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Abstract 

In this paper it is explained how the damping can be 
estimated using the Frequency Domain Decomposition 
technique for output-only modal identification, i.e. in the 
case where the modal parameters is to be estimated 
without knowing the forces exciting the system. Also it is 
explained how the natural frequencies can be accurately 
estimated without being limited by the frequency 
resolution of the discrete Fourier transform. It is 
explained how the spectral density matrix is decomposed 
into a set of single degree of freedom systems, and how 
the individual SDOF auto spectral density functions are 
transformed back to time domain to identify damping 
and frequency. The technique is illustrated on a simple 
simulation case with 2 closely spaced modes. On this 
example it is illustrated how the identification is 
influenced by very closely spacing, by non-orthogonal 
modes, and by correlated input. The technique is further 
illustrated on the output-only identification of the Great 
Belt Bridge. On this example it is shown bow the 
damping is identified on a weakly exited mode and a 
closely spaced mode. 

Nomenclature 

Power spectral density matrix 
Mode shapes 
Angular frequency, frequency (Hz) 
Singular vectors 
Singular values 
Logarithmic decrement 
Modal damping ratio 
MAC limit value 

Introduction 

Output-only identification of structures is normally 
associated with the identification of modal parameters from 
the natural responses of civil engineering structures, space 
structures and large mechanical structures. Normally, in 
these cases the loads are unknown, and thus, the modal 
identification has to be carried out based on the responses 
only. Real case examples on some civil engineering 
structures can be found in Ventura and Horyna [l] or 
Andersen et al. [2]. 

The present paper deals with the problem of damping 
estimation using a relatively new technique for output-only 
identification called Frequency Domain Decomposition 
(FDD). The technique is described in Brincker et al [3], [4]. 

The technique is closely related to the classical frequency 
domain techniques where the modes are identified by 
picking the peaks in the spectral diagrams, Bendat and 
Piersol [5], Felber [6]. However, since the FDD technique 
approximately decomposes the spectral density matrix into a 
set of SDOF systems using the Singular Value 
Decomposition (SVD), the main part of the uncertainty of 
the classical technique is removed. 

In this paper it is explained more detailed how the SDOF 
auto spectral densities are identiticd using the modal 
assurance criterion (MAC), how the bells are transformed 
back to tune domain, and how the damping and more 
accurate natural frequency estimates are identified from the 
corresponding free decays. 
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Identification Algorithm 

In the Frequency Domain Decomposition (FDD) 
identification, the first step is to estimate the power spectral 

density matrix. The estimate of the output PSD GW (jw) 

known at discrete frequencies W = ui is then decomposed 
by taking the Singular Value Decomposition (SVD) of the 
matrix 

wherethernatrix Ui = [u~~,u~~,...,u~~] isaunitary 

matrix holding the singular vectors u q , and si is a 

diagonal matrix holding the scalar singular values sB Near 
a peak corresponding to the k th mode in the spectrum this 
mode or may be a possible close mode will be dominating. 
Thus, according to the FDD theory, the first singular vector 
uil is an estimate of the mode shape 

6 = U*l (2) 

and the corresponding singular value is the auto power 
spectral density function of the corresponding single degree 
of freedom system. This power spectral density function is 
identified around the peak by comparing the mode shape 
estimate i with the singular vectors for the frequency lines 
around the peak As long as a singular vector is found that 
has high MAC value with 4 the corresponding singular 
value belongs to the SDGF density function. If at a certain 
line none of the singular values has a singular vector with a 
MAC value larger than a certain limit value a, the search 
for matching parts of the auto spectral density function is 
terminated. The remaining spectral pins (the unidentified 
part of the auto spectral density function) are set to zero. 

From the fully or partiahy identified SDOF auto spectral 
density function, the natural frequency and the damping are 
obtained by taking the spectral density function back to time 
domain by inverse FFT. 

From the free decay time domain function, which is also the 
auto correlation function of the SDOF system, the natural 
frequency and the damping is found by estimating crossing 
times and logarithmic decrement. First all extremes rk , 

both peaks and valleys, on the correlation function are 
found. The logarithmic decrement 6 is then given by 

8 = 21n(‘o) 
k bl 

where r. is the initial value of the correlation function and 

rk is the k’th extreme. Thus, the logarithmic decrement and 
the initial value of the correlation function can be found by 
linear regression on k6 and 2 ln(]rk I), and the damping 
ratio is given by the well known formula 

A similar procedure is adopted for determination of the 
natural frequency. The frequency is found by making a 
linear regression on the crossing times and the times 
corresponding to the extremes and using that the damped 
natural frequency fd and de undamped natural frequency 

f is related by 

f=& 2 
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The extreme values and the corresponding times were found 
by quadratic interpolation, whereas the crossing times where 
found by linear interpolation. 

