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Application of an Autocovariance Least - Squares Method for Model
Predictive Control of Hybrid Ventilation in Livestock Stables

Zhuang Wu and Murali R. Rajamani and James B. Rawlings and Jakob Stoustrup

Abstract— In this paper, the implementation of a new Auto-
covariance Least-Square (ALS) technique for livestock hybrid
ventilation systems and associated indoor climate with a Model
Predictive Control (MPC) strategy is presented. The design
is based on thermal comfort parameters for poultry in barns
and a combined dynamic model describing the entire system
knowledge. Reference offset-free tracking is achieved using
target calculation and quadratic programming and adding
a disturbance model that accommodates unmeasured distur-
bances entering through the process input. The unknown noise
covariances are diagnosed and corrected by applying the ALS
estimator with the closed loop process data. The comparative
simulations show the performance improvement with the ALS
estimator in the presence of disturbances and moderate amount
of error in the model parameters. The results demonstrate the
high potential of ALS methods in improving the best practice
of process control and estimation.

I. INTRODUCTION

Environmental control for living systems differs greatly
from comparable control for physical systems. Environ-
mental requirements for living systems are typically more
complex and nonlinear, and the biological system is likely
to have significant and numerous effects on its physical
surroundings. The design objective of this work is hybrid
ventilation system and associated indoor environment for
livestock barn, where hybrid ventilation systems combine
the natural ventilation and mechanical ventilation, and have
been widely used for livestock stables. Based on a so called
conceptual multi-zone method, the horizontal variation of the
indoor temperature and ventilation rate are taken into account
and the entire system becomes a strongly coupled Multiple
Input and Multiple Output (MIMO) dynamic nonlinear sys-
tem. The system is exposed to external disturbances with
random noises and has actuators with saturation.

As stated in books [1] and [2], papers [17], [4] and [5],
Model Predictive Control (MPC) has become the advanced
control strategy of choice by industry mainly for the eco-
nomically important, large-scale, multi-variable processes in
the plant. The rationale for MPC in these applications is
that it can deal with strong non-linearities, handle constraints
and modeling errors, fulfill offset-free tracking, and it is
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easy to tune and implement. Consequently, applying MPC
technology to allow a trade-off between the thermal comfort
and energy consumption within constraints is necessary.

The heat dissipation from living animals such as pigs
or poultry is one of the major influencing factors to the
indoor comfort conditions, and lack of the knowledge about
these disturbances makes the implementation of the control
algorithm complicated, especially when covariances of the
disturbance are unknown. A variety of methods have been
proposed to solve this problem. A new Autocovariance
Least-Squares (ALS) method for estimating noise covari-
ances using routine operating data is employed to recover
the covariances and adaptively determine an optimal filter
gain. Odelson, Lutz, Rawlings [6] and Odelson, Rajamani,
Rawlings [7] have researched and proved the superior advan-
tages of ALS method convincingly through comparing with
previous work.

In this paper, the livestock indoor environment and its
control system will be regarded as a feedback loop. Through
regulation, target calculation and state estimation, the predic-
tive controller provides the optimal control actions involved
with operating the valves and the fans. The ALS technique
is not only expected to give an optimal estimator gain, but
also to improve the closed loop performance in the presence
of disturbances and model/plant mismatch. The comparative
simulation results with the nominal controller and the ALS
method are illustrated.

II. PROCESS DYNAMIC MODELING

The schematic diagram of a large scale livestock barn
equipped with hybrid ventilation system analyzed with con-
ceptual multi-zone method is shown in Fig. 1(1), 1(2) and
1(3). The system consists of evenly distributed exhaust units
mounted in the ridge of the roof and fresh air inlet openings
installed on the walls. From the view of direction A and B,
Fig. 1(a) and 1(b) provide a description of the dominant air
flow map of the building including the airflow interaction
between each conceptual zone.

As stated in [8] and [9], the differential algebraic equations
govern sensible heat for indoor thermal comfort is shown in
(1). The subscript i represents the zone number.

Micp,i
dTi

dt
= Q̇i+1,i + Q̇i,i+1 + Q̇in,i

+ Q̇out,i + Q̇conve,i + Q̇source,i,
(1)

where, Ti is the zonal air temperature (oC), cp,i is the specific
heat of the air (J ·kg−1 ·K−1), Mi is the mass of the air (kg),
Q̇i+1,i, indicate the heat exchange (J/s) due to the air flow
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Fig. 1. Large Scale Livestock Barn and the Dominant Airflow Map of the
Barn

across the conceptual boundary of zone i and zone i + 1.
Q̇in,i, Q̇out,i represent the heat transfer (J/s ) by air flow
through inlet and outlet respectively. The convective heat loss
through the building envelope is denoted by Q̇conve,i (J/s).
The heat source Q̇source,i includes the heat gain from animal
heat production and heating system.

