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IDENTIFICATION OF LIGHT DAMPING IN STRUCTURES 
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9000 Aalborg 
Denmark 

Abstract 
Diffaent methods to identification of linear and nonlinear 
damping in lightly damped structures are discussed in this 
paper. The discussion is based on experiments with a 4 
meter high monopile. Two alternative methods have been 
used for experimental cases of linear and nonlinear damp- 
ing. Method I is identification by ARMA models a~ssuming 
a white noise input. Method 2 is identification by simula- 
tion of a free decay response. Experimental data on the free 
decay response has been obtained directly by measurement 
as well as by the random decrement technique. Two cx- 
perimental cases. has been considered. The first case was a 
naturally damped monopile which was considered to be liw 
ear viscous damped. The second case was nonlinear viscous 
damping uf the monopilr due to a mounted danper on the 
monopile. The two cases illustrate identification of lightly 
damping in the linear and the nonlinear case. 

Nomenclature: 
Time series of noise 

Impulse response function of DOF no i 

Elemmt in the linear viscous damping matrix 

Element in the coulomb damping matrix 

Element in the damping matrix due to 

nonlinear viscous damping 

Random decrement signature of DOF no 

i due to trigger condition X0 on DOF no i 

Eigen frequency no n 

Damping force 

Element in the stiffness matrix 

Element in the mass matrix 

Number of degrees of freedom 

Number of data points in time series 
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Probability density function 

Cross correlation function 

Continuous time and discrete time 

Error function 

Discrete timr series of z(t) 

Time series of the response of DOF no 1 

Eigen value of damped eigen value problem 

R,oot of a cha,racterist,ic polynomial 

Variance of n&r 

Variation cocfficinlt 

Error 

Damping ratio 

Eigen mode vector 

Parameter vector 

Introduction 
The light damping in civil structures is very uncertais de- 
termined. This is due to severa 1 reasons. First of all there 
exists an insufficient knowledge about damping mechanisms 
in general. Secondly the damping estimates are often dis- 
torted by a bias error e.g. in the FFT analysis, see Bendat 
and Piers01 [I]. Thirdly when viscous damping is assumed, 
estimates of small damping become per definition more um 
certain as the damping decreases. In fact for a white noise 
driven SDOF system Koziu [2] has shown that the variation 
coefficients become: 

Thus the very unreliable nature of the damping estimates of 
lightly damped structures makes it necessary to considered 
alternative methods which reduces the uncertainty and the 



err01 of the estimate to a minimum. In this paper identifi- 
cation by ARMA models has been considered to overcome 
the bias problems of the traditional FFT zmalysis. Further- 
more identification by simulation of the impulse reponse has 
been considered to make it possible to identify nonlinear 
damping mechanisms. The random decrement technique 
has been considered as a link between the analysis of the 
response due to a random excitation and the analysis of a 
free decay response. 

Beyond the methods mentioned above. the method of the 
logarithmic drcrcment. b,,,, = ln % has also been applied: 

to provide a quick estimate of the damping ratio from a 
free decay. A, is here the lath amplitude and Ai is the ith 
amplitude. 

Identification By ARMA Models 

Identification by ARMA models provides an alternative to 
FFT analysis. The ARMA model gives a direct rela,t.ion to 
the modal quantities while the FFT-analysis gives a non- 
parametric model which followed by a curvefitting algo- 
rithm gins the estimates of the modal quantities 

This is called an .4RMMA(n,rr~j model (.4uto Regressive Mov- 
ing Average of order r~,m). The parnrmrters in the AR,MA 
model arc real numbers. The appropiate order should be 
(&es-f) for a whiie noise excited system with 7~ degrees of 
freedom. This choice will be a proper choice since it can be 
shown that for the assumed white noise excitation the cover- 
&se fun&on of the response due to the ARMA-model and 
that of the white noise excited structure will be identically, 
see Kozin and Xatke [3]. I n other words an ARMA model 
will provide an unbiased estimate of the response spectrum 
provided that the assumptions hold. 

The pararncters of the ARMA model are estimated from 
the time series zt. This is done by minimising the error 
function which in the present. paper is identical with the 
comput,cd variance of fzt : 

The error function will be nonlinear w.r.t. the parameters 
which means that methods of nonlinear least squares has to 
be applied. 

