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ABSTRACT 
In this paper the problems of doing automatic modal parameter extraction of 
ambient excited civil engineering structures is considered. Two different 
approaches for obtaining the modal parameters automatically are presented: The 
Frequency Domain Decomposition (FDD) technique and a correlation-driven 
Stochastic Subspace Identification (SSI) technique. Finally, the techniques are 
demonstrated on real data. 
 
 
1 INTRODUCTION 
 
For several reasons there has for many years existed a wish for a reliable automatic 
approach for estimation of modal parameters in civil engineering. 

If Structural Health Monitoring (SHM) is going to use modal information 
effectively it is necessary to avoid constant user interaction in the modal extraction 
process. Today, most monitoring systems have to rely on estimation and 
automatically inspection of e.g. spectral densities, an approach widely used in 
monitoring of rotating machinery. However, this cannot be used as the sole tool in 
monitoring of civil engineering structures, where changes of excitation levels and 
distribution then will cause too many false alarms. It is necessary to be able to 
distinguish between the structure and the excitation, which can only happen by 
inspection of physical parameters such as the modal parameters.  

For large ambient tests involving many measurement channels, many setups or 
many modes it can be a quite time consuming task to extract the modal parameters 
manually. In such case it is desirable to be able to estimate most of the modes 
automatically and only spend time on a few difficult modes. 

Finally, there might be cases where manually extraction of modes might not be 
possible; cases where the modes are maybe weakly excited, or highly damped and 
broad-banded excitation cover the exact locations of the modal peaks. 



This paper will focus on the problem of extracting modal parameters of a civil 
engineering structure automatically. Two different approaches for obtaining the 
modal parameters automatically using Operational Modal Analysis (OMA) will be 
presented.  

The Frequency Domain Decomposition (FDD) technique is known as one of the 
most user friendly and powerful techniques for operational modal analysis of 
structures. However, the classical implementation of the technique requires some 
user interaction. In this paper an automatic algorithm for FDD is presented.  

The Stochastic Subspace Identification (SSI) is a well known identification 
procedure well suited to handle data with non stationarity. Many variants exist. 
Here, we will focus on an automated version of the multipatch covariance driven 
subspace. This variant has the advantage over data driven versions of using less 
memory and merges data from different records measured at different periods of 
time. Special attention will be given to the problem of automated extraction of the 
modes. Finally, the techniques will be demonstrated on real data. 
 
2 THE FREQUENCY DOMAIN DECOMPOSITION (FDD) TECHNIQUE 
 
In order to do proper modal analysis of civil engineering structures it is often 
necessary to measure for very long time due to the low-frequency modes 
originating from the large structural dimensions. At the same time many sensors 
locations are often needed, especially when doing a modal survey of a new 
structure. The inevitable result is many measurement channels with many samples 
to process. When dealing with many channels and many samples, the frequency 
domain is a desirable domain to work with. The estimation of spectral densities can 
easily be performed because only small segments of data will stay in the computers 
memory at the same time. Also the estimation time becomes an insignificant 
problem, due to the extremely fast implementations of the Fast Fourier Transform 
(FFT) available for various PC processors.  
 
2.1 The basic algorithm 
 
Though it is still popular to works directly with spectral densities it is cumbersome 
to deal with all the auto- and cross spectral densities, and the accuracy of the modal 
parameter estimates extracted will depend very much on how well-separated the 
modes are. The Frequency Domain Decomposition (FDD) technique is a way to 
solve these two problems, Brincker et al [1], [2].  

The technique simplifies the user interaction because the user has only to 
consider one frequency domain function - the singular value diagram of the spectral 
density matrix. This diagram concentrates information from all spectral density 
functions. Further, if some simple assumptions are fulfilled, the technique directly 
provides a modal decomposition of the vibration information, and the modal 
information for each mode can be extracted easily and accurately. The technique 
works even in the case of closely spaced modes and when a lot of noise is present.   