The volume flow rate through the inlet is calculated by (2),
where Cd is the discharge coefficient, A is the geometrical
opening area (m2), ∆P is the pressure difference across the
opening (Pa) and can be computed by a set of routines solv-
ing thermal buoyancy and wind effect as (3). The subscript
re f stands for the value at reference height, NPL stands for
the Neutral Pressure Level (NPL). The internal pressure at
NPL is denoted by Pi.

qin = Cd ·A ·
√

2 ·∆P
ρ

, (2)

∆P =
1
2

CPρoV 2
re f −Pi +ρog

Ti−To

Ti
(HNPL−Hin). (3)

The exhaust unit consists of an axial-type fan and a swivel
shutter. We introduce a fan law, as a relationship between the
total pressure difference ∆Pf an, volume flow rate qout and
supplied voltage Vvolt with a specific shutter opening angle
which can be expressed in (4) and (5), where the parameters
a0, a1, a1 are empirically determined.

∆Pf an = a0 · (Vvolt)
2 +a1 ·qout · (Vvolt)+a2 ·q2

out , (4)

∆Pf an =
1
2

ρoCP,rV 2
re f −Pi−ρig

Ti−To

To
(HNPL−H f an). (5)

For a detailed description and necessary simplifying as-
sumptions of those system models development, we refer to
[10].

III. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) refers to a class of
control algorithms that compute a sequence of manipulated
variable adjustments by utilizing a process model to forecast

process behavior and optimize based on a linear or quadratic
open-loop performance objective, subject to equality or in-
equality constraints over a future time horizon.

A. Model Transformation

We regard the livestock ventilation system as two parts by
noting that the overall system consists of a static air distrib-
ution system (inlet-exhaust air flow system) and a dynamic
thermal system (animal environmental zones). Both of these
two systems are mildly nonlinear with MIMO. However,
representing or approximating a nonlinear model’s dynamic
response with some form of linear dynamics is an easy and
illuminating way to analyze and solve on-line optimization,
and especially, for processes maintained at nominal operating
conditions and subject to small disturbances, the potential
improvement of using a nonlinear model in MPC would
appear small.

Through substitution and multiplication as described in
[9], the general form of a combined Linear Time Invariant
(LTI) state space model as (6) connecting the airflow model
with thermal model, and representing the entire system
dynamics around the equilibrium point is obtained.

x(k +1) = A · x(k)+B ·u(k)+Bd ·
[

dumd(k)
dmd(k)

]
, (6a)

y(k) = C · x(k)+D ·u(k)+Dd ·
[

dumd(k)
dmd(k)

]
, (6b)

where,

Bd =
[
Bdumd Bdmd

]
,Dd =

[
Ddumd Ddmd

]
. (7)

and, A ∈ ℜ3×3, B ∈ ℜ3×9,C ∈ ℜ3×, D ∈ ℜ3×9,Bd ∈
ℜ3×8,Dd ∈ℜ3×8 are the coefficient matrices at the equilib-
rium point. x,y,u,dumd ,dmd denote the sequences of vectors
representing deviation variable values of the process state
for the indoor temperature of each conceptual zone, the
controlled output which is equal to the state, the manipulated
input which consists of the valve openings and voltage
supplied to the fans, the disturbances of the heat generated
from animals and heating system, and the disturbances of
external wind speed, wind direction and ambient temperature
respectively.

x =
[
T̄1 T̄2 T̄3

]T
3×1, (8a)

u =
[
Āin,i=1...6 V̄volt, j=1...3

]T
9×1, (8b)

dumd =
[

¯̇Q1
¯̇Q2

¯̇Q3

]T

3×1
, (8c)

dmd =
[
V̄re f c̄P,w c̄P,l c̄P,r T̄o

]T
5×1. (8d)

The pair (A,B) is controllable and the pair (A,C) is observ-
able. Thus, the nonlinear plant model has been transformed
into a series of LTI state space models and well prepared for
solving the optimization problem in the predictive control
scheme as will be discussed in the following sections.