When the ARMA paramaers and the residual a, have been 
estimated it must, be checked whether or not al is a real- 
is&ion of white noise. If not it indicates that the model 
order is too low. In that case it means that the residual a, 
consists of a white noise contribution plus a model error. 
Hence the model order should be increased. 

The dynamic parameters are found from the 2n roots, Ai of 
the chuxteristic polynomial of the AR-parameters: 

X2” - *l~z”-~ -.~.-a2n-,X-@2”=0 (f4 

In e.g. Jrnsen [4] it is shown that the roots are related to 
the modal paruneters trough the 2n relations : 

( A,> I = (exP(iliA) 1 (6) 

where A is the sampling interval and 11, ha the following 

relation to modal para~meters: 

The index (12) refers here to the fact that the Xis are found 
as complex conjugated pairs if the modes are underdamped. 
This set of equations gives the relation between the es- 
timated ARMA parameters and modal parameters if the 
sampling interval: A is known. 

Identification By Response 
Simulation (IRS) 

This mrthod is rather straight forward: The error between 
the measured response and the sirnulatcd x~~>onse of a free 
decay is minimized w.r.t. the unknown parameters: 

where 

E(t1G) = z(t) - S(t18) (9) 

and *(t/O) is the predicted response due to G which is a 
vector containing the unknown parameters. The minimum 
of this error function w.r.t. the unknown parameters can 
be found by an iterative optimization , in the prrsenr paper 
by the algorithm NLPQL, Schittkowski [z]. 

The measured response, T(t) can either be obtained directly 
from a free decay o1- from an application of t,he random 
decranent technique on a white noise realiaation. The latter 



will be presented in the next sectian 

The response simulation of $(ti8) has been performed by 
the Runga Kutta method of a general lumped mass system 

containing nonlinear damping mechanisms such as coulomb 
and nonlinear viscous damping mechanisms given by : 

for the ith degree of freedom. 
The algorithm applies a set of initial conditions which may 
be known or included as unknown parameters. Thus the - 
parameter vector 0 will in the general ca,sc be given as: 

8~=(M,,cij,c~~“,c:,‘“,~~ij,~i(o),si(o)) 

i,j-l,Z...n (11) 

The method has been test,ed b : 5 d xries of simulated exam- 
ples with nonlinear viscous damping and coulomb damp- 
ing present at one time. The results showed that, even 
when noise was added it, was possible to identify the non- 
linear damping mecha,nisms. However the computer time 
increased seriously when noise was present. 

Random Dxmmcnt Technique 

The idea of the random dccrernent technique is to relate t,he 
white noise response of a linear system with t,hc impulse 
response of the sa,me system, see e.g. Vandiver et al 161. 
The random drcrcment signature can be defined as: 

0;:’ is here the random dccrernent signature for the time 
series s;(t) for which a trigger candition X0 has been giveu, 
while D;? is the random decren~nt signature of t,hv DOF 
no j given the trigger condition on r;(t), see figure 1. The 
principle is that after having choosen a trigger level for a 
given time scrics no i, segments of each meaaxed time series 
are identified and averaged for which the trigger condition of 
time series no i is fulfilled. This leads to informat,ion about 
auto and cross correlation and thus to the deterministic 
charact~eristics of the measured time series. However one 
of the essential problcrns of the random dec. technique is 
to avoid bias on the random dec. signature. Experience 
shows that both inter dependence of the segments, the way 
in which the theoretical trigger condition I = X0 is realized 
on the discretized timr series and the algorithm for choosing 

one trig point in each segment are of importance. .To ensure 
independence of t,he averaged segments they must be long 
enough to let the trig condition fade out ( the random dec. 
signature should be approximately zero at the end). Thus 
for lightly damped systems as a law of nature the random 
dec. technique demands long time series to avoid biasing. 

It can be shown, see Vandiver et al [6] that this signature 
in general is related to the autocorrelation function of the 
reponse by: 

R,,.;(h,h) = 
.I 

zjp(xj)D,:O[t~, t&hi (13) 

If the excitation is assumed to be a stationuy gaussian (but 
not necessary white) random zero mea,n process it follows 
that eq(13) is simplified to: 

(14) 

If the system is nonlinear this equation will be a,n qprosi- 
mation for which the error will depend upon how well the 
response process can be approximated to a gaussian process. 