Simulation case, closely spaced modes 

The technique is illustrated on a case with 2 closely spaced 
modes. The response of a 2 DOF system is simulated using a 
vector ARMA model, Andcrsen [7l, and assuming that both 
degrees of freedom are loaded by Gaussian distributed white 
noise un-correlated processes. Exact and identified modal 
parameters are shown in Tables 1 and 2. 

The first case considered is a case with a reasonable spacing 
between the two modes. An auto spectral density and the 
singular values of the decomposed spectral matrix are shown 
in Figure 1. As it appears, the two modes are clearly visible 
in both plots. Partial identifying of the auto spectral densities 
of the two SDOF systems using the MAC as described 
above yields the result as shown in Figure 2. 

Taking the inverse discrete Fourier transform of the partially 
identified auto spectral densities yields the corresponding 
auto correlation estimate as shown in Figure 3, bottom. Top 
part of the same Figure shows the linear regression on the 
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Figure I. Case I with moderately spaced modes. Top: Auto 
spectral density. Bottom: Singular values of the decomposed 
spectral density matrix. 
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Figure 2. Partial identification of the hvo SLWF auto 
spectral density functions. 
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Figure 3. Top: Linear regression on extremes for estimation 
of damping. Bottom: Time domain free decay obtained by 
inverse FFT and estimated damping envelope. 
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Figure 4. Case 2 with closely spaced modes. Top: Partial 
identijcation of SDOF auto spectral density. Bottom: 
Correspondingfiee decay with damping envelope. 
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Figure 5. Case 3 with closely spaced modes, but where only 
a very limitedpart of the SLIOF density is identijed. 

d 

i 

-I 

.,;~r(: ,,,;:...“,“‘.“X‘- 
cc ‘-. j/, 

“X~,..‘..* 
‘w,---~>..\, 

1 -7, LT., < . . . 

-1,L I 
50 rm 150 ax, 2x m 

Figure 6. Case 4 with moderate& spaced modes. Mode 
shapes not orthogonal. 
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Figure 7. Case 5 with moderately spaced modes. Correlated 
input. 

extremes, and the bottom parts compares the free decay 
function with the estimated damping envelope As it 
appears, the procedure is quite strait forward and the user 
has a clear impression of the validity of the estimation 
simply by inspecting the plots. 

The second case considered is the case of closely spaced 
modes as shown in figure 4. In this case it is assumed that a 
reasonable part of the SDOF auto spectral density can be 
identified on both sides of the considered modal peak This 
is possible in the most cases by specifying a lower a - 
value. ln this case. the identification is also strait forward 
and the identified damping values compares reasonably well 
with the theoretical values, Table 2. 

In the third case it is assumed that only a quite small part of 
the SDOF auto spectral density function can be estimated 
This can bc the case if the spectral density is noisy due to 
limited data, or if noise is contaminating the signal. In this 
case however, since the data are simulated data meeting all 
basic assumptions of the technique, the identified SDOF 
density function shown in Figure 5 was obtained by using a 
rather high value of the MAC limit 0 As it appears, since 
the number of active pins in the spectrum is cut 
significantly, the Fourier series in the time domain becomes 
truncated to a degree where the damping becomes 
underestimated Table 2. 

The fourth case shown in Figure 6 illustrates the influence of 
non-orthogonal modes. In theory, to give exact results, the 
FDD requires that the modes are orthogonal. All other cases 
considered in this paper have orthogonal modes. For the 
modes considered in this cases, the MAC matrix is 

1.0000 0.4226 
MAC= 

0.4226 1.0000 1 
In this case, the SVD still split the spectral matrix in 
orthogonal components. This means, that even though the 
dominant singular value and the corresponding singular 
vector is a good estimate of the modal properties, the second 
singular value and the corresponding vector is not so closely 
related to the physics of the system. Thus, the right most 
part of the left mode is badly estimated. Even though this is 
the case, the modal damping estimate is still close to the 
exact value, Table 2. 