B. Disturbance Model and State Estimation

To achieve offset-free control of the output to their de-
sired targets at steady state, in the presence of plant/model
mismatch and/or un-modeled disturbances, the system model
expressed in (6) is augmented with an integrating disturbance
according to the general methodology proposed in [11]
and [12]. The process states are influenced by the input
disturbances from animal heat production, heating system
and external weather condition. The animal productivity heat
which is affected by various factors, will be modeled by
integrating a random white noise. The resulting augmented
system with process noise nw and measurement noise nv is:

x̃(k +1) = Ãx̃(k)+ B̃u(k)+ G̃nw(k), (9a)

y(k) = C̃x̃(k)+nv(k), (9b)
nw(k)∼ N(0,Qw(k)), (9c)
nv(k)∼ N(0,Rv(k)), (9d)

in which the augmented state and system matrices are defined
as follows,

x̃(k) =
[

x(k)
xumd(k)

]

6×1
, Ã =

[
A BdumdCumd
0 Aumd

]

6×6
,

B̃ =
[

B
0

]

6×9
,C̃ =

[
C 0

]
3×6, G̃ =

[
Bdmd 0

0 Bumd

]

6×11
.

(10)
The full process state x ∈ℜ3 and unmeasurable disturbance
state xumd ∈ℜ3 are estimated from the plant measurement y
by means of a steady state Kalman filter. The process and
measurement noise nw and nv are assumed to be uncorrelated
zero-mean Gaussian noise sequences with covariance Qw and
Rv. The determination of these covariances for an optimal
filter gain is addressed in the ALS estimator section. The
measurable deterministic disturbance dumd ∈ℜ8 is assumed
to remain unchanged within the prediction horizon and equal
to the constant at the last measured value, namely dumd(k) =
d̂dumd(k+1/k) = · · ·= d̂dumd(k+Hp−1/k). The detectability
of the augmented system in (9d) is guaranteed when the
condition holds:

Rank
[
(I−A) −G

C 0

]
= n+ sd , (11)

in which, n is the number of the process states, sd is the
number of the augmented disturbance states. This condition
ensures a well-posed target tracking problem. For detailed
explanation about the proof refer to [13] and [14].

C. Target Calculation

We now formulate the target tracking optimization as the
quadratic program formulation in (12), subjected to the con-
straints in (13), in which the steady state target of input and
state vector us and xs can be determined from the solution
of the following computation when tracking a nonzero target
vector zt . The objective of the target calculation is to find the
feasible triple (zs,xs,us) such that zs and us are as close as
possible to zt and ut , where ut is the desired value of the

input vector at steady state, and, zs = Cxs.

min
[xs,us]T

Ψ = (us−ut)T Rs(us−ut) (12)

s.t.





[
I−A −B

C 0

][
xs
us

]
=

[
0
zt

]

umin ≤ us ≤ umax

(13)

In this quadratic program, Rs is a positive definite weighting
matrix for the deviation of the input vector from ut . The
equality constraints in (13) guarantee a steady-state solution
and offset free tracking of the target vector.

D. Constrained Receding Horizon Regulation

Given the calculated steady state, the constrained opti-
mization problem is formulated by a quadratic cost function
(14) on finite horizon, subjected to the following linear
equality and inequalities (15) formed by the system dynamics
(6) and equipment limitation and the constraints on the
controlled variables.

min
uN

Φk = ŵT
k+NQ̄ŵk+N +∆vT

k+NS∆vk+N+ (14)

+
N−1

∑
j=0

[
ŵT

k+ jC
T QCŵk+ j + vT

k+ jRvk+ j +∆vT
k+ jS∆vk+ j

]

s.t.





wk+ j = xk+ j− xs,
vk+ j = uk+ j−us,
wk+ j+1 = Awk+ j +Bvk+ j,
ymin− ys ≤Cwk+ j ≤ ymax− ys, j = j1, j1 +1, · · · j2
umin−us ≤ vk+ j ≤ umax−us, j = 0,1, · · ·N−1
∆umin ≤ ∆vk+ j ≤ ∆umax, j = 0,1, · · ·N

(15)
where, Φ is the performance index to be minimized by
penalizing the deviations of the predictive state x̂k+ j, control
input uk+ j and the rate of change ∆uk+ j, at time j, from the
desired steady states. Q∈ℜ3×3 and S ∈ℜ9×9 are symmetric
positive semi-definite penalty matrices, R ∈ ℜ9×9 is sym-
metric positive definite penalty matrix. It is commonly taken
that Q comprises terms of the form CTC where rk+ j−yk+ j =
C(xs−xk+ j). The vector uN contains the N future open-loop
control moves as shown below

uN =




uk
uk+1

...
uk+N−1


 (16)

At time k+N, the input vector uk+ j is set to zero and kept at
this value for all j ≥ N in the open-loop objective function
value calculation. As discussed in previous section, the plant
is stable, therefore, according to [15], QN is defined as the
infinite sum: QN =

∞
∑

i=0
AT i

QAi, which will be determined

from the solution of the discrete Lyapunov equation: QN =
CT QC+AT QNA. This regulator formulation guarantees nom-
inal stability for all choices of tuning parameters satisfying
the conditions outlined above [16], [17].