Figure 1. Random dccrcrnent signature of the response no. 
2 with a choosen trigger condition on response no. 1. 100 
means haw been applied with A = 0.0213 Sec. Total length 
of signature, 22 Sec. 

If stat,ionary white noise is assumed and the system is as- 
sumed to be linear then it ca,n be shown that, the impulse 
response (Ia free decay) will be proportional tu the random 
decrement, signature: 

ILj(Tl:L< =A-" mrl F(t)) cx Ly,"[T] (15) 

This expression will also hold approximately for filtered 
white noise as input if the syst~em is lightly damped. Thus 



the random decrement technique can be applied for lightly 
damped linear systems with a broad banded excitation to 
find a” impulse response fun&o” of the excited modes. The 
relation will not hold in the case of “onlinealities. Howc~~r 

as will be show” later it is believed that indicative i”forma- 
tio” about nonlinearties can be obta,ined. 

Experimental Model 

The monopile stricture is showm in figure 2. The structural 
response was either due to a free vibration or a displacement 

controlled base rxcitat,io”. see Jrnsr” [7]. The txsr excita- 
tion was lowpass filt,errd white “oise. This mea”t t,hat, only 
two eigr” modes were excited, primarily the seco”d since 
thr excitatio” force due to the white noise displacement in- 
put was a force a”tospectru”, of the form: 

S,,(f) = P~fYSO (1G) 

Hence whe” the response was due to forced excitation the 
second eige” mode was the dornirla,ti”g. I” case of tbr per- 
formed free vibrations the most active eige” mode was the 
first. Thus the two hinds of response ro”tai”rd opposite 
wcighti”g of the eigcri rnodes and consrquently also of t.hr 
reliabilidy of thP respectively modal estirnaks. 

Figure 2. Monopilr str~ctwe. 

The two experimental cases which were considered were the: 
monopile structure with two different damping configura- 
tions: 

l The naturally damped manopile which was assumed to be 
proper modelled by a linear viscous damping model. 
l The extra damped mo”opile due to a mounted nonlinear 
viscous damper on the concentrated mass in the middle of 
the monopile. 

The first configuration is called the linear viscous damped 
case while the second is called nonlinear viscous damped 
case. The mathematical model of the mounted darnpcr was 
confirmed by a” calibration which showed tha,t the damping 
force could be described by F;‘” = (73&z + 0.4)& [N]. 

The response wa,s measured at two locations. The response 
of the mass at the top was labelled response no. 1 while the 
repo,,sr of t,he mass a,t the middle of the monopilr st~ructurc 
was labelled reponse no. 2. The response was xc&ratio” 

measured by xc&rations. 

The Linear Viscous Damped Case 

A” ARMA(8.7) model was found to be a proper ARMA 
model for the measured respa”se of the two concentrated 
masses due to the random excitation. The arguments for 
this model order wars: 

l The vwiance of the residual obtained a minimum for this 
model order which indicated that the model tias the best 

obtainable, (eq(4)). 
l The a~~tocorrelatio” of the residual sccmrd to be quite 
close to white noise, see figure 3. It is see” that the auto 
correlation function decreases fast to zero compared with 
the lowest eige” periode in the measured free decay, 0.14 
Sec. This indicates that t,he resdiual is white noise and that 
“0 model error has bcc:n present. 

Time T [SK] 

Figure 3. Autocorrelation of the residual. Tirnc series: The 
measmed respo~w of mass at the middle, A = 0.02 Sec. 
and time length 120 Sec. 

Theoretical the model order was expected to be (4.3) &cc 
o”ly two rnodes were excited. However due to the rudom 
but “on-white force process the model order was i” practicr 
higher. Relatiw high “mdel orders are quite com”m” since 
the white “oise assu”xptio~~ zdways will be a” approxima- 
ho”. 