For the last considered case, case five, the loading is 
moderately correlated. In case of correlated input the FDD 
modal decomposition is approximate. In most practical cases 
however, like wind loads, wave loads or traflic loads, it is 
known that a certain spatial correlation is present. Thus it is 
important to know the amount of influence such correlation 
might have on the modal results, In this case the correlation 
matrix between the two stochastic processes loading the 
system was 

1.0000 0.4724 
c= 

0.4724 1.0000 1 
The results of the modal identification and the 
corresponding damping estimation of the first mode are 
shown in Figure 7. Again we see a certain distortion of the 
identified auto spectral density of the associated SDOF 
system in the overlapping region between the two modal 
peaks. However, the influence is rather small, the damping 
estimation is strait forward and the estimated damping is 
close to the exact values, Table 2. Thus, moderate 
correlation does not seem to significantly influence the 
quality of the results. 

Damping identification of the Great Belt Bridge 

In the following the efficiency of the proposed damping 
identification technique is illustrated on ambient response 
data of the Great Belt Bridge. The Great Belt Bridge is a 
suspension bridge with a free span of 2.6 km. 

Different ways of identifying the modal damping of this 
bridge including the application of the FDD technique as 
described here is investigated in Brincker et al. 181. 

In the following it is illustrated how the identification works 
on two difficult cases often real&d in practical output-only 
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Figure 8. Singular values of the spectral density matrix 
obtained)om the ambient response ofthe Great Belt 
Bridge. 
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Figure 9. Partially identijcation of auto spectral density 
associated with a weakly excited mode. 
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Figure 10. Partially identification of auto spectral density 
associated with a closely spaced mode. 

identification: a weakly excited mode and a closely spaced 
mode. 

The weakly excited mode is indicated in figure 8. As it 
appears it so weakly excited that only a careful inspection of 
the singular value decomposition of the spectral matrix or of 
the auto and cross spectral densities reveals that a mode is 
present. It is well known, that when using parametric 
methods like ARMA models or the Stochastic Subspace 
Identification algorithm, or partly parametric techniques like 
the Ibrahim Time Domain, the Eigen Real&ion Algorithm 
or the Polyreference identification technique, it is normally 
very diffkult to get reliable modal estimates and especially 
damping estimates in a case like this. 

Figure 9 shows that the FDD clearly identifies a reasonable 
part of the auto spectral density of the associated SDOF 
system, and a damping estimate that must bc judged as 
reliable can be obtained from the free decay function. 

The closely spaced mode case is also indicated in Figure 8, 
and this case is relatively di&ult too. Even though most of 
the pammetric and partially parametric techniques identifies 
closely spaced modes without major problems, this still is 
difficult in cases like this with a high number of modes 
present in the response. 

As shown in figure 10, the FDD technique identifies a large 
part of the auto spectral density of the associated SDOF 
system, and the corresponding free decay in the time domain 
must be considered as a good time representation of the 
frequency domain information. In this case, the estimated 
damping is very low, s = 0.24%, and the correlation 
function is far from being vanished for maximum time lag. 
This indicates that the damping is biased by leakage 
introduced in the estimation of the spectral density 
functions. 

Conclusions 

In this paper the estimation of damping has been introduced 
and illustrated for the Frequency Domain Decomposition 
(FDD) output only identification technique. 

The basic idea of the proposed identification procedure has 
been illustrated on a Z-DGF simulation case where it has 
been shown how the technique works in different cases of 
closely spaced modes including non-orthogonal modes and 
correlated input. 

Further it has been illustrated how the technique works in 
the case of identitication of two difficult modes of the Great 
Belt Bridge. 
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It can be concluded, that the FDD technique is a reliable and 
efficient modal estimator, that the damping estimation is 
easily controlled by adjusting the MAC limit value n, and 
that the quality is easily validated by inspecting simple plots 
like the plots presented in this paper. The major errors 
introduced is the error associated with the truncation of the 
Fouriel zies for the time domain functions and the bias 
introduced by the leakage. As it is well known from the 
literature, the truncation will course the damping to be 
under-estimated whereas the leakage will cause the damping 
to be over-estimated 

[41 

151 

The technique has been applied successfully to several civil 
engineering cases, Brincker et al. [9] and to several cases of 
identification in mechanical engineering where the structure 
was loaded by rotating machinery, Brincker et al. [lo], [ 1 l] 
and Moller et al. [12]. 

PI 

Table 1. Exact and estimated natural frequencies [71 

PI 

Table 2. Exact and estimated damping ratios. 
I Case 1 Exact 1 Exact 1 Estimate 1 Estimate 1 

51 c4 52 wd <, c4 <2 W) 
1 / 0.894 1.000 0.913 1.164 
2 
? 

I - 

0.976 1.000 0.966 0.938 
0.976 1.000 0.670 0.579 

4 2.225 2.539 2.589 3.113 
5 0.894 1.000 1.083 0.986 
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