Detailed measurement on a HESCO diffuser

Jensen, Rasmus Lund; Holm, Dorte; Nielsen, Peter V.

Publication date: 2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Detailed measurement on a HESCO diffuser

Rasmus L. Jensen¹, Dorte Holm² and Peter V. Nielsen¹
¹Aalborg University, Denmark
²Herning Kommune, Teknik og Miljø, Denmark

SUMMARY
This paper focuses on measuring the inlet velocity from a HESCO diffuser used in the IEA Annex 20 work as a function of the volume flow it provides. The aim of the present work is to establish a relation between the inlet velocity, the effective area and the airflow. This is important because the inlet velocity is a significant boundary condition in CFD calculation as well as general flow measurements. If only the volume flow and the geometrical area are used, a relatively large error in the inlet velocity may result. From the detailed measurements it was possible to establish an expression between the inlet velocity and the effective area.

RESULTS
Mean inlet velocity as a function of air change rate

Effective inlet area as a function of air change rate

Comparison with previous results

CONCLUSIONS
When determining the effective inlet area, it is important to verify that the assumption regarding e.g. the velocity profile across the nozzles holds. Also, one should be careful to measure only at a limited number of points since there can be large variations between (in this case) the different nozzles.

Based on the measurements, an expression for the effective inlet area given as a function of the air change rate is derived. The agreement between the expression and the measurements is excellent and therefore, the expression should be used when determining boundary conditions for CFD simulations based on the Annex 20 room geometry.

ACKNOWLEDGEMENT
This research was funded by the Danish Technical Research Council (STVF) as a part of the International Centre for Indoor Environment and Energy at the Technical University of Denmark.

Rasmus Lund Jensen, rlj@civil.aau.dk, www.civil.aau.dk
Department of Civil Engineering, Aalborg University, Søholmsgade 57, DK-9000 Aalborg, Denmark