The identificatio” by respo”sc sim”latio” (IRS) of a mea- 
sured frcr decay wa,s pcrfurmed with a, linrar dxnping model 
The f&xvi”g pa,ramrkrs were estimated: 

Free Decay: 

(2,* 3:.5) (::) + (!;I9 ,::) (i:) 
+ 9819.8 

-22406.3 -QL1%:) (::) = (i) 



The parameters agree fairly well with the physical a priori 
knowledge. In figure 4a is shown an example of a fit of the 
free decay response. A good agreement is seen even though 
some deviation is seen. This reflects probably the difficulties 
of identifying the second eigen mode which was only weakly 
excited in the free decay response. 

2.0 
0 1 2 

Time t [SK] 

Figure 4. Identification by response simulation (IRS). Fit 
of the response no. I for linear viscous damped case. The 
figure shows a segment of 120 Set time series sampled with 
A = 0.02 Sec. 

The estimated parameters were tmnsformed to modal pa- 
rameters for a comparison with the results of the ARMA 
method. In table 1 is shown the estimated modal param 
eters for the two methods together with the conventional 
logarithmic decrement. It is seen that the eigen frequencies 
estimated by the IRS and the ARMA method agrees very 
well. The damping ratio of the first mode estimated by the 
IRS and the logarithmic decay agrees fa,irly well but the 
ARMA method fails. This is due to the weak excitation of 
the first eigen mode in the response due to the white noise 
displacement input. The damping ratio of the second eigen 
mode has been determined with good agreement between 
the ARMA method and the IRS method even though the 
second eigen mode only was weakly excited in the measured 
free decay. Thus it is seen that the three applied methods 
seem to work well provided the eigen modes are excited 
sufficiently. 

~~ 

Table 1. Estimated modal parameters. 

The Nonlinear Viscous Damping Case 

The linea,r assumptions included in the ARMA method and 
the random dec. signature lead to models which are least 
squares approximations of a linear model to a nonlinear 
system. On the other hand, the application of the IRS 
method upon a measured free decay takes nonlinearities into 
account provided that all physical important mechanisms 
are included in the numerical IRS model. 

As for the case of the linear structure an ARMA(8,7) model 
was found to be the best choice since the variance of the 
residual was minimized. However in this case the autocor- 
relation of the residual, a(t) seemed not to be white noise 
as shown ~II figure 3, but showed periodicity, see figure 5. 
This can be taken as a possible sign of nonlineaity and a 
warning of the interpretation of the results. 

Time T [Set] 

Figure 5. Residual of ARMA(8,7) for response no. 2, A = 
0.02 Sec. and time length 120 Sec. 

The IRS was performed with data obtained from the ran- 
dom decrement technique applied on the response due to 
random excitation as well as with data obtained directly 
from a free decay. An example of a, random dec. signature 
is shown in figure 1. 

The two model estimates were found to be: 

Free Decay: 

+ 
9812.1 

-22182.7 ;%?ii j (::) = (i) 

Random Decrement: 

+ 
( 

9400.0 
-23750.4 ii’D”n”;l”) (“: > = (i) 

The corresponding fits between the simulated and measured 
response are shown in figure 6. There are a large deviation 
between the estimated parameters of the two models. How- 
ever this deviation wa,s expected since t,he applied excitation 
was different and because the random decrement approach 
was an linear approximation. 



It is seen that the IRS method applied on the free decay data 
gave in fact a fairly good estimate of the mounted damper 
characteristic. The damper calibration gave & = 73.8 
kg/m while thr. estimate was $4” = 49.3 kg/m. It must 
be noticed that the calibration was performed by unified 
velocity while the mounted damper WLS excited randomly 
backwards and forwards. Thus this result shows that it is 
possible to identify a concentrated damping source. 

I 
0 

I 
2.0 4.0 

Time t (SK] 

I I 
0 1.0 2.0 

Time t [SK] 

Figure G. Top: IRS ;rpplicd on tl 2 1, “KLsured free decay, 
A = 0.02 Sec. ud timr length 120 Sec. Bottom: IRS 
applied on the random dec. signature, A = 0.0213 Sec. 
and time length 11 Sec. with 100 means. 

Table 2. Estimated equivalent modal parameters of nonlin- 
car viscous damped structure. The v&xx in brackets are 
damping estimates obtained by the logarithmic decrement. 

