ∀m ∈ N, f ∈ Ḃγτ (Lτ (R
d)).

Proof. By Proposition 2.4, we can construct a function g ∈ Σn(XK(ψ)) for some
finite n, and a sequence {g̃Q}Q∈D, such that

f =
∑

Q∈D

〈f, g̃Q〉gQ,

for every f ∈ Ḃγτ (Lτ (R
d)), with ‖{〈f, g̃Q〉}‖ḃγ

τ,τ
≤ C‖f‖Ḃγ

τ (Lτ ). Fix f ∈ Ḃγτ (Lτ (R
d)),

and let η be one of the 2d − 1 orthonormal Meyer wavelets on Rd. We notice
that the function h :=

∑

Q∈D〈f, g̃
Q〉ηQ belongs to Ḃγτ (Lτ (R

d)) with ‖h‖Ḃγ
τ (Lτ ) ≤

C‖f‖Ḃγ
τ (Lτ ). From [7], we have

(2.6) σm(h, {ηQ}Q)Ḟβ
t (Lp) ≤ Cm−(γ−β)/d‖h‖Ḃγ

τ (Lτ ), m ∈ N.

Let hm ∈ Σm({ηQ}Q) be a sequence that realizes (2.6) up to the relaxed constant
2C. We want to map hm to an element of fm ∈ Σm({gQ}Q). To accomplish this,
we consider the operator T with kernel

K(x, y) :=
∑

Q∈D

gQ(x)ηQ(y).

The matrix of this operator in the Meyer wavelet basis is M = [〈gP , ηQ〉]P,Q∈D .

It is easy to verify that M ∈ ad
β
p,t, where ad

β
p,t is the algebra of almost diagonal
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matrices, see [3, Sec. 9]. We notice that fm := Thm ∈ Σm({gQ}Q), and moreover,
f − fm = T (h − hm). However, the matrix representation of T shows that T is

bounded on Ḟ βt (Lp(R
d)) so

‖f − fm‖Ḟβ
t (Lp) ≤ C1‖h− hm‖Ḟβ

τ (Lτ )

≤ 2C1Cm
−(γ−β)/d‖h‖Ḃγ

τ (Lτ )

≤ C ′m−(γ−β)/d‖f‖Ḃγ
τ (Lτ ).

Hence, we have the wanted Jackson inequality for the dictionary {gQ}Q∈D, and
thus for XK(ψ). �

3. Approximation with framelet systems

In this section we derive a fairly general Bernstein inequality for the systemXK({φi}),
and then using the Jackson inequality for such systems, valid for large K, we give a

complete characterization of A
α/d
q

(

Lp(R
d), XK(ψ)

)

for 1 < p < ∞. The Bernstein

inequality for XK({φi}) is given by the following proposition.

Proposition 3.1. Given s ≥ 0, let φ ∈ W s(L∞(Rd)) be a compactly supported
refinable function and let ψ ∈ span{φ(· − k) : k ∈ Z}. If d > 1 we suppose {φ(· −
k)}k∈Zd is a locally linearly independent set (this condition is void if d = 1). Then
for each 0 < γ < s and K ≥ 1, the Bernstein inequality

(3.1) |S|Ḃγ
τ (Lτ (Rd)) ≤ Cmγ/d‖S‖Lp(Rd), ∀S ∈ Σm(XK(ψ)),

1/τ := γ/d+ 1/p, 0 < p ≤ ∞, holds true.

Proof. In the case d = 1, if the integer shifts of the function φ are not already
linearly independent, we can always find a perfect generator φ̃ for the shift invariant
space S0 := span{φ(·−k) : k ∈ Z}, i.e., φ̃ is a compactly supported refinable function
with linearly independent shifts that generates S0, see [6]. In the arguments below

we may use φ̃ in place of φ.

By the result of Jia [5], for each 0 < γ < s, the Bernstein inequality

|S|Ḃγ
τ (Lτ (Rd)) ≤ Cmγ/d‖S‖Lp(Rd), ∀S ∈ Σm(X(φ)),

1/τ := γ/d+ 1/p, 0 < p ≤ ∞, holds true for the system

X(φ) := {φ(2jx− k)}j∈Z,k∈Zd .

By assumption there is a finite mask {bk}k such that

ψ(x) =
∑

`∈Zd

b`φ(x− `),

and since φ is compactly supported and refinable there is another finite mask {ak}
such that

φ(x) =
∑

`∈Zd

a`φ(2x− `).
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Thus, for j ∈ Z and k ∈ Zd, we have

ψ(2jx− k/2K)

=
∑

`0∈Zd

b`0φ
(

2jx− k/2K − `0
)

=
∑

`0,`1∈Zd

b`0a`1φ
(

2j+1x− k/2K−1 − 2`0 − `1
)

...

=
∑

`0,`1,...,`K∈Zd

b`0a`1 · · · a`Kφ
(

2j+Kx− k − 2K−1`0 − 2K−2`1 − · · · − `K
)

.

That is to say ψ(2jx − k/2K) ∈ ΣL(X(φ)) for some uniform L depending only on
K and the length of the finite masks used above. Take any S ∈ Σm(XK(Ψ)), then
S ∈ ΣLm(X(φ)). Using the Bernstein inequality for X(φ) we obtain the wanted
inequality,

|S|Ḃγ
τ (Lτ (Rd)) ≤ C(Lm)γ/d‖S‖Lp(Rd)

≤ C̃mγ/d‖S‖Lp(Rd), ∀S ∈ Σm(XK(Ψ)).