The output constraints are applied from time k+ j1, j1 ≥ 1,
through time k + j2, j2 ≥ j1. The value of j2 is chosen such



that feasibility of the output constraints up to time k + j2
implies feasibility of these constraints on the infinite horizon.
The value of j1 is chosen such that the output constraints are
feasible at time k. The constrained regulator will remove the
output constraints at the beginning of the horizon up to time
k + j1 in order to obtain feasible constraints and a solution
to the quadratic program. Muske and Rawlings in [16] and
[18] explain the existence of finite values for both j1 and j2.

Through on-line constrained dynamic optimization, we
could obtain a sequence of optimal control signals uN

through a state and disturbance estimator, and the first input
value in uN , uk, is injected into the plant. This procedure is
repeated by using the plant measurements to update the state
vector at time k.

IV. ALS ESTIMATOR
The technique described in this section is originated in

[7]. Consider the LTI discrete-time model of the augmented
system as (9d), estimates of the states of the system are
constructed using the standard Kalman filter as (17)

x̂k+1/k = Ax̂k/k−1 +Buk +ALk(yk−Cx̂k/k−1). (17)

The estimate error is defined as εk = xk − x̂k/k−1, with
covariance Pk/k−1. This covariance Pk/k−1 = E

[
εkεT

k

]
is the

solution to the Riccati equation (18)

Pk+1/k = APk/k−1AT +GQwGT

−APk/k−1CT [
CPk/k−1CT +Rv

]−1
CPk/k−1AT ,

(18)

and the Kalman gain Lk is defined as (19)

Lk = Pk/k−1CT [
CPk/k−1CT +Rv

]−1
. (19)

Assume we process the yk to obtain state estimates using a
linear filter with gain L, which is not necessarily the optimal
L for the system. The state estimation error εk evolves
according to (20)

εk+1 = (A−ALC)εk +
[

G −AL
][

wk
vk

]
. (20)

The state space model of the innovations Y = yk−Cx̂k/k−1
is defined as (21)

εk+1 = Āεk + Ḡw̄k, (21a)
Yk = Cεk + vk, (21b)

in which,

Ā =
[
A−ALC

]
n×n , Ḡ =

[
G −AL

]
n×(g+p) ,

w̄ =
[

wk
vk

]

(g+p)×1
.

(22)

n is the number of states in (9d), p is the number of outputs, g
is the number of independent noises. (A,C) is detectable, Ā =
A−ALC is stable, the initial estimate error is distributed with
mean m0 and covariance P−0 . We choose k sufficiently large
so that the effects of the initial condition can be neglected,
or equivalently, we choose the steady-state distribution as the
initial condition:

E(ε0) = m0 = 0,cov(ε0) = P−0 = P−. (23)

Now we consider the autocovariance which is defined as
the expectation of the data with some lagged version of itself
[19]

C j = E
[
YkY

T
k+1

]
, (24)

and the symmetric autocovariance matrix (ACM) is then
defined as (25)

R(N) =




C0 · · · CN−1
...

. . .
...

C T
N−1 · · · C0


 , (25)

where, N is the user-defined number of lags used in ACM.
Accordingly, an ACM of the innovations can be written as
follows:

[R(N)]s
=

[
(O⊗O)(In2 − Ā⊗ Ā)−1 +(Γ⊗Γ)In,N

]
(G⊗G)(Qw)s

+
{[

(O⊗O)
(
In2 − Ā⊗ Ā

)−1 +(Γ⊗Γ)In,N

]
(AL⊗AL)

+
[
Ψ⊕Ψ+ Ip2N2

]
Ip,N

}
(Rv)s ,

(26)
in which

O =




C
CĀ

...
CĀN−1


 ,Ψ = Γ

[
N⊕

j=1
(−AL)

]
,

Γ =




0 0 0 0
C 0 0 0
...

. . .
...

...
CĀN−2 · · · C 0


 .

(27)

In,N is a permutation matrix that converts the direct sum to
a vector, i.e. In,N is the (pN)2× p2 matrix of zeros and ones
satisfying (

N⊕
i=1

Rv

)

s
= Ip,N (Rv)s , (28)

where, the subscript s denotes the outcome of applying the
vec operator. Practically, the estimate of the autocovariance
from real data is computed as

Ĉ j =
1

Nd − j

Nd− j
Σ

i=1
YiY

T
i+ j, (29)

where, Nd is the sample size. Therefore, the estimated ACM
R̂(N) is analogously defined using the computed Ĉ j.