The first eigen frequency was well determined independent 
of the applied method and the damping ratio was also deter- 
mined rat,her well by the ARMA met,hod and IRS a,pplied 
on a free decay. The IRS applied on the random decrement 
signat,ure did fail to give information about, ihe first eigen 
mode. This method and the ARM.4 method were based on 

the same time series thus the ARMA method seems to be 
more robust wrt. to identifying weakly excited eigen modes. 

The modal parameters of the second eigen mode were esti- 
mated with some deviations. The eigen frequency estimate 
was almost the same for the ARM.4 met,hod and t,he IR,S 
applied on the randec. signature while t,he IRS applied on 
a frcr decay gave some deviation. This wa,s without doubt 
because the second cigen mode was only weakly represented 
in the free decay response. 

The equivalent damping ratios showed also some deviation. 
Here t,he ARM.4 method seemed to have failed seriously. 
The damping estimate is seen to be small compared with 
the other e&m&s. Th. IS may have been due to thr white 
noise approximation in the ARM.4 m&hod which also was 
the cause to the increased order of the ARMA model. 

Considering t,he frequency domain it ixn be explained by 
the fact t,hat the force spectrum, according to eq(l6) was 
very steep compared with steepness of the peak of frequency 
response function. This can very well have led to an under 
estimation of the damping This was not a, problem in the 
application of the ARMA method in the case of the linear 
viscous damped structure since the resonance peak of the 
the structure was steeper due to a lower danping. 
It must be rioted that where the ARMA m&hod seemed 
to have failed, the IRS applied on the: ramdec. signature 
was also based on a whit,e noise assumption but did give a 
reasonable estimate of the second damping ratio compared 
with estimate obtained by IRS applied on a free response. 
A plausible explanation is that while the ARMA method 
applies the hole time series for one model estimate, the IRS 
based on random dec. is based on averaging segments of the 
time series. Thus the ARMA model may lead to unbiased 
but uncertain estimates while the application of the ran- 
dom dec. signature may lead to b&cd but relative certain 
results. 

In table 2 it can be noticed that the damping estimates 
due to the logarithmic decrement corresponded well to the 
estimates obtained by the more sophisticated m&ods. 

In figure 7 is shown the auto correlation function of residu- 
als for the fit of response no 2 for the ISR method applied 
on the measured free decay ilnd the random dec. signature. 
It is seen that the IRS applied on the random dec. sign 
nature causes an auto correlation function which remains 
relative large for large time lags while the IRS applied on 
the measured free decay gives a smoothly decreasing auto 
correlation function of the residual. Thus the residua,l may 
indicate that linear model assumption have been applied 
on data obtained from a nonlinear structure. In the com- 
parison of the two auto correlation function it should be 
noticed that the time scale was different because different 
modes was domina,ting the two time series. 



Time T [xc] 

I” 8” 8” I”” 12” 

Time T [SK] 

Figure 7. Top: Auto correlation of residual of the IRS 
method applied on the random dec. sign&we. Bottom: 
Auto correlation function of the residual of the IRS method 
applied on the measured free decay. 

Conclusion 

Linear and nonlinear damping models have been identified 
for a, simple lightly damped structure It has been shown 
that is in fact possible to identify light damping in the time 
domain avoiding the traditional bias due to FFT-analysis 
in the frequency domain. 

The identification by simulation of response has shown that 
it is n possible way of identifying nonlinear dxnping me& 
anisms. However some difficulties exist w.r.t. choosing the 
initial estima!es of the parameters Especially it has been 
found that the results are very sensitive to the start es- 
timates of the initial conditions of the impulse response. 
In practice the method may be applied on simple reduced 
models of structures giving information about the principle 
performance of the structure. 

The ARMA-model is able to give unbiased but uncertain 
damping estimates of linear lightly damped structures even 
when a mode is only weakly represented. The identifica- 
tion by the response simulation method (IRS) applied on 
random dec. signatures has shown that this is a possible 
way to extract inform&ion about the equivalent physical 
parameters of randomly excited systems. 
It may be possible to obtain qualitative information about 
nonlinearities from the residuals of the IRS applied on a 
random dec. signature and the ARMA method. However 
this should be investigated further. 

A fundamental future research topic should be an investi- 
gation of random and bias error on damping estimates ob- 
tained by the ARMA method and IRS based on the random 
dec. signature. Especially should the influence of nonlin- 
earities on modal estimates be investigated further. 
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