�

We can now apply the Jackson and Bernstein inequalities obtained so far to get the
main result of this paper.

Theorem 3.2. Given s ≥ 0, let φ ∈ W s(L∞(Rd)) be a compactly supported refin-
able function and let ψ ∈ span{φ(·−k) : k ∈ Z}. If d > 1 we suppose {φ(·−k)}k∈Zd

is a locally linearly independent set (condition is void if d = 1). Then there exists
K0 ∈ N such that for K ≥ K0,

Aα/d
q

(

Lp(R
d), XK(ψ)

)

=
(

Lp(R
d), Bγτ (Lτ (R

d))
)

α/γ,q
,

for 1 < p <∞, 0 < α < γ < s, and 1/τ := γ/d+ 1/p.

Proof. By Proposition 3.1, we have the Bernstein inequality

|S|Ḃγ
τ (Lτ (Rd)) ≤ C̃Km

γ/d‖S‖Lp(Rd), ∀S ∈ Σm(XK(ψ)), γ < s.

Using Proposition 2.5, there is a K ≥ 1 such that the Jackson inequality

σm(f,XK(ψ))Lp(Rd) ≤ Cm−γ/d‖f‖Ḃγ
τ (Lτ ), ∀m ∈ N, f ∈ Ḃγτ (Lτ ),

holds for γ < s. Hence, the result follows by the well known theorem of DeVore
and Popov [2]. �

Remark 3.3. For p ≤ 1, we cannot get a Bernstein inequality valid for Hp(R
d) using

the techniques of this paper. This is due to the fact that the refinable function φ is

not contained in Hp(R
d). Indeed, whether A

α/d
q

(

Hp(R
d), XK(ψ)

)

is even defined

depends on the properties of filters mi from (1.1).

Clearly, Proposition 3.2 also characterize the approximation classes associated with
the oversampled scaling system XK(φ). However, since φ is a refinable function we
can actually do much better. We have the following result.

Proposition 3.4. Consider an oversampled system XK(φ) for which the following
Jackson inequality holds

σm(f,XK(φ))Ḟβ
t (Lp) ≤ Cm−(γ−β)/d‖f‖Ḃγ

τ (Lτ ), ∀m ∈ N, f ∈ Ḃγτ (Lτ (R
d)),
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where 1/τ := (γ−β)/d+1/p and 0 < t ≤ ∞. Suppose φ is refinable and compactly
supported. Then the Jackson inequality (with the same parameters as above)

σm(f,X(φ))Ḟβ
t (Lp) ≤ Cm−(γ−β)/d‖f‖Ḃγ

τ (Lτ ), ∀m ∈ N, f ∈ Ḃγτ (Lτ (R
d)),

holds for the non-oversampled system X(φ).

Proof. We notice that it suffice to prove that Σm(XK(φ)) ⊂ ΣLm(X(φ)) for some
uniform constant L, since then we would obtain the estimate

σLm(f,X(φ))Ḟβ
t (Lp) ≤ σm(f,XK(φ))Ḟβ

t (Lp).

Using the refinement relation

φ(x) =
∑

`∈Zd

a`φ(2x− `)

successively, we notice that

φ(2jx− k/2K)

=
∑

`1∈Zd

a`1φ
(

2j+1x− k/2K−1 − `1
)

=
∑

`1,`2∈Zd

a`1a`2φ
(

2j+2x− k/2K−2 − 2`1 − `2
)

...

=
∑

`1,`2,...,`K∈Zd

a`1a`2 · · · a`Kφ
(

2j+Kx− k − 2K−1`1 − 2K−2`2 − · · · − `K
)

.

It follows that φ(2jx− k/2K) ∈ ΣL(X(φ)), where L only depends on the length of
the mask {ak}k and on K. This proves the claim. �

We easily deduce the following result which concludes the paper

Corollary 3.5. Let φ ∈ W s(L∞(Rd)), s > 0, be a compactly supported refinable
function. Then we have the Jackson inequality

(3.2) σm(f,X(φ))Ḟβ
t (Lp) ≤ Cm−(γ−β)/d‖f‖Ḃγ

τ (Lτ ), ∀m ∈ N, f ∈ Ḃγτ (Lτ (R
d)),

where 1 < p <∞, 0 < γ < s, and 1/τ := (γ − β)/d+ 1/p.

Moreover, if for d > 1 {φ(· − k)}k∈Zd is a locally linearly independent set (the
condition is void if d = 1), then we have for each K ≥ 1,

Aα/d
q

(

Lp(R
d), XK(φ)

)

=
(

Lp(R
d), Bγτ (Lτ (R

d))
)

α/γ,q
,

for 1 < p <∞, 0 < α < γ < s, and 1/τ := γ/d+ 1/p.

Proof. The Jackson inequality forXK(φ) (for largeK) follows from Proposition 2.5,
and then the Jackson inequality for smaller K can be deduced from Proposition
3.4. The Bernstein inequality for XK(φ) follows from the same string of arguments
as used in the proof of Proposition 3.1. �

Remark 3.6. The Jackson inequality (3.2) given by Corollary 3.5 generalizes [1,
Theorem 2.1] to the case where the approximation errors is measured on the full
scale of Triebel-Lizorkin spaces and not just in the Lp-spaces.
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