The principle in the FDD technique is easiest illustrated by realizing that any 
response at time t can by written in modal coordinates, q)(ty i, as 

 



)(...)()()( 2111 ttqtqt Φqφφy =++=                                (1) 
 
where are the corresponding mode shape vectors,  is a matrix that contains the 
modes shape vectors as its columns, and q(t) is the vector of corresponding modal 
coordinates. Now obtaining the covariance matrix of the responses 
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and using equation (1) leads to 
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Expressing that the covariance of the measurements, )(τyyC , is related to the 

covariance of the modal coordinates, )(τqqC , through the mode shape matrix. The 
H is the Hermitian transposed operator.  

The equivalent relation in frequency domain, giving the spectral density matrix 
 of the response, is obtained by taking the Fourier transform )( fG yy

H
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Thus if the modal coordinates are uncorrelated, the spectral density matrix 

 of the modal co-ordinates is diagonal, and thus, if the mode shapes are 
orthogonal, then equation (4) is a singular value decomposition (SVD) of the 
response spectral matrix . Therefore, FDD is based on taking the SVD of 
the spectral density matrix 
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The matrix [ ]L,, 21 uuU = is a matrix of singular vectors and the matrix [  is a 
diagonal matrix of singular values. As it appears from this explanation, plotting the 
singular values of the spectral density matrix will provide an overlaid plot of the 
auto spectral densities of the modal coordinates. Note here that the singular matrix 

 is a function of frequency because of the sorting process that is 
taking place as a part of the SVD algorithm.  
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2.4 Data Reduction – Projection Channels 
 
Since the spectral density matrices typically consist of much more columns than 
there are modes participating at the difference frequencies, many of the columns of 
Gyy(f) are linear dependent upon each other. For large channel counts there are no 
need to process all the columns and the following SVD of equation (5). Good and 



reliable estimates of the modal parameters can be obtained from a limited number 
of columns. The columns we choose will be called the projection channels.  

In the example used in this paper five reference channels where used, and these 
references were place carefully in order to ensure that all analyzed modes were 
present in at least one of them. We choose these five reference channels as our 
projection channels in this case. The quality of the choice of projection channels 
should be verified by looking at the SVD of the spectral densities. If the last plotted 
singular value forms a horizontal line over the frequency band of interest, and if the 
other singular values display a good mode separation, then the choice is fine. If not 
other and / or more projection channels should be included. If more projection 
channels are needed, the channels to look for should contain as much new 
information as possible about the system compared to the channels already 
selected. This evaluation can be performed using a simple analysis of the 
correlation coefficients between the difference measurement channels. 
 
2.3 The Manual Approach 
 
A mode is identified by looking at where the first singular value has a peak, let us 
say at the frequency . This defines in the simplest form of the FDD technique - 
the peak picking version of FDD - the modal frequency. The corresponding mode 
shape is obtained as the corresponding first singular vector  in . 

0f

1u U
)( 01 fuφ =                                  (6) 

 
3 AUTOMATING THE FDD TECHNIQUE 
 
The process of findings peaks on a function is easily automated. However, to help 
distinguish between the different physical modes, harmonics and noise we 
introduce a set of indicators in the following. 
 
3.1 Modal Coherence Indicator 
 
Suppose a peak has been identified in the first singular value. The question is now 
if this is a liable modal peak or is if it just a noise peak. Calculating the correlation 
between the first singular vector at the peak – the mode shape vector at that point - 
and the first singular vector at neighboring points defines the discriminator function 
called the modal coherence 
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If the modal coherence is close to unity, then the first singular value at the 
neighboring point correspond to the same modal coordinate, and therefore, the 
same mode is dominating. This function is helpful in discriminating between points 
dominated by modal information and points dominated by noise.  

If the components of each of the vectors in equation (7) are random, then  
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and since the length is unity 
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where is the number of measurement channels. Thus the more measurement 
channels we have the closer two points with random (non-physical) information 
will get to zero. A reasonable criterion for accepting the neighboring point as a 
point with similar physical information, and thus accepting the presence of physical 
information at that frequency, could be by introducing a threshold level  and the 
requirement 
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setting the limit 1Ω  equal to a number close to 1, say 0.8. 
 