We define the ALS estimate as

x̂ =
[
(Q̂w)T

s (R̂v)T
s
]T = argmin

x

∥∥∥A · x̂− R̂(N)s

∥∥∥
2

2
, (30)

and the solution for estimating Qw, Rv is the well-known

x̂ = (A T A )−1A T · b̂, (31)

where, A indicates the left hand side matrix to the least
square problem, and

A =
[
D(G⊗G) D(AL⊗AL)+

[
Ψ⊕Ψ+ Ip2N2

]
Ip,N

]
,

(32)
D =

[
(O⊗O)(In2 − Ā⊗ Ā)−1 +(Γ⊗Γ)In×N

]
, (33)



x =
[

(Qw)T
s (Rv)T

s
]T

,b = R(N)s. (34)

The uniqueness of the estimate is a standard result of
least-squares estimation [20]. The covariance can be found
uniquely when the matrix A has full column rank. However,
in the augmented system as (9d), the dimension of the driving
noise is w ∈ℜ11, according to [6] and [7], it is unlikely to
find unique estimates of the covariance (Qw,Rv), and the
solution may not be positive semi-definite. In order to avoid
leading to any meaningless solution, adding the semi-definite
constraint directly to the estimation problem to maintain
a convex program as (35) will ensure uniqueness of the
covariance estimation.

V = min
Qw,Rv

∥∥∥∥A

[
(Qw)s
(Rv)s

]
− b̂

∥∥∥∥
2

2

s.t.
{

Qw ≥ 0
Rv ≥ 0

(35)

The constraints in (35) are convex, and the optimization is
in the form of a semi-definite programming (SDP) problem,
which can be solved efficiently with Newton’s method [21].

V. SIMULATION RESULTS

In order to demonstrate the benefits of using ALS method,
the comparisons between using the ALS and nominally
tuned estimator combined with MPC are presented. Since
we have introduced an integrated white noise model for the
input disturbance which could account for the model/plant
mismatch, the following simulation results are derived in
presence of a step change of deterministic un-modeled output
disturbance. We assume that the state noise covariance Qw =
0.01 and measurement noise Rv = 0.001. The data set used
for ALS computation is collected from open loop nonlinear
plant simulation. Let Nd = 200 and N = 12. The first 30
points are used as the training set, and the rest are used as
a validation set. For the control system, the sampling time
step is Ts = 120(s), the prediction horizon is HN = 20.

The estimator gain determined from the known covari-
ances is conventionally regarded as a good tuning choice.
However, as demonstrated in Fig. 2, in the presence a
step increase of output disturbance, there are some marked
contrasts in the closed loop output performances between
using the ALS estimator (solid curves) and the conventional
estimator. Using the ALS estimator, the regulator is able
to reject the disturbances, tracking the reference faster and
further reduce the steady state variances. The frequency
distribution for the actuator’s changes are shown in Fig. 3
and Fig. 4 respectively. The changing frequency of the six
inlet vents openings and supplied voltages for three fans are
about the same and prove that the improved closed loop
performance does not require more aggressive manipulated
inputs through using ALS estimator.

The covariance estimation techniques are based on the
properties of the process innovations. Implementing ALS
has high potential for improving the quality of estimation
in comparison with the original estimator. This may be
illustrated as Fig. 5 by comparing the frequency distribution
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of the innovations Y = yk−Cx̂k/k−1 for ALS with that of an
nominal estimator.
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In conclusion, the normal tuning approach for estimator
gain is time consuming and probably prone to failure espe-
cially when the real covariances are not known. The pre-
dictive controller combined with the ALS estimator is able
to not only achieve off-set free tracking, but also design an
optimal estimator to compensate model/plant mismatch and
un-modeled disturbances without sacrificing more control
actions.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The main achievement of this work is the efficient appli-
cation of the ALS method to design an adaptive estimation
filter for Model Predictive Control of livestock ventilation
systems. Through linearization of the nonlinear system, an
LTI model in terms of state space representation which
connected the thermal system and air distribution system
is derived, and augmented by the integrated white noise
disturbance model to achieve offset-free control. The pre-
sented simulation results show the significant advantages
and performance improvement when using MPC over linear
models for control and ALS method for estimation.

B. Future Works

The entire control and estimation system will be imple-
mented and identified in a real scale livestock barn equipped
with hybrid ventilation systems in Syvsten, Denmark. The
result will be compared with those obtained with the cur-
rently used control and estimation system.
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