3.2 Modal Domain Indicator 
 
Once a peak has been accepted as representing modal information, another 
discriminator function can be helpful in discriminating between different modes. In 
this case the discriminator function is defined as 
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Thus this discriminator function is not a function of the initial point given by the 
frequency , but is a function of the frequency  of the considered neighboring 
point. If a high correlation is present over a certain frequency range around the 
considered peak it means that over that frequency range only that mode is 
dominating and introducing a similar criterion 
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defines a frequency range [ ]2010 ; ffff ∆−∆−  around each peak of modal 

dominance called the modal domain. The lower the value 2Ω , the larger the size 
 of the corresponding modal domain. Again a good initial value of 

would be 0.8. See Brincker et al. [3] for a more comprehensive discussion the 
choices of and 

21 fff ∆+∆=∆
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3.3 The Automatic Approach 
 
For a search set of interest, which usually will be maximum singular values at all 
discrete frequencies between DC and the Nyquist frequency, the following 
procedure is our proposal for an automatic FDD approach: 
 

1. Identify a peak on the first singular value line representing a maximum 
2. Check if the peak is likely to be physical 
3. If so, establish the modal domain 
4. If not define a noise domain around the peak 
5. Exclude the modal domain or noise domain from the search set 
6. Continue until the search set is empty, the peak is below the predefined 

excitation level, or a specified number of modes has been estimated 
 
The key point of the algorithm is point 2). As described earlier, it is essential at this 
point to include a criterion concerning the correlation between neighboring points 
as described by the modal coherence function d1. Also it is essential to be able to 
distinguish between a harmonic peak and a modal peak, see Andersen et al. [4] for 
a description of how to do this. Additional criteria can be based on for instance the 
size of the modal domain being larger than a certain value or the damping estimate 
being below a certain value. If we are looking for a certain number of modes, we 
can pick the modes that have the largest modal domain, or the modes that have the 
largest excitation level. 
 
For basic FDD we are satisfied when the peak is identified as a modal peak, and the 
corresponding mode shape vector is estimated. For the enhanced version of FDD 
the algorithm also works, but some additional steps are required, see e.g. Brincker 
et al [1],[2].  
 
4 SSI MULTIPATCH MERGING 
 
4.1 Algorithm 
 
The multipatch subspace approach has been presented in Mevel et al. [5]. It is 
based on the fact that merging Hankel matrices from different measurement setups 
is only possible if setups share common reference sensors and the excitation is the 
same for all setups. If the first requirement is impossible to be avoided and is 
common for many identification methods, it has been shown that the second 
requirement can be dropped if proper normalization is applied to the Hankel matrix 
of each setup. 

From the state space model,  
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one can define the following correlations between the reference sensors itself and 
between the moving and reference sensors for record j at time lag i, we got the 
matrix relation involving Gj
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The Hankel matrix corresponding to the reference sensors of record j is  
 

                                                       (16)  
 

By juxtaposing the different reference Hankel matrices from all records, we got 
the merged reference Hankel matrix, built on the concatenation of the different 
autocorrelations, and thus we end up with the following decomposition 
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Finally, we obtain the different controllability matrices in the same modal basis 
by splitting the C(F,G) matrix in the same manner G is split. Those matrices are 
also involved in the decomposition of   , where both left 
and right terms are different, and thus the matrices can not be stacked without 
proper normalization. By renormalizing each Hankel matrix like     
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We can now stack them and get the matrix , where  is 
assumed to be the best conditioned controllability matrix. Finally, we do the SVD 
as usual for the subspace method.  

This approach has been coupled with the usual subspace approach where 
identification is performed on each setup, and modes are extracted automatically. 
Usually subspace diagrams are noisy, but the multipatch diagram is much clearer, 
allowing determining the structural modes easily. By coupling both diagrams, 
using some automated extraction approach described below, one can extract modes 
and reconstruct modes and mode shapes. Future works will focus on improving the 
numerical efficiency of the method. 
 
4.2 The Automatic Approach 
 
The identification provides a stabilization diagram. This diagram must be analyzed 
in order to distinguish physical from computational modes. The algorithm must 
also provide the frequency, the damping and the mode shape.  



The first step of the automated extraction procedure is searching for alignments 
using graph theory. Those alignments are defined neighborhood by neighborhood 
looking at the order of the points. We consider every point of the stabilization 
diagram as the vertex of a directed graph. For each point of a given order we define 
an edge from this point to the nearest point at an inferior order, and another edge 
from this point to the nearest point at a superior order. 

The key of the algorithm is to define the nearest point. Each point of the 
stabilization diagram is associated to an order, a frequency, a damping and a mode 
shape.  For any two points we can define 3 distances (frequency, damping, MAC). 
The nearest point will be the point which is the nearest for at least 2 distances. We 
look at the closest point in frequency (euclidian distance), then in modeshapes 
(MAC distance). Usually damping is not considered because of its high variance. 
As the diagram is associated with a directed graph, it is trivial to extract connected 
sub graphs using graph theory. Each sub graph defines an alignment. For each 
alignment,  all  sub alignments of a given length are considered, in order to find the 
most linear part. From this linear part, we will try to extend it to a longer 
alignment. The automated extraction algorithm need only the minimum length of 
an alignment as input parameter. This algorithm is very fast and very robust, so that 
it can be used for a monitoring routine. Finding and extanding the linear part can be 
complex with the usual subspace algorithm because of the presence of many 
spurious modes. For the multi patch merging technique, the decrease in the number 
of spurious modes makes the automated extraction pretty trivial. 
 
5 EXAMPLE – Z24 HIGHWAY BRIDGE 
 
The two automatic approaches have been tested on a fairly large set of real data. 
The data is from the Z24 Bridge of the SIMCES project, and the test case used is 
the one called Progressive Damage Test no. 10. This case consists of 9 setups each 
with 33 channels, except setup 5 having only 27 channels. Five common reference 
channels where used and these have been selected as the Projection Channels in the 
analysis. The data has been sampled at 100 Hz with a measurement time of 655 
seconds, resulting in 65516 samples per channel.  
 
4.1 Results of the Automatic FDD Technique 
 
The results in this section are obtained using the Automatic Modal Analysis 
component of the ARTeMIS Extractor 4.1. This component implements the 
automatic FDD approach described in section 2.5 using the indicators presented in 
section 2.4. The thresholds 1Ω and have both been set to 0.8. In figure 4.1 the 
modal coherence is shown is the dark gray area on top of the diagram.  

2Ω

The top of the diagram corresponds to a modal coherence of 1 and the bottom to 
0. Especially around the first mode it is seen that the modal coherence is almost 1 
for a fairly broad frequency range. The modal domains of the different modes are 
displayed in light gray, and again this domain is quite large for the first mode as 
well.  

It can also be observed how the automatic algorithm is capable of detecting 
modes at places where the peaks are not very distinct, as with the last of the modes 



in figure 4.1. The total processing time from starting uploading data and to the final 
identification of the presented modes is around 2-5 minutes depending on the PC. 
So even for such a large set of data, it is possible very quickly to have results of the 
most well-excited modes. 
 
4.2 Results of the Automatic SSI Multipatch Merging Technique 
 
Figure 4.2 compares the stabilization diagram of the multipatch technique with the 
traditional correlation driven SSI method of one of the nine setups. The multi patch 
stabilization diagram is much clearer, and therefore of course much easier to work 
with for the automatic mode identification algorithm, that in this case identifies the 
six modes below 14 Hz.  
 
5 CONCLUSIONS 
 
The problem of doing automatic modal parameter extraction has been addressed in 
this paper. Two new and completely different methods have been presented.  

The first is the automated Frequency Domain Decomposition technique, where 
the peak picking has been automated in a robust way by the introduction of modal 
coherence, modal domain and harmonic indicators. This has made it possible to 
extract modes not even having distinct peaks as show in the example. 

The second is an automated version of the multipatch covariance driven 
Stochastic Subspace Identification technique. The multipatch technology results in 
just a single stabilization diagram even when multiple setups of data are analyzed. 
In addition this stabilization diagram is much clearer as the only content that are the 
same between the different setups are the physical information of the system being 
measured. The noise differs from setup to setup, and is therefore suppressed in the 
multipatch stabilization diagrams. It has been described how an automatic mode 
selection can be implemented. 
 
6. FIGURES 
 

 
 



Figure 4.1: The Automatic Frequency Domain Decomposition. The red indicator 
shows the identified modes. The modal coherence is shown in light blue, and the 
modal domains in light green. 
 

  
Figure 4.2: Multipatch stabilization diagram versus a traditional subspace 
stabilization diagram. 
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